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Abstract. Let {X(t) : t = (t1, t2, . . . , td) ∈ [0,∞)d} be a centered
stationary Gaussian field with almost surely continuous sample paths, unit
variance and correlation function r satisfying r(t) < 1 for every t ̸= 0

and r(t) = 1 −
∑d

i=1 |ti|
αi + o

(∑d
i=1 |ti|

αi
)
, as t → 0, with some

α1, α2, . . . , αd ∈ (0, 2]. The main result of this contribution is the de-
scription of the asymptotic behaviour of P

(
sup{X(t) : t ∈ J x

m} 6 u
)
,

as u→∞, for some Jordan-measurable sets J x
m of volume proportional to

P
(
sup{X(t) : t ∈ [0, 1]d} > u

)−1(
1 + o(1)

)
.
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1. INTRODUCTION

In extreme value theory of Gaussian processes, we have the following seminal
result (see Leadbetter et al. [4], Theorem 12.3.4; Arendarczyk and Dębicki [1],
Lemma 4.3; Tan and Hashorva [7], Lemma 3.3) concerning the asymptotics of the
distribution of supremum of a centered stationary Gaussian process {X(t) : t > 0}
with correlation function satisfying

(1.1) r(t) = Cov
(
X(t), X(0)

)
= 1− |t|α + o(|t|α), as t→ 0,

for some α ∈ (0, 2], over intervals with length proportional to

µ(u) = P
(
sup
t∈[0,1]

X(t) > u
)−1(

1 + o(1)
)
, as u→∞.

THEOREM 1.1. Let {X(t) : t > 0} be a zero-mean, unit-variance stationary
Gaussian process with a.s. continuous sample paths and correlation function r
satisfying (1.1) and r(t) log t → R ∈ [0,∞) as t → ∞. Let 0 < A < B < ∞.
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Then

P
(

sup
t∈[0,xµ(u)]

X(t) 6 u
)
→ Eexp

(
− x exp

(
−R+

√
2RW

))
,

as u→∞, uniformly for x ∈ [A,B], withW an N(0, 1) random variable.

It is natural to study a similar problem in the d-dimensional setting for ar-
bitrary d ∈ N. In this case one considers a centered stationary Gaussian process
{X(t1, t2, . . . , td) : t1, t2, . . . , td > 0} with unit variance and correlation function
r(t1, t2, . . . , td) = Cov

(
X(t1, t2, . . . , td), X(0, 0, . . . , 0)

)
satisfying

(1.2) r(t1, t2, . . . , td) = 1−
d∑
i=1

|ti|αi+o
( d∑
i=1

|ti|αi
)
,

as t1, t2, . . . , td → 0, with α1, α2, . . . , αd ∈ (0, 2]. The subject of interest is then
the distribution of supremum of the field {X(t1, t2, . . . , td)} over sets of volume
proportional to

m(u) = P
(

sup
(t1,t2,...,td)∈[0,1]d

X(t1, t2, . . . , td) > u
)−1(

1 + o(1)
)
.

In this paper we investigate suprema over sets of the form

J x
m :=

{
(t1, t2, . . . , td) ∈ Rd :

(
t1

x1m1(u)
,

t2
x2m2(u)

, . . . ,
td

xdmd(u)

)
∈ J

}
,

where J ⊂ Rd is a Jordan-measurable set with Lebesgue measure λ(J ) > 0,
x=(x1, x2, . . . , xd) ∈ (0,∞)d and m=(m1,m2, . . . ,md) with m1,m2, . . . ,md

some positive functions satisfying m1(u)m2(u) . . .md(u) = m(u). Let us put
Jm := J (1,...,1)

m . One interesting case isJ = [0, 1]d withJ x
m =

∏d
i=1[0, ximi(u)].

In a recent paper Dębicki et al. [3] consider the case d = 2. They assume that
the functions m1 and m2 tend to infinity and satisfy

(1.3)
logm1(u)

logm2(u)
→ 1 as u→∞.

The authors establish the following two-dimensional counterpart ([3], Theorem 2)
of Theorem 1.1.

THEOREM 1.2. Let {X(t1, t2) : t1, t2 > 0} be a zero-mean, unit-variance
stationary Gaussian field with a.s. continuous sample paths and correlation func-
tion r satisfying (1.2) and r(t1, t2) log

√
t21 + t22 → R ∈ [0,∞) as t21 + t22 →∞.

Let m1 and m2 be positive functions such that m1(u)m2(u) = m(u) and (1.3)
hold. Then:
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(i) for each 0 < A < B <∞,

P
(

sup
(t1,t2)∈[0,x1m1]×[0,x2m2]

X(t1, t2) 6 u
)
→ E e−x1x2 exp(−2R+2

√
RW),

as u→∞, uniformly for (x1, x2) ∈ [A,B]2, withW anN(0, 1) random variable;
(ii) for every Jordan-measurable setJ ⊂R2 with Lebesgue measure λ(J )>0,

P
(

sup
(t1,t2)∈Jm

X(t1, t2) 6 u
)
→ E e−λ(J ) exp(−2R+2

√
RW),

as u→∞, withW an N(0, 1) random variable.

Our goal is to derive a general limit theorem for the distribution of supremum
of the field {X(t1, t2, . . . , td)} over sets J x

m, for arbitrary d ∈ N and for a wide
class of families {m1,m2, . . . ,md} of functions, uniform for x ∈ [A,B]d, for all
0 < A < B <∞. The main result is Theorem 3.1. In the paper we do not assume
that every mi tends to infinity like Dębicki et al. [3] do. We fully explain the case
when all mis are separated from zero (see Theorem 3.1 and Remark 3.1) and give
some partial results in the case when some of mis tend to zero (see Corollaries 3.4
and 3.5).

2. PRELIMINARIES

We consider Rd with coordinatewise order 6, write t = (t1, t2, . . . , td) for
an element t ∈ Rd, put 0 := (0, 0, . . . , 0) and 1 := (1, 1, . . . , 1), and denote by
∥ · ∥∞ the sup-norm in Rd, i.e., ∥t∥∞ = max{|t1|, |t2|, . . . , |td|} for any t ∈ Rd.

Let {X(t) : t ∈ [0,∞)d} be a centered stationary Gaussian field with a.s.
continuous sample paths, unit variance and correlation function

r(t) = Cov
(
X(t), X(0)

)
.

We will often assume that the correlation function satisfies:
A1: r(t) = 1−

∑d
i=1 |ti|

αi + o
(∑d

i=1 |ti|
αi
)

as t1, t2, . . . , td→0;

A2: r(t) < 1 for t ̸= 0;

A3: r(t) log
√
t21 + t22 + . . .+ t2d → R as t21 + t22 + . . .+ t2d →∞,

with some constants α1, α2, . . . , αd ∈ (0, 2] and R ∈ [0,∞).
The above conditions are analogous to the ones given in [4], [1], [7], [3].
Condition A1 implies that the correlation function r is continuous. A1 and

A2 give |r(t)| < 1 for t ̸= 0. Moreover, condition A2 follows from A1 and A3.
Notice that we study both weakly dependent fields, satisfying A3 with R = 0, and
strongly dependent fields, satisfying A3 with R ∈ (0,∞).

For every α ∈ (0, 2], we denote byHα the Pickands constant (see [5]), i.e.,

Hα := lim
T→∞

Eexp
(
max06t6T Bα/2(t)− |t|α

)
T

,

where {Bα/2(t) : t > 0} is a fractional Brownian motion with Hurst index α/2.
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Let W be a standard normal random variable and let Φ(u) := P(W 6 u),
Ψ(u) := P(W > u). We recall that

Ψ(u) =
1√
2πu

exp

(
−u

2

2

)(
1 + o(1)

)
as u→∞.

If the considered field {X(t)} satisfies A1 and A2, then, for arbitrary Jordan-
measurable set J ⊂ Rd with Lebesgue measure λ(J ) > 0, we have

(2.1) P
(
max
t∈J

X(t) > u
)
= λ(J )

d∏
i=1

(Hαiu
2/αi)Ψ(u)

(
1 + o(1)

)
,

as u→∞, due to Piterbarg [6], Theorem 7.1. Thus

m(u) :=
( d∏
i=1

(Hαiu
2/αi)Ψ(u)

)−1
= P

(
max

t∈[0,1]d
X(t) > u

)−1(
1 + o(1)

)
.

Let m1,m2, . . . ,md be positive functions such that

m1(u)m2(u) . . .md(u) = m(u)

and for some k ∈ {0, 1, . . . , d− 1}:
1. for every i ∈ {1, 2, . . . , k} there exists an Mi ∈ (0,∞) such that

mi(u)→Mi as u→∞;

2. for every i ∈ {k + 1, k + 2, . . . , d} we have

mi(u)→∞ (as u→∞) and mi(u) = exp(γiu
2)ci(u),

for some constant γi ∈ [0, 1/2] and positive function ci with log ci(u) = o(u2).
Then γk+1 + γk+2 + . . .+ γd = 1/2. We put γ := maxi γi.

For arbitrary x ∈ (0,∞)d, we define Rx := [0, x1] × [0, x2] × . . . × [0, xd]
and Rx

m := [0, x1m1(u)] × [0, x2m2(u)] × . . . × [0, xdmd(u)] for each u ∈ R.
Note thatRx

m = J x
m for J = [0, 1]d.

3. RESULTS

Below, in Section 3.1, we present Theorem 3.1, which is the main result. Its
proof is given in Sections 3.3 and 3.4. Some consequences of Theorem 3.1 can be
found in Sections 3.1 and 3.2.
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3.1. Main theorem. The following theorem describes the asymptotic behaviour
of P

(
sup{X(t) : t ∈ J x

m} 6 u
)
, as u→∞, for Jordan-measurable sets J x

m of
volume proportional to m(u).

THEOREM 3.1. Let {X(t) : t ∈ [0,∞)d} be a centered stationary Gaussian
field with a.s. continuous sample paths, unit variance and correlation function r
that satisfies A1 and A3 with someR ∈ [0,∞). Then, for every Jordan-measurable
set J ⊂ Rd with λ(J ) > 0, for each 0 < A < B <∞,

P
(
sup
t∈J x

m

X(t) 6 u
)
→ Eexp

(
− x1x2 . . . xdλ(J ) exp

(
− R

2γ
+

√
R

γ
W
))

,

as u→∞, uniformly for x ∈ [A,B]d.

Applying the above theorem for J = [0, 1]d, we obtain the following result.

COROLLARY 3.1. Let {X(t)} satisfy the assumptions of Theorem 3.1. Then,
for each 0 < A < B <∞,

P
(
sup
t∈Rx

m

X(t) 6 u
)
→ Eexp

(
− x1x2 . . . xd exp

(
− R

2γ
+

√
R

γ
W
))

,

as u→∞, uniformly for x ∈ [A,B]d.

In the special case, when k = 0 and the functions m1,m2, . . . ,md are chosen
so that γ1 = γ2 = . . . = γd (and thus a d-dimensional analog of (1.3) holds), we
have the following corollary. Note that for d = 2 it coincides with Theorem 1.2.

COROLLARY 3.2. Let the assumptions of Theorem 3.1 be satisfied and let

(3.1)
logmi(u)

logmj(u)
→ 1 as u→∞, for i, j ∈ {1, 2, . . . , d}.

Then, for every Jordan-measurable set J ⊂ Rd with λ(J ) > 0,

P
(
sup
t∈J x

m

X(t) 6 u
)
→ Eexp

(
− x1x2 . . . xdλ(J ) exp

(
− dR+

√
2dRW

))
,

as u→∞, uniformly for x ∈ [A,B]d, for each 0 < A < B <∞.

3.2. Some consequences of the main theorem. Let the field {X(t)} satisfy the
assumptions of Theorem 3.1. In this section we ask for the asymptotic behaviour
of the supremum of {X(t)} over sets J x

m̄, for J ⊂ Rd a Jordan-measurable set
with λ(J ) > 0, x ∈ (0,∞)d, m̄ = (m̄1, m̄2, . . . , m̄d) and m̄1, m̄2, . . . , m̄d some
positive functions with m̄1(u)m̄2(u) . . . m̄d(u) = m(u). Note, we do not assume
that m̄1, m̄2, . . . , m̄d fulfill all the conditions, which have to be satisfied by the
functions m1,m2, . . . ,md introduced in Section 2.
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First, we consider the case when the functions m̄1, m̄2, . . . , m̄d are separated
from zero, i.e., m̄1(u), m̄2(u), . . . , m̄d(u) > ε for some ε > 0. Then, it is easy
to show that every sequence {un}n∈N tending to infinity contains a subsequence
{unj}j∈N such that for each i ∈ {1, 2, . . . , d} we have m̄i(unj )→ M̄i ∈ [ε,∞),
as j →∞, or, alternatively, m̄i(unj ) = exp(γ̄iu

2
nj
)c̄i(unj )→∞, as j →∞, for

some constant γ̄i ∈ [0, 1/2] and some function c̄i with log c̄i(unj ) = o(u2nj
). We

can apply Theorem 3.1 for such subsequences. This justifies the following remark.

REMARK 3.1. Theorem 3.1 fully explains the case when m̄1, m̄2, . . . , m̄d are
positive functions separated from zero, such that m̄1(u)m̄2(u) . . . m̄d(u) = m(u).
It gives the asymptotics for convergent subsequences.

Since for weakly dependent Gaussian fields the limit in Theorem 3.1 does not
depend on γ, the above considerations entail a concise corollary.

COROLLARY 3.3. Let {X(t)} satisfy the assumptions of Theorem 3.1 with
R = 0 and let m̄1, m̄2, . . . , m̄d be positive functions separated from zero, such
that m̄1(u)m̄2(u) . . . m̄d(u) = m(u). Then, for each 0 < A < B <∞,

P
(
sup
t∈J x

m̄

X(t) 6 u
)
→ exp

(
− x1x2 . . . xdλ(J )

)
,

as u→∞, uniformly for x ∈ [A,B]d.

Next, we focus on the case when m̄is are allowed to tend to zero. In general,
such weakening of the assumptions enforces a different approach. However, basing
on Theorem 3.1, we can give the limit theorems in two special opposite cases: when
m̄i → 0 sufficiently fast and when m̄i → 0 sufficiently slow.

Suppose that for some 0 6 j 6 k < d:
0. for every i ∈ {1, 2, . . . , j} we have

m̄i(u)→ 0 as u→∞;

1. for every i ∈ {j + 1, j + 2, . . . , k} there exists an M̄i ∈ (0,∞) such that

m̄i(u)→ M̄i as u→∞;

2. for every i ∈ {k + 1, k + 2, . . . , d}

m̄i(u)→∞ (as u→∞) and m̄i(u) = exp(γ̄iu
2)c̄i(u)

hold for some constant γ̄i > 0 and function c̄i such that log c̄i(u) = o(u2). Then
γ̄k+1 + γ̄k+2 + . . .+ γ̄d > 1/2. We put γ̄ := maxi γ̄i.

Note that the above conditions are very similar to the conditions given in Sec-
tion 2 for the functionsm1,m2, . . . ,md. Under these assumptions (and some extra
ones) we can prove the following results.

Probability and Mathematical Statistics 38, z. 1, 2018
© for this edition by CNS



Extremes of Gaussian fields 197

COROLLARY 3.4. Assume that m̄1, m̄2, . . . , m̄d satisfy the above conditions
and, moreover,

m̄1(u) = exp(−κu2)c(u)

for some constant κ > 0 and function c satisfying log c(u) = o(u2). Then,

P
(
sup
t∈J x

m̄

X(t) 6 u
)
→ 0, as u→∞,

uniformly for x ∈ [A,∞)d, for each A > 0.

P r o o f. Let x ∈ (0,∞)d. Since the set J ⊂ Rd is Jordan-measurable and
λ(J ) > 0, there exist y ∈ Rd and z ∈ (0,∞)d such that y +Rz ⊂ J . Thus

P
(
sup
t∈J x

m̄

X(t) 6 u
)
6 P

(
sup

t∈(y+Rz)xm̄

X(t) 6 u
)
= P

(
sup

t∈Rzx
m̄

X(t) 6 u
)
,

with zx := (z1x1, z2x2, . . . , zdxd), where the last equality is a consequence of
stationarity. Furthermore,

P
(

sup
t∈Rzx

m̄

X(t) 6 u
)
6 P

(
sup

06ti6zixim̄i

X(0, . . . , 0, tk+1, tk+2, . . . , td) 6 u
)
.

We will show that the right-hand side of the above inequality tends to zero, using
Theorem 3.1 for the field X̂(tk+1, tk+2, . . . , td) :=X(0, . . . , 0, tk+1, tk+2, . . . , td),
tk+1, tk+2, . . . , td > 0, that satisfies (d− k)-dimensional conditions A1 and A3.

Since κ > 0, we have σ := γ̄k+1 + γ̄k+2 + . . .+ γ̄d > 1/2. Hence

m̄k+1(u)m̄k+2(u) . . . m̄d(u)

m̂(u)
→∞, as u→∞,

where

m̂(u) :=
( d∏
i=k+1

(Hαiu
2/αi)Ψ(u)

)−1
.

For every i ∈ {k + 1, k + 2, . . . , d}, we put

m̂i(u) := exp(γ̂iu
2)ĉi(u),

with γ̂i := (2σ)−1γ̄i and ĉi(u) :=
(
m̂(u) exp(−u2/2)

)1/(d−k). Then γ̂i ∈ [0, 1/2],
log ĉi(u) = o(u2) and γ̂k+1 + γ̂k+2 + . . .+ γ̂d = 1/2. Moreover, the functions m̂i

satisfy m̂k+1(u)m̂k+2(u) . . . m̂d(u) = m̂(u) and we have

m̄i(u)

m̂i(u)
→∞ as u→∞.
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Let C > 0 be arbitrary. Since m̃i(u)/m̂i(u) > C for all sufficiently large u,
we obtain

lim sup
u→∞

P
(

sup
06ti6xim̃i

X(0, . . . , 0, tk+1, tk+2, . . . , td) 6 u
)

= lim sup
u→∞

P
(

sup
06ti6xim̃i

X̂(tk+1, tk+2, . . . , td) 6 u
)

6 lim sup
u→∞

P
(

sup
06ti6Cxim̂i

X̂(tk+1, tk+2, . . . , td) 6 u
)

= Eexp

(
− Cd−kxk+1xk+2 . . . xd exp

(
− R

2γ̂
+

√
R

γ̂
W
))

,

with γ̂ := maxi γ̂i, due to Theorem 3.1. Since the right-hand side tends to zero as
C → ∞, the proof of pointwise convergence is complete. Uniform convergence
simply follows from the monoticity of x 7→ P

(
sup{X(t) 6 u : t ∈ J x

m̄}
)
. �

COROLLARY 3.5. Suppose that m1,m2, . . . ,md are positive functions such
that m1(u)m2(u) . . .md(u) = m(u) holds and, moreover, assume that

mi(u) = 1, for i 6 j, for some j ∈ {1, 2, . . . , d− 1},

mi(u) = exp(γiu
2)ci(u)→Mi ∈ (0,∞], as u→∞, for i > j,

where γi ∈ [0, 1/2] and log ci(u) = o(u2). There exist some positive functions
ν1, ν2, . . . , νj satisfying νi(u) → 0, such that for all m̄1, m̄2, . . . , m̄d satisfying
the conditions: νi(u) = o

(
m̄i(u)

)
for each i ∈ {1, 2, . . . , j}, m̄i(u) = mi(u) for

each i ∈ {j + 1, j + 2, . . . , d− 1} and m̄d(u) = md(u) ·
∏j
i=1 m̄i(u)

−1, we have

P
(
sup
t∈Jm̄

X(t) 6 u
)
→ Eexp

(
− λ(J ) exp

(
− R

2γ
+

√
R

γ
W
))

,

as u→∞.

P r o o f. Let ε1, ε2, . . . , εj > 0 and εεε :=
(
ε1, ε2, . . . , εj , 1, . . . , 1,

∏j
i=1 ε

−1
i

)
.

By application of Theorem 3.1, we obtain

P
(
sup
t∈J εεε

m

X(t) 6 u
)
→ Eexp

(
− λ(J ) exp

(
− R

2γ
+

√
R

γ
W
))

,

as u → ∞, uniformly for εεε ∈ [A,B]d, for all 0 < A < B < ∞. Note that the
above limit does not depend on the choice of ε1, ε2, . . . , εj . It is not difficult to
show that there exist some functions νi, i ∈ {1, 2, . . . , j}, tending to zero, such
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that for positive functions εi = εi(u), i ∈ {1, 2, . . . , j}, tending to zero, and for
εεε(u) :=

(
ε1(u), ε2(u), . . . , εj(u), 1, . . . , 1,

∏j
i=1 ε

−1
i (u)

)
, we have

P
(

sup
t∈J εεε(u)

m

X(t) 6 u
)
→ Eexp

(
− λ(J ) exp

(
− R

2γ
+

√
R

γ
W
))

,

whenever νi(u) = o
(
εi(u)

)
. We shall put εi(u) = m̄i(u) for i ∈ {1, 2, . . . , j}. �

REMARK 3.2. We do not know the form of the functions ν1, ν2, . . . , νj from
Corollary 3.5. Our conjecture is that νi(u) = u−2/αi for i ∈ {1, 2, . . . , j}.

3.3. Lemmas. The lemmas formulated in this section are crucial in the proof
of Theorem 3.1 (see Section 3.4). They are d-dimensional counterparts of known
results: Lemma 3.1 generalizes Lemma 12.2.11 in [4] and Lemma 1 in [3]; Lem-
ma 3.3 combines d-dimensional analogs of Lemma 12.3.1 in [4] (for weakly de-
pendent fields) and Lemma 3.1 in [7] (for strongly dependent fields), it is a gen-
eralization of Lemma 2 in [3]. Since the argumentation for Lemmas 3.1 and 3.2
mimics the one given in [4] and expanded in [7], [2], the proofs are skipped. We
present the proof of Lemma 3.3, which improves the lemma given by Dębicki et
al. [3], [2] and enables us to establish far more general results than the ones in [3].

Let a > 0. Put qi = qi(u) := au−2/αi for i ∈ {1, 2, . . . , d}. Moreover, define
jq = jq(u) :=

(
j1q1(u), j2q2(u), . . . , jdqd(u)

)
for j = (j1, j2, . . . , jd) ∈ Zd.

LEMMA 3.1. Assume that conditions A1 and A2 hold. Then there exists a func-
tion ϑ satisfying ϑ(a)→ 0, as a→ 0, such that for every a > 0 we have

P
(

sup
jq∈y+Rx

X(jq) 6 u
)
− P

(
sup

t∈y+Rx
X(t) 6 u

)
6 x1x2 . . . xd

m
ϑ(a) + o

(
1

m

)
,

as u→∞, uniformly for y ∈ [0,∞)d and x ∈ [A,B]d, for all 0 < A < B <∞.

REMARK 3.3. An explicit formula for ϑ from Lemma 3.1 can be found in [2].

LEMMA 3.2. Suppose that T = T (u)→∞ as u→∞. Then, providing that
conditions A1 and A2 are fulfilled, there exists an ε > 0 such that for all R > 0

m

q1q2 . . . qd

∑
jq∈(−ε,ε)d
jq ̸=(0,0,...,0)

[(
1−r(jq)

) R

log T

(
1−
(
r(jq)+

(
1−r(jq)

) R

log T

)2)−1/2

× exp

(
− u2

1+r(jq)+
(
1−r(jq)

)
R/ log T

)]
→ 0,

as u→∞.
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Let R > 0 be fixed. The last lemma concerns functions ρT and ϱT defined for
an arbitrary T > 1 and for t ∈ Rd as follows:

(3.2)

ρT (t) :=

{
1, max{|tk+1|, |tk+2|, . . . , |td|} < 1,∣∣r(t)− R

log T

∣∣, otherwise;

ϱT (t) :=

{
|r(t)|+

(
1− r(t)

)
R

log T , max{|tk+1|, |tk+2|, . . . , |td|} < 1,
R

log T , otherwise.

LEMMA 3.3. Assume that Ti = Ti(u) ∼ τimi(u), as u→∞, for some τi>0
and every i ∈ {1, 2, . . . , d}. Let ε > 0. Then, providing that conditions A1 and A3
with R ∈ [0,∞) are fulfilled,

T1T2 . . . Td
q1q2 . . . qd

∑
jq∈
∏d

i=1
[−Ti,Ti]

jq/∈(−ε,ε)d

ρT (jq) exp

(
− u2

1+max{|r(jq)|, ϱT (jq)}

)
→ 0,

as u→∞, with T := max{T1, T2, . . . , Td}.

P r o o f. We present the proof in the case d = 2. The argumentation for other
dimensions is analogous. We follow the reasoning from Lemma 2 in [2], making
modifications and skipping some details, which can be found in [2].

Since T1(u)T2(u) ∼ τ1τ2m(u), as u→∞, we get

(3.3) u2 = 2 log(T1T2) +

(
2

α1
+

2

α2
− 1

)
log log(T1T2) +O(1).

It is not difficult to see that there exists a constant δ ∈ (0, 1) such that for all
sufficiently large L

sup
ε6∥t∥∞6L

max{|r(t)|, ϱL(t)} < δ.

Denote by β a constant satisfying 0 < β < (1 − δ)/(1 + δ) and divide the set
Q := [−T1, T1]× [−T2, T2]− (−ε, ε)2 into two subsets:

S∗ := {t ∈ Q : |t1| 6 m(u)β/2, |t2| 6 m(u)β/2},
S := Q− S∗.

Observe that the shape of the set S∗ of volume m(u)β
(
1 + o(1)

)
does not depend

on the choice of m1 and m2.

Probability and Mathematical Statistics 38, z. 1, 2018
© for this edition by CNS



Extremes of Gaussian fields 201

Following line-by-line the arguments from [2], thanks to the proper choice
of β, we obtain

(3.4)
T1T2
q1q2

∑
jq∈S∗

ρT (jq) exp

(
− u2

1 + max{|r(jq)|, ϱT (jq)}

)
→ 0,

as u→∞.
To complete the proof, it suffices to show that

(3.5)
T1T2
q1q2

∑
jq∈S

ρT (jq) exp

(
− u2

1 + max{|r(jq)|, ϱT (jq)}

)
→ 0,

as u→∞. By an argument from [2] and the fact that m(u)β/2 →∞, we get

max {|r(jq)|, ϱT (jq)} 6
C

logm(u)β/2
,

for sufficiently large u, some constant C > 0 and all points jq ∈ Q satisfying
∥jq∥∞ > m(u)β/2. Hence we have

T1T2
q1q2

∑
jq∈S

ρT (jq) exp

(
− u2

1 + max {|r(jq)|, ϱT (jq)}

)
6 4

T 2
1 T

2
2

q21q
2
2

exp

(
−u2

(
1− C

logmβ/2

))
1

logmβ/2

× q1q2 logm
β/2

T1T2

∑
jq∈S

∣∣∣∣r(jq)− R

log T

∣∣∣∣
=: I1(u)× I2(u).

Applying the equality (3.3), the definition of the functions q1 and q2 and the
convergence log

(
T1(u)T2(u)

)
/ logm(u)β/2 → 2/β, as u→∞,we conclude that

I1 is bounded. Our argumentation is analogous to the one given in [2]. The strong
condition (1.3) turns out not to be necessary.

In the next step we prove that I2(u)→ 0 as u→∞. Observe that we have

I2(u) 6
q1q2
T1T2

∑
jq∈S

∣∣r(jq) log√(j1q1)2 + (j2q2)2 −R
∣∣(1 + o(1)

)
+ βR

q1q2
T1T2

∑
jq∈S

∣∣∣∣1− log T

log
√
(j1q1)2 + (j2q2)2

∣∣∣∣(1 + o(1)
)

=: J1(u) + J2(u).
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We need to show that both J1 and J2 tend to zero. Note that J1(u)→ 0 as u→∞,
due to A3. Additionally,

J2(u) 6
2R

logm

q1q2
T1T2

∑
jq∈S

∣∣∣∣∣log
(√

(j1q1)2 + (j2q2)2

T

)∣∣∣∣∣ ,
and hence

J2(u) =
2R

logm
·O
( 1∫

0

1∫
0

∣∣ log (√x2 + y2
)∣∣dxdy + 1∫

0

∣∣ log |x|∣∣dx).
Thus (3.5) holds. The combination of (3.4) and (3.5) completes the proof. �

3.4. Proof of Theorem 3.1. To establish the main result, we develop the ideas
given in [4], [1], [7], [3]. The following proof of Theorem 3.1 combines the method
of proof of Theorem 1.2 for d = 2 and γ1 = γ2 = 1/4 (see [3], Theorem 2), the
lemmas from Section 3.3 and some new observations.

The proof consists of two parts. In (i), we present a complete argumentation
for the special case J = [0, 1]d. In (ii), we explain how to apply the first part of the
proof to obtain the limit theorem for arbitrary J .

(i) Let us consider J = [0, 1]d. Then J x
m=Rx

m for x∈(0,∞)d. Let {Xk(t)},
for k ∈ Nd−k, be independent copies of {X(t)} and let

η(t) := Xk(t)(t) for t ∈ [0,∞)d,

with k(t) = (⌊tk+1⌋ + 1, ⌊tk+2⌋ + 1, . . . , ⌊td⌋ + 1). For any T > 0, we define
a Gaussian random field {YT (t) : t ∈ [0, T ]d} by

YT (t) :=

(
1− R

log T

)1/2

η(t) +

(
R

log T

)1/2

W,

where W denotes an N(0, 1) random variable independent of {η(t)}. Then the
covariance CT (t, t+ s) := Cov

(
YT (t), YT (t+ s)

)
equals

CT (t, t+ s) =

{
r(s) +

(
1− r(s)

)
R

log T if ⌊si + ti⌋ = ⌊ti⌋ for k < i 6 d,
R

log T otherwise.

For x ∈ (0,∞)d we define n(x,m) := (nx1 , n
x
2 , . . . , n

x
d ) with nxi := xiMi

for i ∈ {1, 2, . . . , k} and nxi = nxi (u) := ⌊ximi(u)⌋ for i ∈ {k+1, k+2, . . . , d}.
Since

P
(
sup
t∈Rx

m

X(t) 6 u
)
− P

(
sup

t∈Rn(x,m)

X(t) 6 u
)
= o(1), as u→∞,

we may focus on the asymptotics of the right-hand side of the above equality.
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S t e p 1. Let ε > 0 be fixed. We divide the setRn(x,m) into nxk+1n
x
k+2 . . . n

x
d

boxes

Gl :=
k∏
i=1

[0, xiMi]×
d∏

i=k+1

[li − 1, li],

indexed by l = (lk+1, lk+2, . . . , ld) ∈ Nd−k such that 1 6 li 6 nxi . Next we split
each box Gl into two subsets Il and I∗l as follows:

Il :=
k∏
i=1

[0, xiMi]×
d∏

i=k+1

[(li − 1) + ε, li],

I∗l := Gl − Il.

To simplify the notation, we will write

I :=
∪
{Il : 1 6 l 6 (nxk+1, n

x
k+2, . . . , n

x
d )}.

Applying the Bonferroni inequality, stationarity and the asymptotics (2.1), we get

lim sup
u→∞

∣∣P ( sup
t∈Rn(x,m)

X(t) 6 u
)
− P

(
sup
t∈I

X(t) 6 u
)∣∣

6 lim sup
u→∞

nxk+1n
x
k+2 . . . n

x
d P
(
sup
t∈I∗1

X(t) > u
)
6 ζ1(ε),

uniformly for x ∈ [A,B]d, with ζ1(ε)→ 0 as ε→ 0.
S t e p 2. Let a > 0 be fixed and let q1, q2, . . . , qd be defined as at the begin-

ning of Section 3.3. Then we have

lim sup
u→∞

∣∣P ( sup
t∈I

X(t) 6 u
)
− P

(
sup
jq∈I

X(jq) 6 u
)∣∣

6 lim sup
u→∞

nxk+1n
x
k+2 . . . n

x
d

∣∣P ( sup
t∈I1

X(t) 6 u
)
− P

(
sup
jq∈I1

X(jq) 6 u
)∣∣

6 ζ2(a),

uniformly for x ∈ [A,B]d, with ζ2(a) → 0 as a → 0, due to the Bonferroni in-
equality and Lemma 3.1.

S t e p 3. Let T be a function defined as follows:

T (u) := Bmax{m1(u),m2(u), . . . ,md(u)}.

Note that if T = T (u) is sufficiently large (and thus, if u is sufficiently large), then∣∣r((j− j′)q
)
− CT (jq, j′q)

∣∣ 6 ρT
(
(j− j′)q

)
,

|CT (jq, j′q)| 6 ϱT
(
(j− j′)q

)
,
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where the functions ρT and ϱT are defined by (3.2). Moreover, for all pairs of
points jq, j′q ∈ I satisfying ∥j − j′∥∞ < ε, provided that ε is sufficiently small,
we obtain∣∣r((j− j′)q

)
− CT (jq, j′q)

∣∣ = R ·
(
1− r

(
(j− j′)q

))
log T

,

max
{∣∣r((j− j′)q

)∣∣, |CT (jq, j′q)|} = r
(
(j− j′)q

)
+
R ·
(
1− r

(
(j− j′)q

))
log T

.

Combining the above properties, the normal comparison lemma ([4], Theo-
rem 4.2.1) and Lemmas 3.2 and 3.3 in the same way as in [3], we conclude that

lim
u→∞

∣∣P ( sup
jq∈I

X(jq) 6 u
)
− P

(
sup
jq∈I

YT (jq) 6 u
)∣∣ = 0,

uniformly for x ∈ [A,B]d.
S t e p 4. By the definition of the random field {YT (t)}, we have

P
(
sup
jq∈I

YT (jq) 6 u
)
=
∞∫
−∞

P

(
η(jq) 6 u− (R/ log T )1/2z

(1−R/ log T )1/2
; jq ∈ I

)
dΦ(z).

Since T = T (u) = exp(γu2)c(u) for some function c satisfying log c(u) = o(u2),
the condition

uz :=
u− (R/ log T )1/2z

(1−R/ log T )1/2

=

(
u−

(
R

log T

)1/2

z

)(
1 +

R

2 log T
+ o

(
R

log T

))
= u+

1

u

(
−

√
R

γ
z +

R

2γ

)
+ o

(
1

u

)
holds for every z ∈ R. Moreover, as u→∞,

m(u)

m(uz)
=
u
2/α1
z u

2/α2
z . . . u

2/αd
z Ψ(uz)

u2/α1u2/α2 . . . u2/αdΨ(u)
→ exp

(
− R
2γ

+

√
R

γ
z

)
,

and thus

(3.6) nxk+1n
x
k+2 . . . n

x
d =

xk+1 . . . xd
M1 . . .Mk

exp

(
− R
2γ

+

√
R

γ
z

)
m(uz)

(
1 + o(1)

)
.

Applying the dependence structure of {η(t)} and stationarity of {X(t)}, we obtain

P
(
sup
jq∈I

η(jq) 6 uz
)
= P

(
sup
jq∈I1

X(jq) 6 uz
)nx

k+1n
x
k+2...n

x
d + o(1).
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By Lemma 3.1, the definition of m(uz) and properties (2.1) and (3.6), we get

P
(
sup
jq∈I1

X(jq) 6 uz
)nx

k+1n
x
k+2...n

x
d

6
(
P
(
sup
t∈G1

X(t) 6 uz
)
+

∏k
i=1Mixi ·

(
ϑ(a)+2ε+o(1)

)
m(uz)

)nx
k+1n

x
k+2...n

x
d

=

(
1−
∏k
i=1Mixi ·

(
1−ϑ(a)−2ε+o(1)

)
m(uz)

)xk+1...xd
M1...Mk

exp
(
− R

2γ
+
√

R
γ
z
)
m(uz)

+ o(1)

−−−→
u→∞

exp

(
−
(
1− ϑ(a)− 2ε

)
x1x2 . . . xd exp

(
− R

2γ
+

√
R

γ
z

))
,

where ϑ(a)→ 0 as a→ 0. Thus

lim sup
u→∞

∞∫
−∞

P
(
sup
jq∈I1

X(jq) 6 uz
)nx

k+1n
x
k+2...n

x
ddΦ(z)

6 Eexp

(
−
(
1− ϑ(a)− 2ε

)
x1x2 . . . xd exp

(
− R

2γ
+

√
R

γ
W
))

.

On the other hand, we have

P
(
sup
jq∈I1

X(jq) 6 uz
)nx

k+1n
x
k+2...n

x
d

> P
(
sup
t∈G1

X(t) 6 uz
)nx

k+1n
x
k+2...n

x
d

>
(
1−

∏k
i=1Mixi

m(uz)

)xk+1xk+2...xd
M1M2...Mk

exp
(
− R

2γ
+
√

R
γ
z
)
m(uz)

+ o(1)

−−−→
u→∞

exp

(
−x1x2 . . . xd exp

(
− R
2γ

+

√
R

γ
z

))
,

and thus

lim inf
u→∞

∞∫
−∞

P
(
sup
jq∈I1

X(jq) 6 uz
)nx

k+1n
x
k+2...n

x
ddΦ(z)

> Eexp

(
−x1x2 . . . xd exp

(
− R
2γ

+

√
R

γ
W

))
.
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Summarizing, we obtain

(3.7) Eexp

(
−x1x2 . . . xd exp

(
− R
2γ

+

√
R

γ
W

))
6 lim inf

u→∞
P
(
sup
jq∈I

YT (jq) 6 u
)
6 lim sup

u→∞
P
(
sup
jq∈I

YT (jq) 6 u
)

6 Eexp

(
−
(
1− ϑ(a)− 2ε

)
x1x2 . . . xd exp

(
− R
2γ

+

√
R

γ
W

))
,

uniformly for x ∈ [A,B]d.
S t e p 5. From Steps 1–3 of the proof we know that

lim sup
u→∞

∣∣P ( sup
t∈Rn(x,m)

X(t) 6 u
)
− P

(
sup
jq∈I

YT (jq) 6 u
)∣∣ 6 ζ1(ε) + ζ2(a),

uniformly for x ∈ [A,B]d, with ζ1(ε) → 0 as ε → 0 and ζ2(a) → 0 as a → 0.
Combining it with the inequalities (3.7) and passing with ε → 0 and a → 0, we
finish the first part of the proof.

(ii) Let J ⊂ Rd be an arbitrary Jordan-measurable set with Lebesgue measure
λ(J ) > 0. We follow the argumentation from [3], Theorem 2 (ii). Observe that
for every ε > 0 there exist some positive constants z1, z2, . . . , zd and some sets
Lε,Uε ⊂ Rd being finite sums of disjoint closed hyperrectangles with dimensions
z1 × z2 × . . .× zd, such that Lε ⊂ J ⊂ Uε and λ(Lε) + ε > λ(J ) > λ(Uε)− ε.
Then, following nearly line-by-line the arguments given in the proof of part (i), we
obtain

P
(

sup
t∈(Lε)xm

X(t) 6 u
)
→ Eexp

(
−x1x2 . . . xdλ(Lε) exp

(
− R
2γ

+

√
R

γ
W

))
and

P
(

sup
t∈(Uε)xm

X(t) 6 u
)
→ Eexp

(
−x1x2 . . . xdλ(Uε) exp

(
− R
2γ

+

√
R

γ
W

))
,

as u→∞, uniformly for x ∈ [A,B]d. Since ε > 0 is arbitrarily small, it gives

P
(
sup
t∈J x

m

X(t) 6 u
)
→ Eexp

(
−x1x2 . . . xdλ(J ) exp

(
− R
2γ

+

√
R

γ
W

))
,

as u→∞, uniformly for x ∈ [A,B]d, which completes the proof.
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