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Natural language versus regular language

1. Introduction
At the beginning of the last century linguists made first attempts to formal-

ise the syntax of a natural language. In 1930s Kazimierz Ajdukiewicz created 
a sentence calculus called a categorical grammar (see Kułacka 2011a; 2011c). 
Constructing mathematical models of the syntax of a fragment of a natural lan-
guage and thus creating artificial languages resembling natural languages became 
the object of a new discipline called mathematical linguistics, which at first was 
a subfield of mathematics. Once it became an independent field of research, two 
branches of mathematical linguistics were developed: synthetic and analytic. 
The former branch deals with questions regarding formal grammars, their types 
and the properties of the languages that are generated by them. Synthetic math-
ematical linguistics also conducts research on automata, which are used to rec-
ognise a language generated by a grammar. The analytic branch of mathematical 
linguistics uses variety of mathematical fields, such as set theory, logic, graph 
theory, etc., to construct models of the syntax of a fragment of a natural language. 
It is also likely that the achievements of synthetic branch are used in the research 
of its analytic counterpart.

One of the formal grammars that were initially used to describe a fragment 
of the syntax of a natural language was a grammar constructed for regular lan-
guages, i.e. the ones recognisable by a finite state automaton. However, Noam 
Chomsky made attempts (1956, 1957, 1967) to show that English is not a regular 
language, which was followed by another attempt made by Barbara Partee, Alice 
TerMeulen and Robert Wall (1990). In this paper I will discuss the important 
notions and a theorem, which are necessary to understand the line of argumenta-
tion as presented in the proof. I will also present the aforementioned proof so it 
will become more approachable and mathematically sound. Finally, I will demon-
strate that a similar proof can be performed for Polish.
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2. Automata Theory
Automata Theory is the study of abstract computing devices called automata. 

It was born in the 1930s with the work of Alan Turing on the capabilities of com-
puting machines. Since that time the research within Automata Theory has been 
used to model brain function, to design digital circuits, in the development of for-
mal grammars, etc. In this section I will introduce the key notions of the theory, 
which will be important for understanding the rest of the paper, and describe regu-
lar expressions, which are a declarative way of expressing the strings that are rec-
ognised by the automaton they are associated with. 

2.1. Central notions of Automata Theory

The first important term, an alphabet, Σ, is a finite and non-empty set of sym-
bols. Let us look at some alphabets. There are some common alphabets such 
as: (a) a binary alphabet, where Σ1 = {0,1}, (b) an alphabet of capital letters, 
Σ2 = {A, B, ..., Z}, etc. We can also define an alphabet that will consist of some 
words: Σ3 = {Maria, Jan, Smiles, Likes}.

The next essential notion in Automata Theory is a string, which is also called 
a word. A string is a finite sequence of symbols chosen from an alphabet. Above 
I introduced three alphabets. From the binary alphabet, Σ1, we can construct 
e.g. 101, 111, 10001, but we cannot construct 102, because 2 is not a symbol from 
this alphabet. The following strings ALPHA, OMEGA are constructed from the 
elements of the alphabet of capital letters. The last alphabet of symbolic words 
can give rise to the following strings: LikesMaria, MariaJanSmiles, etc. At the 
moment I am not concerned with the grammaticality of the two latter strings, but 
only whether the symbols constituting a string belong to a given alphabet. There is 
one distinctive string that can be chosen from symbols of any alphabet. It is called 
the empty string, denoted by ɛ, and it consists of zero occurrences of the symbols 
of an alphabet.

We may split the strings constructed from symbols of alphabets into groups, 
in terms of their length. The set of all strings of length n over the alphabet Σ, de-
noted by Σn, is the nth power of the alphabet Σ. Regardless of what symbols con-
stitute an alphabet, Σ0 = {ɛ}. We will now consider some powers of the alphabet.

(a) As mentioned above, Σ0 = {ɛ}.
(b) Σ1 = {Maria, Jan, Smiles, Likes}. Let us appreciate the difference between  

Σ and Σ. The former is the set of all strings of length 1 over the alphabet, while the 
latter is the alphabet.

(c) The second power of Σ is:
Σ2 = {MariaMaria;MariaJan;MariaSmiles;MariaLikes;JanMaria;JanJan;JanSmiles;

JanLikes;
SmilesMaria; SmilesJan; SmilesSmiles; SmilesLikes; LikesMaria; LikesJan; Likes-

Smiles; LikesLikes}.
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We can carry on with enumerating the subsequent powers of Σ. In general, 
the union of all these power sets is denoted by Σ*. If we exclude the empty 
string, then we will obtain the set of all non-empty strings, Σ*. The relationship 
between the two sets is so given by Σ* = Σ+∪{ɛ}. We may also concatenate two 
strings x and y, which means that we form a new string, xy, out of a copy of x fol-
lowed by the copy of y. The concatenation of y and x is different; it is yx. The con-
catenation of the empty string and the string y from either side gives the string y.

A language, L, is a subset of strings that belong to Σ*, where Σ is an alpha-
bet. We say that L is a language over Σ. One needs to notice that we may not use 
all the symbols of the alphabet in the strings that belong to a given language and 
also, that even though an alphabet is finite, the language may be infinite. Let us 
consider the following examples.

The three most important languages are the languages that are over any 
alphabet Σ: (1) Σ*, (2) ∅, the empty language, and (3) {ɛ}, the language that only 
consists of the empty string, ɛ. Let us draw a reader’s attention to the fact that lan-
guages (2) and (3) are not the same. The former has no strings and the latter has 
one string, the empty string. 

Any of the following sets are languages over a chosen alphabet Σ, where 
Σ = {Maria, Jan, Smiles, Likes}

(a) L1 = {MariaSmiles; JanSmiles; SmilesJan; LikesSmiles; Jan; ɛ};
(b) L2 = {JanLikesMaria; JanJan; JanJanJan; Maria};
(c) L3 = {ɛ; Jan; JanJan; JanJanJan; JanJanJanJan; ...}.
The last of the example languages over Σ is infinite. We can define the ele-

ments of the language inductively: (1) ɛ∈ L3, (2) each of the successive strings 
of length n is formed by a concatenation of the string of length n-1 and symbol 
Jan, (3) no other strings belong to L3. 

2.2. Regular expressions

Since it has been proven that a language is regular if and only if some regu-
lar expression describes it (see Hopcroft, Motwani & Ullman 2001: 90ff, Sipser 
1997: 66ff), I will omit defining an automaton as it has no influence on under-
standing the proof, and I will present a definition of a regular expression instead. 
In the next section, I will show how one can derive some formal grammar from 
a regular expression.

A regular expression, R, can be constructed inductively. The basis is (1) a for 
a∈Σ, where Σ is some alphabet, and ɛ, ∅ are all regular expressions. The inductive 
step is as follows: (2) if R1 and R2 are regular expressions, then R1 + R2, R1R2 and R1*  
are regular expressions. The expressions defined in point (2) describe the follow-
ing languages: L(R1 + R2) = L(R1)∪L(R2), L(R1R2) = L(R1)L(R2) (concatenation 
of the strings from R1 and R2 in this order), and L(R1*) = (L(R1))*.

Let us consider some examples. We assume that Σ1 = {0,1}. The symbol 
w represents a string in the language.
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(a) L(01*) = {w|w starts with 0 followed by zero or more 1 s}.
(b) L(0 + 1) = {0,1}.
(c) L(0 + 1*) = {w|w is 0 or a sequence of zero or more 1 s}.
(d) L((01)*) = {w|w w|w is a zero or more sequences of 01s}.
Let us notice that these languages are also the languages being generated 

by grammars of Type 3, the lowest on Chomsky’s Hierarchy, which means that 
they can be also generated by grammars of higher types (Type 2, Type 1 and Type 
0), but the reverse is not necessarily true. In this paper I will only define grammars 
of Type 3, which generate regular languages.

3. Formal grammar for regular languages
I will start with defining a formal grammar in general and then specify the 

definition for the ones generating regular languages (cf. Kułacka 2011b). A for-
mal grammar is a quadruple G = (Σ, V, S, P), where Σ is a finite set of terminals 
(symbols used in a string of a language), V is a finite set of variables (auxiliary 
symbols), S∈V is the start symbol, P is a finite set of production rules, the heads 
the body of which consists of a sequence of terminals and variables. 

If x,y,z are strings of variables and terminals, A is a variable, then A → x is 
a production rule, and we say that yAz yields yxz, and we write yAz ⇒ yxz. Let  x1, 
x2, ..., xk, k ≥ 0 be strings of variables and terminals. Then we write y *⇒ z if y = z 
(zero steps) or y ⇒ x1 ⇒ x2 ⇒ ... ⇒ xk ⇒ z (k+1 steps). 

The language generated by the formal grammar G = (Σ, V, S, P) is 
{w∈ Σ∗|S *⇒ w, where w is a string, Σ is the set of terminals, S is the start variable.

Let us consider some examples of formal grammars and the strings that can 
be generated. Let G1 = (Σ, V, S, P)  be a formal grammar, where Σ = {Maria, Jan, 
Smiles, Likes}, V = S, V, P), and P is the set consisting of the following rules (the 
stroke | stands for ‘or’):

S → Maria VP | Jan VP;
VP → IV | TV Maria | TV Jan;
IV → Smiles;
TV → Likes.
We can generate the string: MariaLikesJan, which has the following derivation:
S ⇒ Maria VP ⇒ Maria TV Jan ⇒ Maria Likes Jan.
This derivation shows that Maria Likes Jan belongs to the language generated 

by the grammar G1. Now we will construct grammars for the examples of regular 
expressions given in the previous section. In the descriptions of a language, the 
symbol w means a string.

Let G2 = (Σ, V, S, P) be a formal grammar, where Σ = {0,1}, V = {S, A} and 
P is the set consisting of the following rules: S → 0A, A → ɛ|1 A.The language 
generated by G2 is {w|w starts with 0 followed by zero or more 1 s}.
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Let G3 = (Σ, V, S, P) be a formal grammar, where Σ = {0,1}, V = {S} and 
P is the set consisting of the following rule: S → 0|1. The language generated 
by G3 is {0,1}.

Let G4 = (Σ, V, S, P) be a formal grammar, where Σ = {0,1}, V = {S, A} and 
P is the set consisting of the following rules: S → ɛ|0|1A, A → ɛ|1 A. The language 
generated by G4 is {w|w is 0 or a sequence of zero or more 1 s}. 

Let G5 = (Σ, V, S, P) be a formal grammar, where Σ = {0,1}, V = {S, A, B} and 
P is the set consisting of the following rules: S → ɛ|0|A, A → 1B, B → ɛ|0A. The 
language generated by G5 is {w|w is a zero or more sequences of 01s}.

As we can see all the production rules in the grammars G1, G2, G3, G4, G5 
are of one of the two forms: A → yB or A→ x, where A and B are variables 
and x is either a terminal or the empty string, ɛ, y is a terminal. These are the 
only forms of production rules which occur in grammars of Type 3 that generate 
regular languages (Partee, TerMeulen & Wall 1990: 451). It is worth noticing 
that I extended the definition of a formal grammar of Type 3 given by Partee, 
TerMeulen and Wall by a production rule due to which the empty string, ɛ, is 
generated. If it were not included, the languages that are generated by these gram-
mars and described by the equivalent regular expressions would not be the same. 
As mentioned above, grammars of higher types can also generate regular lan-
guages, e.g. G6 = (Σ, V, S, P), where Σ = {0,1}, V = {S} and P is the set consisting 
of the following rule: S → ɛ|01S, generate the same language as G5, i.e. {w|w is 
a zero or more sequences of 01s}, where w is a string. This production rule is not 
of a required form for a production rule of a formal grammar of Type 3. 

I will sketch a possible conversion from a regular expression to a formal 
grammar of Type 3. The alphabet of a regular expression and the set of terminals 
for a grammar are equal. The basic step is as follows (capital letters represent vari-
ables, lower case letters — terminals):

Production rule Regular expression that describes the same 
language as generated by the production rule

A → a a
A → ɛ|aA a*
A → a|b a + b
A → ab ab

For the inductive step, we assume that the regular expressions R1 and R2 are 
associated with a set of production rules of the form on the right, characteristic 
for grammars of Type 3. The rule for R1 + R2 is B → R1|R2, where in the body of 
B → R1|R2 we copy the bodies of R1 and R2. For the regular expressions R1

* and 
R1R2 we will possibly need to introduce more variables to keep the required form, 
as I did in the construction of G5. The equivalent skeletons of the rules for these 
two regular expressions are B → ɛ|R1B and B → R1R2.
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To prove that a language is not regular, a theorem called a pumping lemma is 
being applied. This is the theorem that was used in the ideas of Partee, Ter Meulen 
& Wall’s proof that English is not a regular language. It is worth establishing that 
showing that some languages are not regular does not prove that all natural lan-
guages are not regular, but it only means that if one wants to have a general gram-
mar that can be applied to describing all languages, a formal grammar of Type 3 
is not the one.

4. Pumping lemma for regular languages
In this section I will only present the theorem without proving it (for proofs 

one can check Hopcroft, Motwani & Ullman 2001: 126ff; Sipser 1997: 78ff), but 
providing some of its application in proofs for non-regular languages. 

Theorem: Let L be a regular language. Then there exists a natural number n 
such that for each string w in L such that its length (in terms of the number of ter-
minals) is greater or equal to n (we write |w| ≥ n), we can split w into three strings 
x, y, z, so w = xyz such that

(a) y ≠ ɛ;
(b) |xy| ≤ n; 
(c) For all k ≥ 0, the string xykz is also in L.
I need to add that the theorem is applicable only to infinite languages. A regu-

lar language described by a regular expression 0 + 1 is {0,1}. If we try to apply 
this theorem, the number n can only be 1. Both strings are of the length that is 
greater or equal to 1. If we break either of them into x, y, z, so w = y, z, where x 
and z are the empty strings and y is 0 or 1,then the conditions (a) and (b) are met; 
y ≠ ɛ and |xy| ≤ 1, as it is the length of y. However, the condition (c) is not satisfied 
for k ≥ 2, as y2 ∉ L. 

Let us now consider an infinite regular language described by a regular ex-
pression 01* .There is such a number n = 2, that any string w meeting the condi-
tion |w| ≥ 2 can be broken into x, y, z, so w = y, z, where x = 0, y = 1 and z = 1p, p 
≥ 0, stands for the rest of the string w. The conditions (a) and (b) are met;  y ≠ ɛ 
and |xy| ≤ 2. The condition (c) is also satisfied as for all k ≥ 0, the string 01k1p  is 
in L. 

I will show the procedure for proving that a language is non-regular and 
each step of this procedure will be illustrated by an example. Let us prove that 
L1 = {0l1l|l ≥ 1} is not regular.

A. We choose a language to be proven non-regular. 
AA. We have already chosen a language: L1 = {0l1l|l ≥ 1} .
B. We choose an arbitrary natural number, n.
C. We need to pick a string in L1, w, such that |w| ≥ n .
CC. Let the string be w = 0n1n, |w| = 2n.
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D. We need to divide w into x, y, z so that the constraints (a) and (b) of pump-
ing lemma are satisfied. 

DD. For the condition (b) to be satisfied, the strings x and y contain only 0s. 
Let x = 0p സ , y = 0p ഹ , z = 0p ഺ1n; p2 ≥ 1, so the condition (a) is met, p1 + p2 ≤ n  so the 
condition (b) is met, and p1 + p2 + p3 = n, where p3 ≥ 0.

E. We need to pick k, such that xykz is not in L.
EE. Let k = 2. Then w1 = 0pസ 02pഹ 0pഺ1n is not in L1 since  p1 + 2p2 + p3 = n + p2 ≠ n 

as p2 ≥ 1.
There are also some closure properties of regular languages, i.e. operations 

that applied to regular languages also return a regular language. The proofs are 
beyond the scope of this paper, but one can check Hopcroft, Motwani & Ullman 
(2001: 131ff), Sipser (1997: 58ff) for more details concerning them. We will only 
need the facts that a homomorphism (substitution of strings of one language for 
symbols of another) of a regular language is a regular language, and that the inter-
section of two regular languages is regular.

After this presentation of all the necessary knowledge needed to understand 
the ideas of Chomsky’s and Partee, TerMeulen & Wall’s proofs, we are now able 
to appreciate them in a novel version, which I arrived at. For the original proofs 
one may refer to Noam Chomsky (1956, 1957, 1967) and Barbara Partee, Alice 
TerMeulen and Robert Wall (1990).

5. Proof
Let us construct a formal grammar for a fragment of English, G7 = (Σ, V, S, P), 

where Σ = {if, grass, is, green, then}, V = {S, A} and P is the set of two production 
rules: S → if S then A |if A then A, A → grass is green}. Let us notice that for the 
sake of clarity, I included the space in the set of terminals. We can generate the 
following strings, which are grammatical sentences of English, but possibly with 
no interpretation:

(a) if grass is green then grass is green;
(b) if if grass is green then grass is green then grass is green;
(c) if if if grass is green then grass is green then grass is green then grass is 

green; etc.
Let us define the homomorphism h:{if, grass is green, then grass is green}→

{a, b, c} in the following way: 
h(if) = a, h(grass is green) = b, h(then grass is green) = c.
From the previous section we know that the property of regularity is pre-

served under homomorphism. Therefore, if the language generated by G7 is regu-
lar and the strings after the application of the homomorphism h are of the form 
anbcn, n ≥ 1, then the language {anbcn|n ≥ 1} is also regular. By contraposition, 
if the language {anbcn|n ≥ 1} is not regular, neither is L(G7). Using the procedure 
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discussed in the previous section, I will prove that the language {anbcn|n ≥ 1} is 
not regular. Then one can apply modus ponens, a very common rule of inference, 
and prove that L(G7) is not regular.

A. We choose the language: L2 = {anbcn|n ≥ 1}.
B. We choose an arbitrary natural number, n.
C. Let the string be = anbcn, |w| = 2n + 1.
D. For the condition (b) to be satisfied, the strings x and y contain only as. Let 

x = ap ে, y = ap ৈ, z = ap ৉bcn; p2 ≥ 1; so the condition (a) is met, p1 + p2 ≤ n, so the 
condition (b) is met, and p1 + p2 + p3 = n, where p3 ≥ 0. 

E. Let k = 2. Then w1 = ap ে a2p ৈ  ap ৉  bcn is not in L2 since p1 + 2p2 + p3 = n + p2 ≠ n 
as p2 ≥ 1.

I will show that the following language {w|w = if *grass is green (then grass is 
green)*} is regular. We are not concerned with whether the strings in this language 
belong to English or any other natural language. The words belonging to this lan-
guage can be described by a regular expression: if *grass is green (then grass is 
green)* We can also construct a formal grammar of Type 3 that will generate it:  
G8 = (Σ, V, S, P), where Σ = {if, grass, is, green, then}, V = {S, A, B, C}, and P  is the set 
of two production rules: {S → if S|grass A, A → is B, B → green C, C → ɛ|then A}. 

The last part of the proof is performed with the use of regular language clo-
sure property, namely that the intersection of two regular languages is regular. Let 
us intersect English with {if *grass is green (then grass is green)*}. As a result, we 
will get if n grass is green (then grass is green)n|n ≥ 1}. Since I proved the latter to 
be non-regular and {if *grass is green (then grass is green)*} is regular, English is 
non-regular as by contraposition, if the intersection of two languages is not regu-
lar, then at least one of them is non-regular. The language {if *grass is green (then 
grass is green)*}is regular, so English is non-regular.

In this proof I used one of Chomsky’s ideas of the constructions that may 
lead to showing that a natural language cannot be generated by a formal gram-
mar of Type 3. One needs to create more powerful tools and possibly that may 
not be enough due to the variety of properties of a language (see Kułacka 2011c). 
The other constructions that can serve the same purpose of showing that English 
is non-regular are “Either S or S”, “The man who said that S is arriving today”, 
where S stands for a sentence, or sentences involving parenthetical embedding 
such as the English sentence (the rat(the cat(the dog chased)killed)ate the malt) 
(Chomsky 1967: 286).

6. Polish
In Polish there are also similar sentence schemata as the ones described in 

the previous section. In the following schemata S stands for embedded sentence. 
Jeżeli S, to S, which translates into if S then S. Albo S albo S meaning either S or 

KJ.indb   110KJ.indb   110 2012-09-10   08:51:442012-09-10   08:51:44

Kształcenie Językowe 10 (20), 2012
© for this edition by CNS



 Natural language versus regular language 111

S. Mężczyzna, który powiedział, że S, przyjeżdza dzisiaj is the Polish version of the 
man who said that S is arriving today. Therefore, one can deliver the same proof as 
for English to show that Polish is not a regular language. The parenthetical embed-
ding construction is not present in Polish. Another sentence schema that can also 
be the basis of similar proofs is neither S nor S and its Polish equivalent ani S ani S. 

7. Further research
One has to be aware of two facts: (1) proving that some natural languages 

are not regular is not enough to show that all languages are non-regular, as it 
is assumed in the literature (see Chomsky 1967: 286; Gazdar & Mellish 1989: 
135); (2) it has been proven that hearers process a natural language as if it were a 
regular language (Gazdar & Mellish 1989: 135). The latter is most likely due to 
the limitation of human short memory, which cannot store too much information 
(see Kułacka 2009). These limitations can be avoided to some extent in the case of 
computers and the possible languages generated by implemented grammars.

It will be interesting to look at other languages possibly not from the Indo-Eu-
ropean family to see whether similar conclusions about languages can be drawn. 
Another line of research will be to establish the characteristics of such construc-
tions in languages, which show that a given language is non-regular, to be able to 
find them in natural languages.

There is also some confusion between what language a man can produce and 
comprehend, and a theoretically possible natural language with an abstract lan-
guage user. Clearly, the former is a regular language as it is finite, while the latter 
may be infinite and as such possibly non-regular. In this paper I considered a lan-
guage theoretically possible. Another question is whether we generate linguistic 
expressions as implementing a mental formal grammar or whether we reproduce 
clusters of words, while only occasionally producing a novel expression for which 
generating we use this mental grammar. 
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