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Abstract. We register a random sequence which has three segments
being the homogeneous Markov processes. Each segment has its own one-
step transition probability law and the length of the segment is unknown and
random. It means that at two random moments 61, 62, where 0 < 01 < 02,
the source of observation is changed. In effect, the number of homogeneous
segments is random. The transition probabilities of each process are known
and the a priori distribution of the disorder moments is given. The former
research on such a problem has been devoted to various questions concern-
ing the distribution changes. The random number of distributional segments
creates new problems in solutions with relation to analysis of the model with
deterministic number of segments. Two cases are presented in detail. In the
first one the objective is to stop on or between the disorder moments while
in the second one our objective is to find the strategy which immediately
detects the distribution changes. Both problems are reformulated to optimal
stopping of the observed sequences. The detailed analysis of the problem is
presented to show the form of optimal decision function.
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1. INTRODUCTION

Suppose that the process X = {X,,,n € N}, N={0,1,2,...}, is observed
sequentially. The process is obtained from three Markov processes by switching
between them at two random moments of time, 61 and 5. Our objective is to detect

these moments based on observation of X.

Such a model of data appears in many practical problems of the quality con-
trol (see Brodsky and Darkhovsky [5], Shewhart [17] and the collection of pa-
pers [2]), traffic anomalies in networks (Dube and Mazumdar [6], Tartakovsky
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18 K. Szajowski

et al. [22]), epidemiology models (see Baron [1]). In management of manufacture
it happens that the plants which produce some details change their parameters,
which makes the details change their quality. Production can be divided into three
sorts. Assuming that at the beginning of the production process the quality is the
highest, from some moment #; the products should be classified to lower sort and
beginning with the moment 65 the details should be categorized as having the low-
est quality. The aim is to recognize the moments of these changes.

Shiryaev [18], [19] solved the disorder problem of independent random vari-
ables with one disorder where the mean distance between disorder time and the
moment of its detection was minimized. The probability maximizing approach to
the problem was used by Bojdecki [3] and the stopping time which is in a given
neighborhood of the moment of disorder with maximal probability was found. The
disorders in more complicated dependence structures of switched sequences are
subjects of investigation by Pelkowitz [14], [15], Yakir [24], Moustakides [11],
Lai [9], [10], Fuh [7], Tartakovsky and Veeravalli [23]. The probability maximiz-
ing approach to such problems with two disorders was considered by Yoshida [25],
Szajowski [20], [21] and Sarnowski and Szajowski [16]. Yoshida [25] investigated
the problem of optimal stopping by observation of the process X so as to maxi-
mize the probability that the distance between the moments of disorder #; and their
estimates, the stopping times 7;, ¢ = 1, 2, will not exceed given numbers (for each
disorder independently). This question has been reformulated by Szajowski [21]
to the simultaneous detection of both disorders under the requirement that the per-
formance of procedure is globally measured for both detections and it has been
extended to the case with unknown distribution between disorders by Sarnowski
and Szajowski [16] (see also Bojdecki and Hosza [4] for related approach with
switching sequences of independent random variables). The method of solution is
based on a transformation of the model to the double optimal stopping problem
for Markovian function of some statistics (see Haggstrom [8], Nikolaev [12]). The
strategy which stops the process between the first and the second disorder with
maximal probability has been constructed by Szajowski [20]. The considerations
are inspired by the problem regarding how we can protect ourselves against a sec-
ond fault in a technological system after the occurrence of an initial fault or by the
problem of detection at the beginning and the end of an epidemic.

The paper is devoted to a generalization of the double disorder problem con-
sidered both in [20] and [21] in which immediate switch from the first preliminary
distribution to the third one is possible (i.e. it is possible that the random variables
01 and 6> are equal with a positive probability). It is also possible that we observe
the homogeneous data without disorder when both disorder moments are equal to
zero. The extension leads to serious difficulties in the construction of an equivalent
double optimal stopping model. The formulation of the problem can be found in
Section 2. The main results are subjects of Sections 4 (see Theorem 4.1) and 5.
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Random number of disorders 19

2. FORMULATION OF DETECTION PROBLEMS

Let (X,,)nen be an observable sequence of random variables defined on the
space (2, F, P) with values in (E, B), where E is a Borel subset of R. On (E, B)
there is a o-additive measure p. On the same probability space there are defined
random variables 601, 6> with values in N and the following distributions:

2.1) P01 = j) = L0y (i) + Loy () 7p 1Q1>

j—
V41
22 POa=k|b =j)=Iu_j(k)p+ Ly (k)P 7 aa,

wherej =0,1,2,.. ., k=7,j+1,j+2,..,7=1—m, p=1— p. Additionally,
we consider Markov processes (X!, G P%) o (Q F,P),i=0,1,2, where o-
fields G/ are the smallest o-fields for which (X7 Z)n 0 @ = 0,1,2, are adapted,
respectively. Let us define a process (X, )ncn in the following way:

(2.3)
Xn = X, H{91>n} + Xn 91+1I[{X0—300 1,01<n<62} + Xn 92+1H{X0—x92 017 ,02<n}"

We make inference on #; and 6, from the observable sequence (X,,, n € N) only.
It should be emphasized that the sequence (X,,, n € N) is not Markovian under an
admitted assumption as it has been mentioned in [20], [24] and [6]. However, the
sequence satisfies the Markov property given 6; and 6» (see Szajowski [21] and
Moustakides [11]). Thus for further consideration we define a filtration {F, } ,en,
where F,, = o(Xo, X1,...,Xp), related to real observation. The variables 61, 6,
are not stopping times with respect to F,, and o-fields G;. Moreover, we have
knowledge about the distribution of (01, f2) independent of any observation of the
sequence (Xp,)nen. This distribution, called the a priori distribution of (61, 03), is
given by (2.1) and (2.2).

It is assumed that the measures Pi(-) on F, i = 0, 1,2, have the following
representation. For any B € 3 we have

P, (w: X{ € B)=P(X{ € B|Xj=1x) = jB“fi(y)u(dy) = gﬂi(dy) = 14 (B),

where the functions fi(-) are different, and fi(y)/ £ V™% (y) < 0o fori=0,1, 2
and all z,y € E. We assume that the measures p’, x € E, are known in advance.

Forany D, = {w: X; € B;, i =1,...,n}, where B; € B, and any z € E
we define

P.(D,) = P(Dy| X, = z)

= nf Sn(@, Yn)(dfn) = nf pa(difn) = Mw(igl B;),

Xi=1Bi Xi=1Bi

where the sequence of functions .S, : x7"_; E— R is given by (7.5) in the Appendix.
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20 K. Szajowski

The presented model has the following heuristic justification: Two disorders
take place in the observed sequence (X,,). They affect distributions by changing
their parameters. The disorders occur at two random times 6; and 62, #; < 6. They
split the sequence of observations into segments, at most three ones. The first seg-
ment is described by (X)), the second one —for 6; < n < 62 —by (X_y ). The
third is given by (X 2792 +1) and is observed when n > 5. When the first disorder
takes place there is a “switch” from the initial distribution to the distribution with
the conditional density f¢ with respect of the measure y, where i = 1 or i = 2,
when 61 < 05 or 8 = 05, respectively. Next, if 81 < 69, at the random time 62 the
distribution of observations becomes ,u?n. We assume that the variables 61, 05 are
unobservable directly.

Let S denote the set of all stopping times with respect to the filtration (F,,),
n=0,1,...,and 7 = {(r,0) : 7 < 0, 7,0 € S§}. Two problems with three dis-
tributional segments are recalled to investigate them under the weaker assumption
that there are at most three homogeneous segments.

2.1. Detection of change. Our aim is to stop the observed sequence between
the two disorders.This can be interpreted as a strategy for protecting against a sec-
ond failure when the first has already happened. The mathematical model of this is
to control the probability P, (7 < 0o, 0; < 7 < 62) by choosing the stopping time
7* € S for which

(2.4) Px(el <T' < 92) = sup PI(T <o00,01 <7< 92)
TeT

2.2. Disorders detection. Our aim is to indicate the moments of switching with
given precision dj, ds (Problem Dy, 4,). We want to determine a pair of stopping
times (7%,0*) € T such that for every x € E

2.5)
P.(|7" — 01| < dj,|0" — 02| < dg) = sup Pu(|7—61] <dy,|o— 02| <do).
T,0)€T
0é¥<)f<oo

The problem has been considered in [21] under natural simplification that there are
three segments of data (i.e. there is 0 < 61 < 63). In Section 5 the problem Dy is
analyzed.

3. ON SOME A POSTERIORI PROCESSES

The formulated problems are translated to the optimal stopping problems for
some Markov processes. The important part of the reformulation process is a choice
of the statistics describing knowledge of the decision maker. The a posteriori prob-
abilities of some events play the crucial role. Let us define the following a posteri-
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Random number of disorders 21

ori processes (cf. [25], [20]):

(3.1) I, = P.(6; < n|Fn),
(3.2) H}f = Px(Ql = 92 > n\]:n) = Pm(gl = 92 > n]}"mn),
(33) Hmn = Px(Ql =m, 92 > Tl‘fmn),
where F,, = Fp form,n=1,2,...,m <n, 7= 1,2. For recursive representa-
tion of (3.1)—(3.3) we need the following functions:
f2(y)
T(z,y,a, 6,79) = 1 — ZHL—%)
( = HE g a.8,0)
1—12(32‘7 y7 O[, ﬁ, ’}/) — (q2a +p25 + Ch’V)fz( ) 7
H(z,y,a,5,7)
%(z,y, , 8,7 _pfe®)
( ) (I y7 7ﬁ7 )
p20fs(y)

H(z,y, o, B,7, )—m

where H(z,y,a, 8,7) = (1 — a)p1f2(y) + [p2(e = B) + a1 (1 — = 7)) fz (y) +
(2 + p2B + 17] f2(y). In the sequel we adopt the following notation:

(3.4) a=(a,B,7),
(3.5) T, = (I, T2, T12).

The basic formulae used in the transformation of the disorder problems to the stop-
ping problems are given in the following

LEMMA 3.1. For each x € E the following formulae for m,n = 1,2,.. .,

m < n, hold:

(3.6) I}y = 1N (X, Xy, 05, T2, 1032,
3.7) 12, = (X, Xy, 11, T2, T112),
(3.8) 2, = 12(X, Xy, 105, 102, T002),
(3.9) g1 = (X, Xpyr, 10, T2 T2 T, )

with the boundary condition 11}, = 7, 1I3(x) = mp, I} (z) = 7p, and

Q1f)1(m71 (Xm)

A Am VT el
plfg(m_l(Xm> (1 Hm)

Lnm = (1= p)
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22 K. Szajowski

Proof. Thecases (3.6), (3.7) and (3.9), when 0 < 61 < 05, have been proved
in [25] and [20]. Let 0 < 07 < 62 and suppose B; € B, 1 < i < n + 1. Let us
assume that Xy = x and put D,, = {w : X;(w) € B;,1 < i < n}.

(3.6) For A; = {w : X; € Bz} eFi,1<i<n+1,and Dyy1 € Fp 41, by
properties of Sy, (Zy), where &, = (zo,...,x,) (see Lemma 7.1), we have

[ Po(br>n+1Fop1)dPy = [ ILigni1ydPe

Dnta D41
_ f:?<91<92 (fln) + f:?<91:92 (fln) plfgn (xn+1) .
=/ S (7 ——— o (dT1n41)
X?illBi n(xn) H(xTM Tn+1, Hn(xn)
(X
= [ (-1 P Ko)
Dpt1 H(Xna Xn+17 Hn)

Thus, taking into account (3.1) we have H}LH =1-P, (01 >n+1]|Fup1) =
1= (1 =1)p1 %, (Xny) H (X, X, T1,,). This proves the formula (3.6).

(3.7) Under the same notation as in the proof of (3.6) we have, using the nota-
tion from Section 7.1 and the results of Lemma 7.3,

[ Pu(b2<n+1|Fu1)dPe= [ IgcnindPy

D’n+1 Dn+l
- =
X;ZLllBi Sn(w”)H(x”?xn-Ha Hn(xn))

f [Q2H}L(50n) + p2H121(fOn) + Q1H7112 (fOn)]fgn (Tny1)

Mz (dfl,n—i-l)

B = /= Mz(dflerl)
X?illBi H(‘men-i-l? Hn(xn))
[goIT} + poll2 + 1 1112] 2 (Xpi1)
= J = dP,.
Dy H(Xn,XnJrl’ Hn)
Thus we get

I, =Py(fa <n+1]|Fnp)
_ 1 2 2 127 £2 -1 Erd
- [(Hn - Hn)QQ + Hn + Q1Hn ]an (Xn+1)H (Xn7 Xn+17 Hn)v

which leads to the formula (3.7).
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(3.8) By (3.2) and the results of Lemma 7.3 we have

f Px(02 - 01 >n+l | fn+1)de = f H{92=91>n+1}dPx
D"+1 Dn+1
T
X?:JrllBi Sn(fn)H(m"’ Ln+1, Hn(fn))
H}LQ(fn)Plfgn (Tny1) R
- f = N:c(dl‘l,nﬂ)
Sany:H H(l‘n; Tn+l, Hn(fljn))

_ IL2p1 f%, (Xnt1)
- —
Dyt H(Xna Xn+1, Hn)

,U/:c(dflm—i-l)

dPy,

and, consequently,
2, = plnqlqu%n (Xpe1)H (X, X, ﬁn),
which proves the formula (3.8).
(3.9) Similarly, by the definition (3.3) and the results of Lemma 7.3, we get

f Pw(Gl =m,f >n+1 | fn+1)dPx = f H{Glzm,92>n+1}dPx

Dn+1 Dn+1
- m— -1
_ mool s T T £ () T, fon o (@) 2, (ns1)

—
X?:llBi Sn($0n)H(xna$n+1a Hn(fn))

X ﬂx(dfl,nJrl)
Hmn(fn)pi;n (wn—i—l) o HmnPQf;(n (Xn+1)

= f = . /J/a:(dfl:lm—‘,-l) = f =
X?;L]_lBi H(xmxn—&-la Hn<xn)) Dni1 H(XnaXn—I—l; Hn)

dP.

It leads to the relation

—
Hm,n+1 = pZHmnf;(n (Xn—i—l)Hil(Xna Xn+1, Hn)7

which proves the formula (3.9).
Further details concerning the recursive formula for conditional probabilities

can be found in Remark 7.1 in the Appendix. =

REMARK 3.1. Let us assume that the considered Markov processes have the
finite state space and T, = (xo,x1,...,%y), To = x, are given. In this case, (3.9)
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24 K. Szajowski

follows from the Bayes formula:
P (01 = .02 = k| Xy, = &)

P [T 1fo At fcs)( ) ifj >n,
= png a:s 1 )Ht ] :ct 1 (z¢) (Sn(fn))_l lf] n <k,
pjk Hs:l fxs—l Ts) t:j fa:t,l(xt) szk fgu,l(xu) (Sn(l’n)) ifk<n
where p?k =P(0, = j,02 = k) and S,,(+) is given by (7.5).

LEMMA 3.2. For each x € E and each Borel function u : E — R the fol-
lowing equations are fulfilled:

(3.10)  Ep(w(Xpp)(1 =10 4) | F) = (1 —10,)ps { w(y) %, )u(dy),

(B.11) Eu(w(Xnp)Iy —1I24) | F)
= [q1(1 — I}, — II}2) + po (I

ﬁ%
:

n(dy),
(3.12)
E, (U(Xn+1)H%+1 | j:n) = [CI2H711 +p2H721 + QIH12 fu an )
]E
(3.13) E, (w(Xns )L | Fo) = pIL2 [u(y) fX, (v)u(dy),
E

(3.14) E, (u(Xo11)|Fn) = é w(y)H (X, y, T ) p(dy).

Proof. The relations (3.10)—(3.13) are consequences of a suitable division
of () defined by (61, 62) and properties established in Lemma 7.3. Let us prove the
equation (3.12). To this end define a o-field F,, = o (61, 02, Xo, ..., X,,). Notice
that F,, C F,,. We have

E, (w(Xp4 )12 | Fo) = By (w(Xni 1) Eo (Lpy<nsny | Far1) | Fn)
o (W(Xni 1) {g,<nt1y | Fn) = <Ea: (X)), <ns1y | Fn) | fn)
o (Lren sy Ba (u(Xns) | 7o) | 7o)

u(v) %, W) u(dy)Pe(0a < n+ 1| Fp)

I
“E— H o

L.7.3
=7 (g, + polly + iIL?) [ul(y) £%, (y)u(dy).

E
We used the properties of conditional expectation and Lemma 7.3 (v). Similar
transformations give equations (3.10), (3.13) and (3.11) when parts (i) and (i),
part (iv) and part (i) of Lemma 7.3, respectively, are applied. From (3.10)—(3.12)
we get (3.14). Thus the proof of the lemma is complete. m
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4. DETECTION OF A NEW HOMOGENEOUS SEGMENT

4.1. Equivalent optimal stopping problem. For Xy = z let us define Z,, =
P01 <n<6y|F,) forn=0,1,2,... We have

(4.1) Zn=P.(h <n<by|F,) =10, -2,
Yy = esssupyrer, r2n) Pa(fl <7 <02 | Fy) forn =0,1,2,... and
(4.2) To=inf{n>0:27, =Y,}.

Notice that if Zo, = 0, then Z, = P,(6y < 7 < 0y | F;) for 7 € T. Since
Fn C F; (when n < 1), we have

Y, =esssupE,(Z; | Fn).

=N

LEMMA 4.1. The stopping time 1q defined by the formula (4.2) is the solution
of the problem (2.4).

Proof. From the theorems presented in [3] it is enough to show that
lim,, .o Z, = 0. For all natural numbers n, k, where n > k, for each x € E we
have

Zp = Ex(ﬂ{elgn<92} | Fn) < Ex(sgp H{91gj<92} | Fn)-
jzn

From Lévy’s theorem we obtain lim sup,, ., Zn < Ex(sup;j>y [, <j<0) | Foo)
where Foo = 0 (UZO:]L ]-'n). It is true that

lim supllig, <jcp,) =0 as.
k—o0 >k

and by the dominated convergence theorem we get

lim E;(suplp, <jcp,} | Foo) =0 as.,
Jjzk

k—oo

which completes the proof of the lemma. =

The reduction of the disorder problem to optimal stopping of Markov sequence
is a consequence of the following lemma.

LEMMA 4.2. The system X®={XZ} where X* = (X,,_1, Xp, [T}, T2 TI12),
forms a family of random Markov functions.

Proof. Define a function

4.3)  o(a1,22,d52) = (v2,2, 0 (22, 2,0), 1% (22, 2, @), 11"? (22, 2, ).
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26 K. Szajowski

Observe that
N
Xrgf = SD(Xn—27Xn—17 Hn—l; Xn) = QD(XI Xn)

n—1»
Hence X, can be interpreted as a function of the previous state X* ; and the
random variable X,,. Moreover, applying (3.14), we see that the conditional distri-
bution of X, given o-field F;,_1 depends only on X ;. According to [19] (pp.
102-103) the system X” is a family of random Markov functions. =

Lemma 4.2 implies that we can reduce the initial problem (2.4) to the optimal
stopping of the five-dimensional process (X,,_1, X, 1}, 112 IT12) with reward
4.4) h(z1,z2,d) = a — f.

The reward function results from (4.1). By Lemma 4.2, in the sequel we construct
the solution using standard tools of the optimal stopping theory (cf. [19]).

For any Borel function v: E?x [0,1]3— [0, 1] and the set D={w: X,,_1 =y,
X, = z,1Il = o, 112 = B, 1112 = v} we define two operators

. —
Txv(:%Z)a) = Ex(U(Xann—&—la Hn—l—l) | D);

Q.v(y, 2, d) = max{v(y, z, @), Ty (y, 2, d)}.

From the well-known theorems of optimal stopping theory (see [19]) we infer that
the solution of the problem (2.4) is the Markov time 7:

45) 75 =inf{n>0:h(Xn, Xnpt, Dnt1) = B (Xn, Xnst, Tnst) s

where
h*(y7 2 O_Z) = lim Q’;h(y7 z, 62)
k—oo
Obviously,
Qtv(y, @) = max{QY v, T, QY 'v} = maxfv, T, QY "o},

To obtain a clearer formula for 73 and the solution of the problem (2.4), we formu-
late (cf. (3.5) and (3.4)):

THEOREM 4.1. (a) The solution (4.5) of the optimal stopping problem for
the stochastic system X" defined in Lemma 4.2 with payoff function (4.4) is given by
—

(4.6) 75 = inf{n > 0: (X, Xpy1, l1,41) € B},

where B* is the set of the form

B* = {(y7270_2): (a - 6) > (1 —a— 7) [pl‘é:R*(:%l%ﬁl(y7u7&))f£(u)u(du)
+m{s%%mﬁm%w@»ﬁwmww}

+m—ﬁmﬁs%%wﬁx%m&»ﬁwmuwh
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and R*(y, z,d) = limg_,o0 RE(y, 2,d), S*(y, 2,d) = limg_.o0 S*(y, 2,d). The
functions R* and S* are defined recursively: R'(y, z,d) = 0, S'(y, z,&) = 1 and

R (y,z,d) = (1 - Ig,(y,2,d)) [plle“R'“ (g, u, T (y, u, @) £2 ()l du)

4.7
+aqu [ SF(yu, Ty, u, @) fH(u)p(du)],
E

Sk+1(y,z,62) = ]IRk(y,zg&) + (1 - HRk(y,z,éf))

(4.8)
x po [ ¥ (y, u, T1(y, u, @)) f1 () p(du),
E

where the set Ry, is
Ry ={(y,2,d) : h(y, z,@) > T,Q} "h(y, 2,d)}

4.9)
- {(y7270_2) : ((X—ﬁ) > (1 _a_f)/)
X [plka(ya uvﬁl(y7u7 &))fg?(u)iu(du)
E

+ [ S (y,u, Ty, u, @) £ (w) ()]
E

fy(wp(du)}.

+ (a— B)pgf Sk (y,u, ﬁl(y,u, &))
E

(b) The optimal value for (2.4) is given by the formula

V(z) = max{pa7p, Vo(2)},

where
Vo(x) = 7p|p {R* (1w, Ty (2, u, 7, pre, o) ) 2 () ()
tafs (2, T (., pm, p(1 = 7)) ) i (w)a(lw)|

+ Tpp2 f S* (.ZU, u, ﬁl(%uﬂﬂpmp(l - W)))fxl(u),u(du)
E

and 7 = 0 Lporpovi ()} + 70 Lpamp<io (@)}
Proof. Part (a) results from Lemma 3.2: the problem reduces to the optimal

stopping of the Markov process (X,,_1, X, I11, I12 | IT12) with the payoff function
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h(y, z,d&) = a — B. Given (3.11) with the function u equal to unity we get on the
set D={w: X, 1=vy,X, =21} = a2 = 38,1112 = 4}:

Txh(y,z,&') = EJE(H}L—&-I - H?H—l | ]:n) |D

= [((1 =1, = I q + (IL, — I)pa) [ fx, (w)p(du)]|
E

=(1-a—7)qg + (a—B)pe.
From the definition of R! and S? it is clear that
h(ya 270_2) =a— B = (1 —a— W)Rl(yazvo_z) + (04 - ﬂ)Sl(y,z,&).

Also R1={(y, z,@): h(y, z,d) > Tyh(y, z,d)}. By the definition of Q, and the
facts above we obtain

Quh(y, z,d) = (1 - a =) R*(y, 2,d) + (a = §)S*(y, 2,d),
where
Rz(y, z,0) = q (1 — Iz, (y, z, 62)) and Sz(y, z,d) = pa+ ((1 —p2)lg, (y, 2, 62)).
Suppose the following induction hypothesis holds:
Qi 'hly,2,6) = (1 — a = )R (y,2,0) + (a = f)S*(y, 2, d),

where R and S* are given by equations (4.7) and (4.8), respectively. We will show
that

Qﬁh(yv 270_2) = (1 - 7)Rk+1(y7 2, &) + (Oé - /B)SkJrl(ya 2, &)

From the induction assumption and the equations (3.10), (3.13) and (3.11) we get:

(4.10) T,.Q ¥ 'h(y,zad)

=T.(1—a—7)R*y, 2 a) + Ty(a— B)S*(y, z, )

=uawm{RW%mﬁm%m@wmwmm>
+ (1= a=7)q + (a— B)pa] [ S*(y,u, Ti(y,u, @) 1 (u)u(du)

E

=(1-a—7)[m éRk(y, w, T (y, u, @)) f, (u)p(du)
+m{ﬁ@wiimm®wuwmmﬂ
+ (= B)pa [ S*(y,u, i (y, u, @) fH(uw)a(du).

E

Notice that the expression
(1—a =R (y,2,d@) + (0 — B)SF (y, 2,d)
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is equal to o — 8 = h(y, z,d) = QFh(y, z, @) for (y, z, &) € Ry and, by (4.10),
it is equal to T, Q¥ 'h(y, z,d) = QFh(y, 2, @) for (y, z,d) ¢ Ry, where Ry, is
given by (4.9). Finally, we get

Qih(y,z,d) = (1 —a—7) R (y,2,d) + (a — B)SF(y, 2,d).

This proves (4.7) and (4.8). Using the monotone convergence theorem and the the-
orems of optimal stopping theory (see [19]) we conclude that the optimal stopping
time 73 is given by (4.6), which completes the proof of part (a).

(b) First, notice that IT}, TT? and 1112 are given by (3.6)~(3.8) and the boundary
condition formulated in Lemma 3.1. Under the assumption 7* < oo a.s. we get

P,(77" < 00,00 <7< 63) =supEZ;
T
= Emax{h(aj,Xl, I11), T h" (z, X1, Hl)} = Eklim Qgh(x,Xl, I1,)
—00

1 12 E=d 1 2\ ok Erd
=E[(1 -1I; — II}7)R*(x, X3, I11) + (II] — I17)S™ (=, X1, I14)]
= ﬁﬁplf R* (CL’,U, H1($a u, T, pﬂ-?pﬁ-))fa(:)(u)/‘b(du)

E

_ _ % Erd —\\ ¢l
+ (7pq1 + wppa) [ S* (2, u, Iy (z,u,m, pr, p7)) f (w)p(du).
E

We used Lemma 3.2 here and simple calculations for I1}, T1? and IT32. This com-
pletes the proof of Theorem 4.1. =

4.2. Remarks. Observe that the solution of the formulated problem depends
only on two-dimensional vector of posterior processes because I1:2 = p(1 — I11).
The obtained formulae are very general and for this reason — quite complicated.
We simplify the model by assuming that P(6; > 0) = 1 and P(f2 > 6;) = 1.
However, it seems that some further simplifications can be made in special cases.
Further research should be carried out in this direction. From a practical point of
view, computer algorithms are necessary to construct B* — the set in which it is
optimally to stop our observable sequence.

5. IMMEDIATE DETECTION OF THE FIRST AND THE SECOND DISORDER

5.1. Equivalent double optimal stopping problem. Let us consider the prob-
lem Do formulated in (2.5). A compound stopping variable is a pair (7,0) of
stopping times such that 0 < 7 < ¢ a.e. The aim is to find a compund stopping
variable (7%, 0*) such that

(5.1) Px((91,02) = (T*,O'*)) = sup PI((91,92) = (7’,0’)).
Og;glegoo
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Write 7,,, = {(1,0) € T : 7 > m}, Ty = {(1,0) € T : 7 =m,0 > n} and
Spm={7 €8 :7>m}. Let us put Fp,, = Fp, myn € N, m < n. We define
a two-parameter stochastic sequence &(z) = {&mn, m,n € N, m < n, x € E},
where

gmn = P$(01 =m, 02 == n\}"mn)

We can consider for every z € E, m,n € N, m < n, the optimal stopping prob-
lem of &(z) on 7, = {(1,0) € Tpun : T < 0}. A compound stopping variable
(7*,0*) is said to be optimal in 7.}t (or 7.}, if

(5.2) E {0 = sup Eg&o
(1,0)ETm

(or Epéing = SUD(; oy, E.&»). Let us define

(5.3) Nmn = €sssup By (&ro|Fmn).
(1,0)ETtn

If we put &,,00 = 0, then

Nmn = esssup Py (01 = 7,00 = 0| Fun).
(1,0)€Tatn

By the theory of optimal stopping for double indexed processes (cf. [8], [13]) the
sequence 1,y satisfies

Nmn = maX{fmm E(nm,n—l—l ‘fmn>}

Moreover, if o, = inf{n > m : nymn = &mn}, then (m, o) is optimal in 7.}, and
Nmn = Ew(fma;; | Fimn) a.e. The case when there are no segment with the distribu-
tion f1(y) appears with probability p. It will be taken into account. Define

Nrmn, = MaX{Emn, BE(Mmnt1|Fmn)}  forn > m.

If 67, = inf{n > m : Hmn = Enn s then (m, 6% is optimal in 7, and 7,y =
E. (&moz, | Fmm) a.e.. For further consideration we put

(54) m = Ex(nm,m+1|-7:m)-

LEMMA 5.1. The stopping time o, is optimal for every stopping problem
defined by (5.3).

Proof. It suffices to prove that lim, oo & = 0 (cf. [3]). For m,n, k € N,
n > k > m, and every x € [E we have

EI(H{Glzmﬁg:n}|fmn) = gmn(m) < Ex(sgllz H{Glzm,ﬁgzj}|Fm)a
)z

Probability and Mathematical Statistics 31, 2011, z. 1
© for this edition by CNS



Random number of disorders 31

where I 4 is the characteristic function of the set A. By Lévy’s theorem we get

lim sup & (2) < Eg(sup H{glzmﬁz:j}’fnm),
P>k

n—00 >
where Foo = Froo = o (|| Fn). We have

lim sup Iyp, —p 0,—53 = 0 ae.
k—oo j>k ’

and, by the dominated convergence theorem,
Jim Ex(?;l]z Ltg,=m,0.=j}Foc) =0. =

00,00
m=0,n=m

What is left is to consider the optimal stopping problem for (7),,1,)

on (Zpn) 220 - Let us define

(5.5) Vin = esssup Eg (- |Fp).
TGSm

Then V,,, = max{n,,, Ez(Vin+1|Fm)} a.e. and we define
7 =inf{k > n: Vi =n}.
LEMMA 5.2. The strategy 7 is the optimal first stop.
Proof. To show that 7 is the optimal first stop strategy we prove that
P.(m5 < o0) =1.

To this end, we argue in the usual manner, i.e. we show that lim,;,—.oc 1, = 0.
We have

Fm) =Ey (Ez (L, =m.02=05,} [ Frmos,) |‘7:m)

= Em(H{lemﬁg:a;‘n}L}—m) < Ew(sgg H{Olzjﬂg:a;f}‘}—m)-
)z

Nm = E; (é-ma;‘n

As in the proof of Lemma 5.1 we have

lim sup 7, (z) < Eg(sup H{(h:jﬁzsz}‘} [ Foo)-

m— oo ji=k

Since limy 00 SUP; >, ]I{glzk’grz:g;} < limsupy o [g, =y = 0, it follows that

At (@) < 0 B (S Tp,=5.0,=07) [ Foo) = 0. m

Lemmas 5.1 and 5.2 describe the method of solving the “disorder problem”
formulated in Section 2 (see (5.1)).
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5.2. Solution of the equivalent double stopping problem. For the sake of sim-
plicity we shall confine ourselves to the case d; = d2 = 0. It will be easily seen
how to generalize the solution of the problem to solve Dy, 4, for d; > 0 or dy > 0.
First of all we construct multidimensional Markov chains such that &,,,,, and n,,
will be the functions of their states. By considerations of Section 3 concerning
a posteriori processes we get £yo = mp and for m < n

6;71 = Pm(91 = m 02 = n]}"mn)
PPy e T S (X T f, (X f3, (X

- (20, X1, -+ Xn)
=2y (x)ifg(”’l(Xn)'
P2 " f)l(n_l(Xn>’

moreover, for n = m, by Lemma 7.3,

q1 f_%(m_l (Xm)

5.6 _=
-0 m e (Xm)

=P,(6h =m,02 = m|Frm) =p (1—11}).

Emm

We can observe that (X,,, X, 11, ﬁ>n+1, Iy pt1) forn=m+1,m+2,...isa
function of (X,,_1, Xy, I1,, I1,,,,) and X, 1. Besides, the conditional distribution
of X, 11 given F, (cf. (3.14)) depends on X,,, I1} (x) and 12 () only. These facts

imply that {(X,,, Xp+1, ﬁ)n_l,_]_, I ng1) Yoo, q forms a homogeneous Markov
process (see Chapter 2.15 of [19]). This allows us to reduce the problem (5.3)
for each m to the optimal stopping problem of the Markov process Z,,(z) =

{(Xn-1, Xn, ﬁn,Hmn), m,n € N, m < n, x € E} with the reward function

q2 ft (U)
IO

LEMMA 5.3. A solution of the optimal stopping problem (5.3) form = 1,2, ...
has the form

h(t’ u’ &7 5)

. { R (Xn) }
(5.7) o =infsn >m: — > R (Xy) ¢,
Ix, (Xn)
where R*(t f]E (t,s)fL(s)u(ds). We have the function r* = lim, o T,
where 1¢(t, u) f2(w)/fH(u) and
(5.8) Tn+1(t, u) = max { fEZ; , D2 frn u S)fl(s)u(ds)}.
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Then r*(t, ) satisfies the equation

2 u
;zlguiv]%{r*(% S)f;(S)#(ds)}.

(5.9 r*(t,u) = max{

The value of the problem is

q1 f;(m_l (Xm)

(510) m:Eaz mm fm =
n (77 +1| ) P fg(mil(Xm)

(1 = IG) Ry (X1, Xim),

where

pftZ(u) 92
fi () p2

Proof. Forany Borel function u : E x E x [0,1]* — [0, 1] and the set D =

{w: X, 1 =t,X, =uI(z) = a,13(z) = 8,112 = 4,1, () = 6} let us
define two operators

(5.11) RA(t,u) = max{ (1— p)R*(u)}.

Ta:u(t7 u, d, 5) = E:c (U(Xn7 Xn+17 ﬁn+1($), Hm,n+1(x)) |D>

and
Q. u(t,u,d,d) = max{u(t,u,d@,d), Tou(t,u,d,d)}.

By the well-known theorem from the theory of optimal stopping (see [19], [13])
we conclude that the solution of (5.3) is a Markov time:

— —
o =1inf {n>m: W Xy_1, Xpn, U, mpn) = B (Xn-1, X5, I (2), ) },

where h* = limy, oo Q¥h(t,u,@,d). By (3.9) and (3.14) on D = {w: X,, 1 = t,
X, =u, 1L = a, 112 = 3,112 = 7,1, = 6} we have

2 (X,
T;ph(t,u’ 62’ 5) = Em <(]2Hm,n+1f)1("(+1) D>
P2 an(XnJrl)

q2 fl(Xn+1) f2 (XnJrl) >
= ZipE v - Fa

2 P <H<u,Xn+1,a> FH(X0i1)
(3.14)

2
= Q25£mH(U,S@)M(dS) = q20

D

» )

and

N £ (u)
(5.12) Q.h(t,u,d,d) = p25max { () ,pg}.
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Let us define 7o (t,u) = 1 and

2 u
e t.0) = e {8 [, () P )}

t

We show that

(5.13) QLh(t,u, @,0) = ;—25w(t, w)
2

for ¢ =1,2,... We infer by (5.12) that Q,h = (g2/p2)7yr1. Let us assume (5.13)
holds for ¢/ < k. By (3.14), on the set D = {w : X,, 1 =, X,, = u, 11} = q,
12 = 3,112 = ~,11,,,, = 0} we have

Tle:zh(tv u,@,6) = Ey (;iznm,k-i-lrk(Xn’ Xn+1) |D>

— ;—japg {rk<u,s>f5<s>u<ds>.

It is easy to show (see [19]) that
Q8 h = max{h, T,Q"h} fork=1,2,...
Hence Q**'h = (ga/p2)0r)41 and (5.13) is proved for £ = 1,2, ... This gives

(5.14) h*(t,u,d,d) = 25 lim ri(t,u) = qjér*(t,u)
D2 k—oo D2

and

—
N'mn = €SSSUp Em(f7‘,a|fmn) = h*(Xn—bXna Hna Hmn)
(1,0)€Tmn

By (5.14) and (3.9) we have

T, (tu, @, 0) = 25py [ 1% (u, 5) fL(s)u(ds) = 25R* (u)
D2 E D2

and o}, takes the form (5.7). By (5.4), (5.6) and (3.14) we obtain

—
(5.15) Thm = max{éﬁlm, E(nm,m+1|Fm)} = f(Xm—lmev Hm’Hmm)

2
X
:max{ e 7fxm,1( )(1 fﬂ}ﬂ),q—2

pfS,  (Xim) T Hmm)R*(Xm)}

L.3.1 q1 f)lfm,l (Xm)

41 1_H717LR*Xm,,Xm. "
pl f?{m_l(Xm)( ) p( 1 )
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REMARK 5.1. By the results of Lemma 5.3 and properties of the a posteriori
process 11, we infer that the expected value of success for the second stop when
the observer stops immediately at n = 0 is wp, and when at least one observation
has been made, we get

1
B(i| o) = ]ij((l - Hl)jﬁOE ;

:p 1—7Tp1ff VR (0, w) p(du).

Ri(a ,X1>|fo)

As a consequence, we have the optimal second moment

[0 e el om) [ R ),
UO -
oy otherwise.
By Lemmas 5.3 and 3.1 (formula (3.9)) the optimal stopping problem (5.5) has
been transformed to the optimal stopping problem for the homogeneous Markov
process

W = {(Xm-1,Xpm, ), m €N, z € E}

with the reward function

- 41 fl(u) *
(5.16) f(t,u,d) = prio(u) (1 — ) Ry5(t,u).

THEOREM 5.1. A solution of the optimal stopping problem (5.5) for n =
1,2, ... has the form

(5.17) 7 = inf{k > n: (Xp_1, Xp, Lg) € B},
where
2
5 = { (@) S R0, > [0 2n(as)
fi(u) * E
We have the function v*(t,u) = limy—.c0 V5 (t, u), where vo(t, u) = R)(t,u) and
2
(5.18)  wvp41(t,u) = max{ftl(u>R (t,u), ;1 fvn u, ) fL(s)p(ds) p.
i ()

Then v*(t, u) satisfies the equation

2(u
(5.19)  v*(t,u) = max { ;zl EU;RZ(t,u),pl {v*(u, s)fé(s)u(ds)}.

The value of the problem is V;, = v*(Xp—1, Xy).
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Proof. Forany Borel functionu : E x E x [0,1]* — [0, 1] and the set D =
{w: Xp 1 =t, X, =u,IIL(2) = a,12(z) = B,1IL2 = 7} let us define two op-
erators _

Txu(t> u, 62) =E,; (U(Xm Xn+1a Hn+1)|D)

and
Quu(t, u, @) = max{u(t,u,d@), Tou(t,u,d)}.

As in the proof of Lemma 5.3 we infer that the solution of (5.5) is a Markov time
* : =4 * =
o =1inf{n >m: f(X,—1, Xpn, ) = [ (Xn-1, Xpn, )},

where f* = limg oo Q¥ f(t,u,@). By (3.14) and (5.16), on the set D = {w :
Xo1=t, X, =u, I} =, 112 = 3,12 = v} we have

T, f(t,u,d) = E, (Zi ., ) MR;(XWX”HND)
= = B an,l B K7 b
(3.14) @1 1 a)pr é H oF a’ﬁ H(u,s,a, B)Ry(u, s)u(ds)
= ( a)p1 R( s).fu(s)p(ds)
and

(5200 Qqf(t,u,d)
= q—l(l — o) max {

b1

ftl (u)
fP ()

mwmm{mm@ﬁ@mwﬁzmwwm»

b1
Let us define

ftl (u) *
79y

ot ) = ma | (h@ﬁn{RKMSMﬂ@uMQ}

and
L
;;Eui R;(tvU)Jh IJE;Un(U, S)fg(s)u(ds)}.

Un+1(t, u) = max {
We show that

(5.21) QL(tu, @) = L1 — a)u(t, u)

p1
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(t,u) and let

for¢{ =1,2,... By (5.20) we have Q. f(t,u, @) = (q1/p1)(1 — a)v1 (¢,
1= tyX’n = U,

us assume (5.21) holds for ¢ < k. By (3.14), on D = {w : X,,—
I} = o, 112 = 38,1112 = ~} we have
T.Q (0, ) = B (21 = T (X, X,00) D)

— L1 —a)py évkw, $)f3(s)p(ds).

p1
Hence we have Q¥+ f = (q1/p1)(1 — a)vg,1 and (5.21) is proved for £ = 1,2, ...
This gives
f(tu,d) = q—l(l —a) lim vg(t,u) = q—low*(t,u)
D1 k—o0 D1
and
_ ¢ 1 *
Vi = p—l(l — 1L )v* (Xm—1, Xm)-
We have
of(tu, @) = o’ (1 —a)pr [ v*(u, s)f,(s)u(ds).
E
Define
5 = { @) R0 > o1 [ 006 F(a)
fi' (w) E
Then 7;; for n > 1 takes the form (5.17). The value of the problem (5.2), (5.5) and
(2.5) is equal to

vo(x) = max{m, E;(V1|Fy)} = max {71', ;—1(1 —7T)p1 {v*(u, s)fg(s)u(ds)}

and

B {o if 7> qu(l— ) [ v (u, ) fO(s)ulds).
T = E

75 otherwise. m

By Lemmas 5.3 and 5.1 the solution of the problem Dy can be formulated as
follows.

THEOREM 5.2. A compound stopping time (7*,0%.), where o, is given by
(5.7) and 7* = 7§ is determined by (5.17), is the solution of the problem Dqg. The
value of the problem is

P,(7" <o" <o00,00 =7%,0=0)

= mas {m aa(1 =) [ 0" 0, 5) 26 ()}
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REMARK 5.2. The problem can be extended to optimal detection of more than
two successive disorders. The distribution of 01, 05 may be more general. The gen-
eral a priori distributions of disorder moments lead to more complicated formulae,
since the corresponding Markov chains are not homogeneous.

6. FINAL REMARKS

It is notable that the final optimal solutions turn out to have an unexpectedly
simple form. It seems that some further simplifications can be made in special
cases. From a practical point of view, computer algorithms are necessary to con-
struct B* — the set in which we stop our observable sequence. Since we always
refer to the transition densities, it is still an open problem of switching between the
independent Markov sequences.

7. APPENDIX - USEFUL RELATIONS

7.1. Distributions of disordered samples. Let us introduce the n-dimensional
distribution for various configuration of disorders:

(7.1)  fhrstasn(zy,)
n . j—1 n
=7 v ' H1 £2 (@) TT 2 (m)}
j=1 5= t=j

n—1 n . . 7j—1 k—1 n

= — -1 k—j—1

+ TP E E : {p]1 q1Po / q2 H f:J(c)sf1 (xs) H f;t,l(xt) H f:gu,l (mu)}
j=1k=j+1 s=1 t=j u=k

+7Tp H fmb 1 558)
s=1

(12)  fhsn<tz(z frﬁZ{ Py H oo, (s fot (@)}

n
> {r) Qszis (@) H i (20)
j=1

(73) 2 T (@) = vt lj fooa (),

(7.4) [0t (@) = prpt H fa._ ().
e}
Let us define a sequence of functions S, : x* ;E — R as follows: Sp(zg) = 1
and forn > 1
(7.5) Su(@n) = [R5 (1) + f1S"<02(T10)
+ f91 02>n( )+ fn<91<92( )
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LEMMA 7.1. Forn > 0 the function Sy, (1 ) follows the recursion

ﬁ
(76) Sn+1(fl,n+1) = H(.Tn, Tn+1, Hn)Sn(fln)a

where

(7.7 H(z,y,0,8,7) = (1 - a)p1f; () + 2l = B) + (1 — a = )] f2 ()
+ [g20 + P2 + 2 ().

Proof. Let0 < 6; < 02 and suppose B; € B,1 < i < n+ 1. Let us assume
that Xo = = and put D,, = {w : X;(w) € B;,1 <i<n}. For 4, ={w: X, €
B;} € Fi, 1 < i< n+ 1, by the properties of the density function S, (Z) with
respect to the measure 1i(-) we have

[ dP.= [ Sup1(ZFns)p(dZing)

Dy X ?:'*'11 B;

= f f J(@nt1]Zn) p(dxn41) S0 (Ton ) (dZ1n)
X:LZIBi Bn+1

= f P(An-&-lpzn = Tn)Ha(dT1n)
X?ZIB'

= [ Pu(Api1|X10)dP, fP A1 Fo)dPy = [ 14,,,dP,.
D, Dn,

Now we split the conditional probability of A, into the following parts:

(7.8) Pz(Xn+1 (S An+1 | .7'-”) =P (n < 91 < QQ,Xn+1 S An+1 | fn)

(7.9) (91 n < 927 n+l € An+1 ‘ fn)
(7.10) + Px(n <6 = 92,Xn+1 € An+1 ‘ Fa )
(7.11) + Px(el Oy <Ny, Xpt1 € Apta ‘ Fn )

In (7.8) we have

[ P02 > 01 >n, Xny1 € Apyr | F)dP,
Dy,

= [ Lo, =n+1y + Lo, 5n41))0a, AP

n

= [ [0 @) (01 f2, (Tng1) + @ fa, (@ne1)) | p(dF1 )

<"t B,

= f [Jm<91<62 (T1n) f (plf;?n (Tpy1) + thg}n (anrl))N(d:EnJrl)]M(dfln)
X1 B; Bpii

= f Pm(eg >0 >n | fn)[Pg(n (An+1)p1 + Q1P§(7l (An+1)]de.
Dy,
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In (7.9), by similar arguments to those for (7.8) we get

P.(1 <n <0, Xp1 € Ani1 | Fr)
=P,(01 <n<0,00=n+1,X,11 €A1 |Fn)
+ P, (01 <n<02,00#n+1,X,11 € Apyr | Fn)
= (P.(01 <n | Fp) = Pu(bo < n | Fo))[@2P%k, (Ani1) + paPk (Anir)]-
In (7.11) this part has the form:
Po(02 <y Xng1 € Apt1 | Fn) = P2 < n | F)P%, (Ant).

In (7.10) the conditional probability is equal to

P,(6h=02>n,Xn41 € Any1 | Fn)
=P,(01=02>n,00=n+1,X41 € Ant1 | Fn)
+P,(01=02>n,00#n+1,X,41 € Apy1 | Fn)
=P, (01 = 02 > n | F)[aP%, (Ans1) + ;P (A1)
These formulae lead to
FXni1 Xy n) = H(Xp, X1, T, 10, T1).
which proves the lemma. =

7.2. Conditional probability of various events defined by disorder moments.
According to the definition of IT}, T12, TI12 we get

LEMMA 7.2. For the model described in Section 2 the following formulae are

valid:
n<91<92(£‘ )
i P, n :1_H1_H12:u.
(1) (92 >0 > n]}" ) n n Sn(fn) ;
91:02>n(f )
i P, (02 =0 o) =12 = 2o o,
(ii) (62 1> n|Fn) b NS :
(iii) P, (0 < n < 6o F,) =1IL — I12;
. ﬁ'p? ngl f:J(c) 1 (558)
P.(6y >0 W) =1—1IL = :
@iv) (02 1> n|F) - S0 (@)
Proof. (i) We have
(7.12) Q:{w:n<91<02}U{w:61<n<92}

U{w:61<92<n}u{w:91:92>n}.
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Hence 1 = P (w:n < 6y < 09| F,) + (ITL — T12) + 112 + 1112 and
P,(w:n <0 < 0oF,) =1-1I, —TI}2

Let Bi€ B,1<i<n,Xo=zandput D, = {w: X;(w) € B;,1 <i<n}.
For A; = {w: X; EB}Eﬂ,l i < n,and D, € F, we have

f ]I{g2>91>n}dPI = f PI(GQ >0, > n\fn)dPI
Dn

Dy,
= [ Py(02 > 61 > n|X,,)dP, = P,(62 > 01 > n, D)
Dy,
= [ st @) p(din) = [ fr0 0 (31) (Sa(@n) T pe(dTn)
Xi=1Bi Xi=1Bi

= ff;<91<62(Xln)(sn(in))_ld]_)x,

Thus P,(6y > 61 > n|F,) = prpt [T, fgfi_l(xi)(sn()?n))‘l

(i1) This formula can be obtained by a similar argument to that of (i).
(iii) Let 61 < 6. Since {w : 2 < n} C {w: 0; < n}, we have

P,({w: 0, <n<0,}|F) =P({w: 0 <n}\{w: 0y <n}|F,) =TI} 112

n:

(iv) This is obvious.
Thus the proof of the lemma is complete. =

REMARK 7.1. Let B;€ B, 1 <i<n+1,Xo=xand D, = {w: X;(w) €
Bi,1<i<n}. ForA;={w: X; € B;} € F;,1 <i<n,and D, € F, we have

f L9, 5nydPy = f P, (61 > n|F)dP, = [ P,(6, > n|X,)dP
Dy,

— Px(el > n7D7’L) f pl H fmz 1 xl dl’ln)

X1 Bi

S o1 S
- f pl H T 1 ( (mn)) M:v(dx'ln)-

X B =1
Thus P,(01 > n|F,) =7 [, fé}ifl (X3) (Sn(Xn))_l. Moreover,

1- H}LH = plfg)(n (Xn+1)(1 - H}L)Sn()?n) (Sn+1( _’n-&-l))il

and Sp41( n+1) H(Xn,XnH,ﬁ)Tll)Sn()Zn). Hence

I plf?(n (Xn+1)(1 - Hrlz)
— .
H(XannJrl’ Hn)

n+1_1_
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7.3. Some recursive formulae. In derivation of the formulae in Theorem 3.1
the form of the distribution of some random vectors is taken into account.

LEMMA 7.3. For the model described in Section 2 the following formulae are

valid:
(i) P.(02 =01 > n+ 1|F,) = piIL2 = pip(1 — TIL);
(ii) P.(0y > 0, >n+1|F,) = p1(1 — I} —T112);

(iii) Po(bh <n+1|F,) =Pu(bh <n+1<0s]F,) +Pa(fy <n+1|Fp):;
(iv)  Pu(0 <n+1<6oF,) =q(l—T0 —T12) + po(ITL — I12);

(V) P, (02 < n+ 1|F,) = goII} + polI? + ¢ 1112

(vi) P.(01 =m, 0 >n+ 1|F,) = pallnn,.

Proof. (i) Onthe set D={w: Xo=2,X1 €A1, X0€Ag,..., X, €A, } €
F. we have

[ Lio,=0,>n+13dPo = Po(D)Py(62 = 61 > n + 1|D)
D

=pr > i l'a [ foz (@) p(ddry)

j=n+2 ><” A =

=pipipt [ H sy (@) p(dirn)
X A=l

= plpx(D)Px(eg =0 > n]D) =D f]l{92:91>n}dPx.
D
Consequently, by (3.2) and the definition of the conditional probability we have
Px(QQ =01 >n+ 1‘fn) = pll_[?lf.

Next, we get

[ LipynydPy = Py (D)P, (6, > n|D)
D

oo

=7 Z lql f H f;gL 1 $1 dxln)
Jj=n+ XD Ay i=

1

= ~P.(D)P.(0y = 0, > n|D) = ffﬂ{gz PR

hs

which proves (i) of the lemma.
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(i1) Similarly to the above we get
S Lio,50,5n+13dPo = P(D)Py(02 > 61 > n+1|D)
D

:plpﬁp’f f H v (@) p(dZy)
A 1=

:plP(D)Px(QQ > 01 > n]D) =Dp1 f]l{92>91>n}dpx.
D

Therefore, by Lemma 7.2 (ii) we obtain the formula (ii) of Lemma 7.3.
(iii) It is obvious by the assumption 6; < 5.
(iv) On the set D we have

J Loy <nt1<0,3dPe = P(D)P, (61 < n+1 < 62| D)
D

—_

21,22 " .
=73 Pw:th =) Z ooy gy

=0 k=n+2
< f Hf:gslxs Hf1 ((dZ1p)
X A 8=
= apia(l—p) fA SH fo., (@s)u(dT1n)
—I-pQ%P w: 6 =j)ph n+1—j fA SH fgs () ﬁf; (@) p(dZ'in)
(L.7.2) ]

qlp(D)Px(Qg > 6 > n|D) +p2P(D)PI(01 <n< QQ‘D)

=q1 IH{92>91>n}dPx + D2 fﬂ{elgn<92}dPx.
D D

(v) If we substitute n + 1 for n in (7.12), then we obtain

P(0y<n+1F) =1-Py(n+1< 0, =0|F,)

— Px(n+ 1<6; < egyfn) — Px(el <n+1< (92|fn)

=1-pIL —p1(1 =10, = TL7) — qu (1 — I, — 1)

+ pa(T12 —TIL) = goITL + poll2 + ¢y T112.
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(vi) We have

f H{91=m,92>n+1}dPﬂL‘ =Py (D)Py(61 =m,02 >n+1|D)
D

—t Tl Y e [T 1T £ ()(di)

j=nt2 xn B;i=1 j=m+1

m n
=porppy iy [ TI S (@) T1 fa,o, (@) p(dZin)

X7 B;i=1 j=m+1

= paPo(D)P,(61 = m, 02 > n|D) = pa [ L1, = 0,50} AP
D

and, consequently, by (3.3) and the definition of conditional probability we obtain

P,(02 = m, 01 > n+ 1|F,) = pallym.
This proves the part (vi) of the lemma. =
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