
ACTA UNIVERSITATIS WRATISLAVIENSIS No 3397
Kształcenie Językowe 10 (20) Wrocław 2012

Agnieszka Kułacka
King’s College London

Natural language versus regular language

1. Introduction
At the beginning of the last century linguists made first attempts to formal-

ise the syntax of a natural language. In 1930s Kazimierz Ajdukiewicz created
a sentence calculus called a categorical grammar (see Kułacka 2011a; 2011c).
Constructing mathematical models of the syntax of a fragment of a natural lan-
guage and thus creating artificial languages resembling natural languages became
the object of a new discipline called mathematical linguistics, which at first was
a subfield of mathematics. Once it became an independent field of research, two
branches of mathematical linguistics were developed: synthetic and analytic.
The former branch deals with questions regarding formal grammars, their types
and the properties of the languages that are generated by them. Synthetic math-
ematical linguistics also conducts research on automata, which are used to rec-
ognise a language generated by a grammar. The analytic branch of mathematical
linguistics uses variety of mathematical fields, such as set theory, logic, graph
theory, etc., to construct models of the syntax of a fragment of a natural language.
It is also likely that the achievements of synthetic branch are used in the research
of its analytic counterpart.

One of the formal grammars that were initially used to describe a fragment
of the syntax of a natural language was a grammar constructed for regular lan-
guages, i.e. the ones recognisable by a finite state automaton. However, Noam
Chomsky made attempts (1956, 1957, 1967) to show that English is not a regular
language, which was followed by another attempt made by Barbara Partee, Alice
TerMeulen and Robert Wall (1990). In this paper I will discuss the important
notions and a theorem, which are necessary to understand the line of argumenta-
tion as presented in the proof. I will also present the aforementioned proof so it
will become more approachable and mathematically sound. Finally, I will demon-
strate that a similar proof can be performed for Polish.

KJ.indb 103KJ.indb 103 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

104 Agnieszka Kułacka

2. Automata Theory
Automata Theory is the study of abstract computing devices called automata.

It was born in the 1930s with the work of Alan Turing on the capabilities of com-
puting machines. Since that time the research within Automata Theory has been
used to model brain function, to design digital circuits, in the development of for-
mal grammars, etc. In this section I will introduce the key notions of the theory,
which will be important for understanding the rest of the paper, and describe regu-
lar expressions, which are a declarative way of expressing the strings that are rec-
ognised by the automaton they are associated with.

2.1. Central notions of Automata Theory

The first important term, an alphabet, Σ, is a finite and non-empty set of sym-
bols. Let us look at some alphabets. There are some common alphabets such
as: (a) a binary alphabet, where Σ1 = {0,1}, (b) an alphabet of capital letters,
Σ2 = {A, B, ..., Z}, etc. We can also define an alphabet that will consist of some
words: Σ3 = {Maria, Jan, Smiles, Likes}.

The next essential notion in Automata Theory is a string, which is also called
a word. A string is a finite sequence of symbols chosen from an alphabet. Above
I introduced three alphabets. From the binary alphabet, Σ1, we can construct
e.g. 101, 111, 10001, but we cannot construct 102, because 2 is not a symbol from
this alphabet. The following strings ALPHA, OMEGA are constructed from the
elements of the alphabet of capital letters. The last alphabet of symbolic words
can give rise to the following strings: LikesMaria, MariaJanSmiles, etc. At the
moment I am not concerned with the grammaticality of the two latter strings, but
only whether the symbols constituting a string belong to a given alphabet. There is
one distinctive string that can be chosen from symbols of any alphabet. It is called
the empty string, denoted by ɛ, and it consists of zero occurrences of the symbols
of an alphabet.

We may split the strings constructed from symbols of alphabets into groups,
in terms of their length. The set of all strings of length n over the alphabet Σ, de-
noted by Σn, is the nth power of the alphabet Σ. Regardless of what symbols con-
stitute an alphabet, Σ0 = {ɛ}. We will now consider some powers of the alphabet.

(a) As mentioned above, Σ0 = {ɛ}.
(b) Σ1 = {Maria, Jan, Smiles, Likes}. Let us appreciate the difference between

Σ and Σ. The former is the set of all strings of length 1 over the alphabet, while the
latter is the alphabet.

(c) The second power of Σ is:
Σ2 = {MariaMaria;MariaJan;MariaSmiles;MariaLikes;JanMaria;JanJan;JanSmiles;

JanLikes;
SmilesMaria; SmilesJan; SmilesSmiles; SmilesLikes; LikesMaria; LikesJan; Likes-

Smiles; LikesLikes}.

KJ.indb 104KJ.indb 104 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

 Natural language versus regular language 105

We can carry on with enumerating the subsequent powers of Σ. In general,
the union of all these power sets is denoted by Σ*. If we exclude the empty
string, then we will obtain the set of all non-empty strings, Σ*. The relationship
between the two sets is so given by Σ* = Σ+∪{ɛ}. We may also concatenate two
strings x and y, which means that we form a new string, xy, out of a copy of x fol-
lowed by the copy of y. The concatenation of y and x is different; it is yx. The con-
catenation of the empty string and the string y from either side gives the string y.

A language, L, is a subset of strings that belong to Σ*, where Σ is an alpha-
bet. We say that L is a language over Σ. One needs to notice that we may not use
all the symbols of the alphabet in the strings that belong to a given language and
also, that even though an alphabet is finite, the language may be infinite. Let us
consider the following examples.

The three most important languages are the languages that are over any
alphabet Σ: (1) Σ*, (2) ∅, the empty language, and (3) {ɛ}, the language that only
consists of the empty string, ɛ. Let us draw a reader’s attention to the fact that lan-
guages (2) and (3) are not the same. The former has no strings and the latter has
one string, the empty string.

Any of the following sets are languages over a chosen alphabet Σ, where
Σ = {Maria, Jan, Smiles, Likes}

(a) L1 = {MariaSmiles; JanSmiles; SmilesJan; LikesSmiles; Jan; ɛ};
(b) L2 = {JanLikesMaria; JanJan; JanJanJan; Maria};
(c) L3 = {ɛ; Jan; JanJan; JanJanJan; JanJanJanJan; ...}.
The last of the example languages over Σ is infinite. We can define the ele-

ments of the language inductively: (1) ɛ∈ L3, (2) each of the successive strings
of length n is formed by a concatenation of the string of length n-1 and symbol
Jan, (3) no other strings belong to L3.

2.2. Regular expressions

Since it has been proven that a language is regular if and only if some regu-
lar expression describes it (see Hopcroft, Motwani & Ullman 2001: 90ff, Sipser
1997: 66ff), I will omit defining an automaton as it has no influence on under-
standing the proof, and I will present a definition of a regular expression instead.
In the next section, I will show how one can derive some formal grammar from
a regular expression.

A regular expression, R, can be constructed inductively. The basis is (1) a for
a∈Σ, where Σ is some alphabet, and ɛ, ∅ are all regular expressions. The inductive
step is as follows: (2) if R1 and R2 are regular expressions, then R1 + R2, R1R2 and R1*
are regular expressions. The expressions defined in point (2) describe the follow-
ing languages: L(R1 + R2) = L(R1)∪L(R2), L(R1R2) = L(R1)L(R2) (concatenation
of the strings from R1 and R2 in this order), and L(R1*) = (L(R1))*.

Let us consider some examples. We assume that Σ1 = {0,1}. The symbol
w represents a string in the language.

KJ.indb 105KJ.indb 105 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

106 Agnieszka Kułacka

(a) L(01*) = {w|w starts with 0 followed by zero or more 1 s}.
(b) L(0 + 1) = {0,1}.
(c) L(0 + 1*) = {w|w is 0 or a sequence of zero or more 1 s}.
(d) L((01)*) = {w|w w|w is a zero or more sequences of 01s}.
Let us notice that these languages are also the languages being generated

by grammars of Type 3, the lowest on Chomsky’s Hierarchy, which means that
they can be also generated by grammars of higher types (Type 2, Type 1 and Type
0), but the reverse is not necessarily true. In this paper I will only define grammars
of Type 3, which generate regular languages.

3. Formal grammar for regular languages
I will start with defining a formal grammar in general and then specify the

definition for the ones generating regular languages (cf. Kułacka 2011b). A for-
mal grammar is a quadruple G = (Σ, V, S, P), where Σ is a finite set of terminals
(symbols used in a string of a language), V is a finite set of variables (auxiliary
symbols), S∈V is the start symbol, P is a finite set of production rules, the heads
the body of which consists of a sequence of terminals and variables.

If x,y,z are strings of variables and terminals, A is a variable, then A → x is
a production rule, and we say that yAz yields yxz, and we write yAz ⇒ yxz. Let x1,
x2, ..., xk, k ≥ 0 be strings of variables and terminals. Then we write y *⇒ z if y = z
(zero steps) or y ⇒ x1 ⇒ x2 ⇒ ... ⇒ xk ⇒ z (k+1 steps).

The language generated by the formal grammar G = (Σ, V, S, P) is
{w∈ Σ∗|S *⇒ w, where w is a string, Σ is the set of terminals, S is the start variable.

Let us consider some examples of formal grammars and the strings that can
be generated. Let G1 = (Σ, V, S, P) be a formal grammar, where Σ = {Maria, Jan,
Smiles, Likes}, V = S, V, P), and P is the set consisting of the following rules (the
stroke | stands for ‘or’):

S → Maria VP | Jan VP;
VP → IV | TV Maria | TV Jan;
IV → Smiles;
TV → Likes.
We can generate the string: MariaLikesJan, which has the following derivation:
S ⇒ Maria VP ⇒ Maria TV Jan ⇒ Maria Likes Jan.
This derivation shows that Maria Likes Jan belongs to the language generated

by the grammar G1. Now we will construct grammars for the examples of regular
expressions given in the previous section. In the descriptions of a language, the
symbol w means a string.

Let G2 = (Σ, V, S, P) be a formal grammar, where Σ = {0,1}, V = {S, A} and
P is the set consisting of the following rules: S → 0A, A → ɛ|1 A.The language
generated by G2 is {w|w starts with 0 followed by zero or more 1 s}.

KJ.indb 106KJ.indb 106 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

 Natural language versus regular language 107

Let G3 = (Σ, V, S, P) be a formal grammar, where Σ = {0,1}, V = {S} and
P is the set consisting of the following rule: S → 0|1. The language generated
by G3 is {0,1}.

Let G4 = (Σ, V, S, P) be a formal grammar, where Σ = {0,1}, V = {S, A} and
P is the set consisting of the following rules: S → ɛ|0|1A, A → ɛ|1 A. The language
generated by G4 is {w|w is 0 or a sequence of zero or more 1 s}.

Let G5 = (Σ, V, S, P) be a formal grammar, where Σ = {0,1}, V = {S, A, B} and
P is the set consisting of the following rules: S → ɛ|0|A, A → 1B, B → ɛ|0A. The
language generated by G5 is {w|w is a zero or more sequences of 01s}.

As we can see all the production rules in the grammars G1, G2, G3, G4, G5
are of one of the two forms: A → yB or A→ x, where A and B are variables
and x is either a terminal or the empty string, ɛ, y is a terminal. These are the
only forms of production rules which occur in grammars of Type 3 that generate
regular languages (Partee, TerMeulen & Wall 1990: 451). It is worth noticing
that I extended the definition of a formal grammar of Type 3 given by Partee,
TerMeulen and Wall by a production rule due to which the empty string, ɛ, is
generated. If it were not included, the languages that are generated by these gram-
mars and described by the equivalent regular expressions would not be the same.
As mentioned above, grammars of higher types can also generate regular lan-
guages, e.g. G6 = (Σ, V, S, P), where Σ = {0,1}, V = {S} and P is the set consisting
of the following rule: S → ɛ|01S, generate the same language as G5, i.e. {w|w is
a zero or more sequences of 01s}, where w is a string. This production rule is not
of a required form for a production rule of a formal grammar of Type 3.

I will sketch a possible conversion from a regular expression to a formal
grammar of Type 3. The alphabet of a regular expression and the set of terminals
for a grammar are equal. The basic step is as follows (capital letters represent vari-
ables, lower case letters — terminals):

Production rule Regular expression that describes the same
language as generated by the production rule

A → a a
A → ɛ|aA a*
A → a|b a + b
A → ab ab

For the inductive step, we assume that the regular expressions R1 and R2 are
associated with a set of production rules of the form on the right, characteristic
for grammars of Type 3. The rule for R1 + R2 is B → R1|R2, where in the body of
B → R1|R2 we copy the bodies of R1 and R2. For the regular expressions R1

* and
R1R2 we will possibly need to introduce more variables to keep the required form,
as I did in the construction of G5. The equivalent skeletons of the rules for these
two regular expressions are B → ɛ|R1B and B → R1R2.

KJ.indb 107KJ.indb 107 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

108 Agnieszka Kułacka

To prove that a language is not regular, a theorem called a pumping lemma is
being applied. This is the theorem that was used in the ideas of Partee, Ter Meulen
& Wall’s proof that English is not a regular language. It is worth establishing that
showing that some languages are not regular does not prove that all natural lan-
guages are not regular, but it only means that if one wants to have a general gram-
mar that can be applied to describing all languages, a formal grammar of Type 3
is not the one.

4. Pumping lemma for regular languages
In this section I will only present the theorem without proving it (for proofs

one can check Hopcroft, Motwani & Ullman 2001: 126ff; Sipser 1997: 78ff), but
providing some of its application in proofs for non-regular languages.

Theorem: Let L be a regular language. Then there exists a natural number n
such that for each string w in L such that its length (in terms of the number of ter-
minals) is greater or equal to n (we write |w| ≥ n), we can split w into three strings
x, y, z, so w = xyz such that

(a) y ≠ ɛ;
(b) |xy| ≤ n;
(c) For all k ≥ 0, the string xykz is also in L.
I need to add that the theorem is applicable only to infinite languages. A regu-

lar language described by a regular expression 0 + 1 is {0,1}. If we try to apply
this theorem, the number n can only be 1. Both strings are of the length that is
greater or equal to 1. If we break either of them into x, y, z, so w = y, z, where x
and z are the empty strings and y is 0 or 1,then the conditions (a) and (b) are met;
y ≠ ɛ and |xy| ≤ 1, as it is the length of y. However, the condition (c) is not satisfied
for k ≥ 2, as y2 ∉ L.

Let us now consider an infinite regular language described by a regular ex-
pression 01* .There is such a number n = 2, that any string w meeting the condi-
tion |w| ≥ 2 can be broken into x, y, z, so w = y, z, where x = 0, y = 1 and z = 1p, p
≥ 0, stands for the rest of the string w. The conditions (a) and (b) are met; y ≠ ɛ
and |xy| ≤ 2. The condition (c) is also satisfied as for all k ≥ 0, the string 01k1p is
in L.

I will show the procedure for proving that a language is non-regular and
each step of this procedure will be illustrated by an example. Let us prove that
L1 = {0l1l|l ≥ 1} is not regular.

A. We choose a language to be proven non-regular.
AA. We have already chosen a language: L1 = {0l1l|l ≥ 1} .
B. We choose an arbitrary natural number, n.
C. We need to pick a string in L1, w, such that |w| ≥ n .
CC. Let the string be w = 0n1n, |w| = 2n.

KJ.indb 108KJ.indb 108 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

 Natural language versus regular language 109

D. We need to divide w into x, y, z so that the constraints (a) and (b) of pump-
ing lemma are satisfied.

DD. For the condition (b) to be satisfied, the strings x and y contain only 0s.
Let x = 0p , y = 0p , z = 0p 1n; p2 ≥ 1, so the condition (a) is met, p1 + p2 ≤ n so the
condition (b) is met, and p1 + p2 + p3 = n, where p3 ≥ 0.

E. We need to pick k, such that xykz is not in L.
EE. Let k = 2. Then w1 = 0p 02p 0p1n is not in L1 since p1 + 2p2 + p3 = n + p2 ≠ n

as p2 ≥ 1.
There are also some closure properties of regular languages, i.e. operations

that applied to regular languages also return a regular language. The proofs are
beyond the scope of this paper, but one can check Hopcroft, Motwani & Ullman
(2001: 131ff), Sipser (1997: 58ff) for more details concerning them. We will only
need the facts that a homomorphism (substitution of strings of one language for
symbols of another) of a regular language is a regular language, and that the inter-
section of two regular languages is regular.

After this presentation of all the necessary knowledge needed to understand
the ideas of Chomsky’s and Partee, TerMeulen & Wall’s proofs, we are now able
to appreciate them in a novel version, which I arrived at. For the original proofs
one may refer to Noam Chomsky (1956, 1957, 1967) and Barbara Partee, Alice
TerMeulen and Robert Wall (1990).

5. Proof
Let us construct a formal grammar for a fragment of English, G7 = (Σ, V, S, P),

where Σ = {if, grass, is, green, then}, V = {S, A} and P is the set of two production
rules: S → if S then A |if A then A, A → grass is green}. Let us notice that for the
sake of clarity, I included the space in the set of terminals. We can generate the
following strings, which are grammatical sentences of English, but possibly with
no interpretation:

(a) if grass is green then grass is green;
(b) if if grass is green then grass is green then grass is green;
(c) if if if grass is green then grass is green then grass is green then grass is

green; etc.
Let us define the homomorphism h:{if, grass is green, then grass is green}→

{a, b, c} in the following way:
h(if) = a, h(grass is green) = b, h(then grass is green) = c.
From the previous section we know that the property of regularity is pre-

served under homomorphism. Therefore, if the language generated by G7 is regu-
lar and the strings after the application of the homomorphism h are of the form
anbcn, n ≥ 1, then the language {anbcn|n ≥ 1} is also regular. By contraposition,
if the language {anbcn|n ≥ 1} is not regular, neither is L(G7). Using the procedure

KJ.indb 109KJ.indb 109 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

110 Agnieszka Kułacka

discussed in the previous section, I will prove that the language {anbcn|n ≥ 1} is
not regular. Then one can apply modus ponens, a very common rule of inference,
and prove that L(G7) is not regular.

A. We choose the language: L2 = {anbcn|n ≥ 1}.
B. We choose an arbitrary natural number, n.
C. Let the string be = anbcn, |w| = 2n + 1.
D. For the condition (b) to be satisfied, the strings x and y contain only as. Let

x = ap, y = ap , z = ap bcn; p2 ≥ 1; so the condition (a) is met, p1 + p2 ≤ n, so the
condition (b) is met, and p1 + p2 + p3 = n, where p3 ≥ 0.

E. Let k = 2. Then w1 = ap a2p ap bcn is not in L2 since p1 + 2p2 + p3 = n + p2 ≠ n
as p2 ≥ 1.

I will show that the following language {w|w = if *grass is green (then grass is
green)*} is regular. We are not concerned with whether the strings in this language
belong to English or any other natural language. The words belonging to this lan-
guage can be described by a regular expression: if *grass is green (then grass is
green)* We can also construct a formal grammar of Type 3 that will generate it:
G8 = (Σ, V, S, P), where Σ = {if, grass, is, green, then}, V = {S, A, B, C}, and P is the set
of two production rules: {S → if S|grass A, A → is B, B → green C, C → ɛ|then A}.

The last part of the proof is performed with the use of regular language clo-
sure property, namely that the intersection of two regular languages is regular. Let
us intersect English with {if *grass is green (then grass is green)*}. As a result, we
will get if n grass is green (then grass is green)n|n ≥ 1}. Since I proved the latter to
be non-regular and {if *grass is green (then grass is green)*} is regular, English is
non-regular as by contraposition, if the intersection of two languages is not regu-
lar, then at least one of them is non-regular. The language {if *grass is green (then
grass is green)*}is regular, so English is non-regular.

In this proof I used one of Chomsky’s ideas of the constructions that may
lead to showing that a natural language cannot be generated by a formal gram-
mar of Type 3. One needs to create more powerful tools and possibly that may
not be enough due to the variety of properties of a language (see Kułacka 2011c).
The other constructions that can serve the same purpose of showing that English
is non-regular are “Either S or S”, “The man who said that S is arriving today”,
where S stands for a sentence, or sentences involving parenthetical embedding
such as the English sentence (the rat(the cat(the dog chased)killed)ate the malt)
(Chomsky 1967: 286).

6. Polish
In Polish there are also similar sentence schemata as the ones described in

the previous section. In the following schemata S stands for embedded sentence.
Jeżeli S, to S, which translates into if S then S. Albo S albo S meaning either S or

KJ.indb 110KJ.indb 110 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

 Natural language versus regular language 111

S. Mężczyzna, który powiedział, że S, przyjeżdza dzisiaj is the Polish version of the
man who said that S is arriving today. Therefore, one can deliver the same proof as
for English to show that Polish is not a regular language. The parenthetical embed-
ding construction is not present in Polish. Another sentence schema that can also
be the basis of similar proofs is neither S nor S and its Polish equivalent ani S ani S.

7. Further research
One has to be aware of two facts: (1) proving that some natural languages

are not regular is not enough to show that all languages are non-regular, as it
is assumed in the literature (see Chomsky 1967: 286; Gazdar & Mellish 1989:
135); (2) it has been proven that hearers process a natural language as if it were a
regular language (Gazdar & Mellish 1989: 135). The latter is most likely due to
the limitation of human short memory, which cannot store too much information
(see Kułacka 2009). These limitations can be avoided to some extent in the case of
computers and the possible languages generated by implemented grammars.

It will be interesting to look at other languages possibly not from the Indo-Eu-
ropean family to see whether similar conclusions about languages can be drawn.
Another line of research will be to establish the characteristics of such construc-
tions in languages, which show that a given language is non-regular, to be able to
find them in natural languages.

There is also some confusion between what language a man can produce and
comprehend, and a theoretically possible natural language with an abstract lan-
guage user. Clearly, the former is a regular language as it is finite, while the latter
may be infinite and as such possibly non-regular. In this paper I considered a lan-
guage theoretically possible. Another question is whether we generate linguistic
expressions as implementing a mental formal grammar or whether we reproduce
clusters of words, while only occasionally producing a novel expression for which
generating we use this mental grammar.

References
Chomsky, N. 1956. “Three models for the description of language.” IRE Translations on Informa-

tion Theory 2 (3): 113‒124.
Chomsky, N. 1957. Syntactic Structures. Reprinted in 2002. Berlin: Mouton de Gruyter.
Chomsky, N. 1967. “Introduction to the Formal Analysis of Natural Languages.” Handbook of Mat-

hematical Psychology. Vol. II. Ed. Luce, R.D., Bush, R.R., Galanter, E. New York: John Wiley
and Sons, Inc.

Gazdar, G., Mellish, Ch. 1989. Natural Languages Processing in PROLOG. Reading: Addison-
Wesley Publishing Company.

Hopcroft, J.E., Motwani, R., Ullman, J.D. 2001. Introduction to Automata Theory, Languages, and
Computation. Boston: Addison Wesley.

KJ.indb 111KJ.indb 111 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

112 Agnieszka Kułacka

Kułacka, A. 2009. “The Necessity of the Menzerath-Altmann Law.” Anglica Wratislaviensia XLVII:
55‒60.

Kulacka, A. 2011a. “Intensional Logic for a Montague Grammar.” LingVaria VI, no. 2 (12).
Kułacka, A. 2011b. “Metodologiczne założenia semantyki komputerowej.” Metodologie języko-

znawstwa. Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
Kułacka, A. 2011c. “Syntax of a Montague Grammar.” LingVaria VI, no. 1 (11): 9‒23.
Partee, B., Ter Meulen, A., Wall, R.E. 1990. Mathematical Methods in Linguistics. London: Kluwer

Academic Publishers.
Sipser, M. 1997. Introduction to the Theory of Computation. Boston: PWS Publishing Company.

KJ.indb 112KJ.indb 112 2012-09-10 08:51:442012-09-10 08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS

