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Abstract. We register a random sequence which has three segments
being the homogeneous Markov processes. Each segment has its own one-
step transition probability law and the length of the segment is unknown and
random. It means that at two random moments θ1, θ2, where 0 ¬ θ1 ¬ θ2,
the source of observation is changed. In effect, the number of homogeneous
segments is random. The transition probabilities of each process are known
and the a priori distribution of the disorder moments is given. The former
research on such a problem has been devoted to various questions concern-
ing the distribution changes. The random number of distributional segments
creates new problems in solutions with relation to analysis of the model with
deterministic number of segments. Two cases are presented in detail. In the
first one the objective is to stop on or between the disorder moments while
in the second one our objective is to find the strategy which immediately
detects the distribution changes. Both problems are reformulated to optimal
stopping of the observed sequences. The detailed analysis of the problem is
presented to show the form of optimal decision function.
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1. INTRODUCTION

Suppose that the process X = {Xn, n ∈ N}, N = {0, 1, 2, . . .}, is observed
sequentially. The process is obtained from three Markov processes by switching
between them at two random moments of time, θ1 and θ2. Our objective is to detect
these moments based on observation of X .

Such a model of data appears in many practical problems of the quality con-
trol (see Brodsky and Darkhovsky [5], Shewhart [17] and the collection of pa-
pers [2]), traffic anomalies in networks (Dube and Mazumdar [6], Tartakovsky
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00-956 Warszawa, Poland.



Probability and Mathematical Statistics 31, 2011, z. 1
© for this edition by CNS

18 K. Szajowski

et al. [22]), epidemiology models (see Baron [1]). In management of manufacture
it happens that the plants which produce some details change their parameters,
which makes the details change their quality. Production can be divided into three
sorts. Assuming that at the beginning of the production process the quality is the
highest, from some moment θ1 the products should be classified to lower sort and
beginning with the moment θ2 the details should be categorized as having the low-
est quality. The aim is to recognize the moments of these changes.

Shiryaev [18], [19] solved the disorder problem of independent random vari-
ables with one disorder where the mean distance between disorder time and the
moment of its detection was minimized. The probability maximizing approach to
the problem was used by Bojdecki [3] and the stopping time which is in a given
neighborhood of the moment of disorder with maximal probability was found. The
disorders in more complicated dependence structures of switched sequences are
subjects of investigation by Pelkowitz [14], [15], Yakir [24], Moustakides [11],
Lai [9], [10], Fuh [7], Tartakovsky and Veeravalli [23]. The probability maximiz-
ing approach to such problems with two disorders was considered by Yoshida [25],
Szajowski [20], [21] and Sarnowski and Szajowski [16]. Yoshida [25] investigated
the problem of optimal stopping by observation of the process X so as to maxi-
mize the probability that the distance between the moments of disorder θi and their
estimates, the stopping times τi, i = 1, 2, will not exceed given numbers (for each
disorder independently). This question has been reformulated by Szajowski [21]
to the simultaneous detection of both disorders under the requirement that the per-
formance of procedure is globally measured for both detections and it has been
extended to the case with unknown distribution between disorders by Sarnowski
and Szajowski [16] (see also Bojdecki and Hosza [4] for related approach with
switching sequences of independent random variables). The method of solution is
based on a transformation of the model to the double optimal stopping problem
for Markovian function of some statistics (see Haggstrom [8], Nikolaev [12]). The
strategy which stops the process between the first and the second disorder with
maximal probability has been constructed by Szajowski [20]. The considerations
are inspired by the problem regarding how we can protect ourselves against a sec-
ond fault in a technological system after the occurrence of an initial fault or by the
problem of detection at the beginning and the end of an epidemic.

The paper is devoted to a generalization of the double disorder problem con-
sidered both in [20] and [21] in which immediate switch from the first preliminary
distribution to the third one is possible (i.e. it is possible that the random variables
θ1 and θ2 are equal with a positive probability). It is also possible that we observe
the homogeneous data without disorder when both disorder moments are equal to
zero. The extension leads to serious difficulties in the construction of an equivalent
double optimal stopping model. The formulation of the problem can be found in
Section 2. The main results are subjects of Sections 4 (see Theorem 4.1) and 5.
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2. FORMULATION OF DETECTION PROBLEMS

Let (Xn)n∈N be an observable sequence of random variables defined on the
space (Ω,F ,P) with values in (E,B), where E is a Borel subset of R. On (E,B)
there is a σ-additive measure µ. On the same probability space there are defined
random variables θ1, θ2 with values in N and the following distributions:

P(θ1 = j) = I{j=0}(j)π + I{j>0}(j)π̄p
j−1
1 q1,(2.1)

P(θ2 = k | θ1 = j) = I{k=j}(k)ρ+ I{k>j}(k)ρ̄p
k−j−1
2 q2,(2.2)

where j = 0, 1, 2, . . ., k = j, j +1, j +2, . . ., π̄ = 1− π, ρ̄ = 1− ρ. Additionally,
we consider Markov processes (X i

n,Gin,Pi
x) on (Ω,F ,P), i = 0, 1, 2, where σ-

fields Gin are the smallest σ-fields for which (Xi
n)
∞
n=0, i = 0, 1, 2, are adapted,

respectively. Let us define a process (Xn)n∈N in the following way:
(2.3)
Xn = X0

nI{θ1>n} +X1
n−θ1+1I{X1

0=x0
θ1−1,θ1¬n<θ2} +X2

n−θ2+1I{X2
0=x1

θ2−θ1
,θ2¬n}.

We make inference on θ1 and θ2 from the observable sequence (Xn, n ∈ N) only.
It should be emphasized that the sequence (Xn, n ∈ N) is not Markovian under an
admitted assumption as it has been mentioned in [20], [24] and [6]. However, the
sequence satisfies the Markov property given θ1 and θ2 (see Szajowski [21] and
Moustakides [11]). Thus for further consideration we define a filtration {Fn}n∈N,
where Fn = σ(X0, X1, . . . , Xn), related to real observation. The variables θ1, θ2
are not stopping times with respect to Fn and σ-fields G•n. Moreover, we have
knowledge about the distribution of (θ1, θ2) independent of any observation of the
sequence (Xn)n∈N. This distribution, called the a priori distribution of (θ1, θ2), is
given by (2.1) and (2.2).

It is assumed that the measures Pi
x(·) on F , i = 0, 1, 2, have the following

representation. For any B ∈ B we have

Pi
x(ω : X i

1 ∈ B) = P(Xi
1 ∈ B|X i

0 = x) =
∫
B

f i
x(y)µ(dy) =

∫
B

µi
x(dy) = µi

x(B),

where the functions f i
x(·) are different, and f i

x(y)/f
(i+1)mod3
x (y)<∞ for i=0, 1, 2

and all x, y ∈ E. We assume that the measures µi
x, x ∈ E, are known in advance.

For any Dn = {ω : Xi ∈ Bi, i = 1, . . . , n}, where Bi ∈ B, and any x ∈ E
we define

Px(Dn) = P(Dn|X0 = x)

=
∫

×n
i=1Bi

Sn(x, y⃗n)µ(dy⃗n) =
∫

×n
i=1Bi

µx(dy⃗n) = µx(
n
×
i=1

Bi),

where the sequence of functions Sn :×n
i=1 E→R is given by (7.5) in the Appendix.
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The presented model has the following heuristic justification: Two disorders
take place in the observed sequence (Xn). They affect distributions by changing
their parameters. The disorders occur at two random times θ1 and θ2, θ1 ¬ θ2. They
split the sequence of observations into segments, at most three ones. The first seg-
ment is described by (X0

n), the second one – for θ1 ¬ n < θ2 – by (X1
n−θ1+1). The

third is given by (X2
n−θ2+1) and is observed when n ­ θ2. When the first disorder

takes place there is a “switch” from the initial distribution to the distribution with
the conditional density f i

x with respect of the measure µ, where i = 1 or i = 2,
when θ1 < θ2 or θ1 = θ2, respectively. Next, if θ1 < θ2, at the random time θ2 the
distribution of observations becomes µ2

x. We assume that the variables θ1, θ2 are
unobservable directly.

Let S denote the set of all stopping times with respect to the filtration (Fn),
n = 0, 1, . . ., and T = {(τ, σ) : τ ¬ σ, τ, σ ∈ S}. Two problems with three dis-
tributional segments are recalled to investigate them under the weaker assumption
that there are at most three homogeneous segments.

2.1. Detection of change. Our aim is to stop the observed sequence between
the two disorders.This can be interpreted as a strategy for protecting against a sec-
ond failure when the first has already happened. The mathematical model of this is
to control the probability Px(τ <∞, θ1 ¬ τ < θ2) by choosing the stopping time
τ∗ ∈ S for which

(2.4) Px(θ1 ¬ τ∗ < θ2) = sup
τ∈T

Px(τ <∞, θ1 ¬ τ < θ2).

2.2. Disorders detection. Our aim is to indicate the moments of switching with
given precision d1, d2 (Problem Dd1d2). We want to determine a pair of stopping
times (τ∗, σ∗) ∈ T such that for every x ∈ E
(2.5)

Px(|τ∗ − θ1| ¬ d1, |σ∗ − θ2| ¬ d2) = sup
(τ,σ)∈T

0¬τ¬σ<∞

Px(|τ − θ1| ¬ d1, |σ − θ2| ¬ d2).

The problem has been considered in [21] under natural simplification that there are
three segments of data (i.e. there is 0 < θ1 < θ2). In Section 5 the problem D00 is
analyzed.

3. ON SOME A POSTERIORI PROCESSES

The formulated problems are translated to the optimal stopping problems for
some Markov processes. The important part of the reformulation process is a choice
of the statistics describing knowledge of the decision maker. The a posteriori prob-
abilities of some events play the crucial role. Let us define the following a posteri-
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ori processes (cf. [25], [20]):

Πi
n = Px(θi ¬ n|Fn),(3.1)

Π12
n = Px(θ1 = θ2 > n|Fn) = Px(θ1 = θ2 > n|Fmn),(3.2)

Πmn = Px(θ1 = m, θ2 > n|Fmn),(3.3)

where Fmn = Fn for m,n = 1, 2, . . ., m < n, i = 1, 2. For recursive representa-
tion of (3.1)–(3.3) we need the following functions:

Π1(x, y, α, β, γ) = 1− p1(1− α)f0
x(y)

H(x, y, α, β, γ)
,

Π2(x, y, α, β, γ) =
(q2α+ p2β + q1γ)f

2
x(y)

H(x, y, α, β, γ)
,

Π12(x, y, α, β, γ) =
p1γf

0
x(y)

H(x, y, α, β, γ)
,

Π(x, y, α, β, γ, δ) =
p2δf

1
x(y)

H(x, y, α, β, γ)
,

where H(x, y, α, β, γ) = (1− α)p1f
0
x(y) + [p2(α− β) + q1(1− α− γ)]f1

x(y) +
[q2α+ p2β + q1γ]f

2
x(y). In the sequel we adopt the following notation:

α⃗ = (α, β, γ),(3.4)
−→
Πn = (Π1

n,Π
2
n,Π

12
n ).(3.5)

The basic formulae used in the transformation of the disorder problems to the stop-
ping problems are given in the following

LEMMA 3.1. For each x ∈ E the following formulae for m,n = 1, 2, . . . ,
m < n, hold:

Π1
n+1 = Π1(Xn, Xn+1,Π

1
n,Π

2
n,Π

12
n ),(3.6)

Π2
n+1 = Π2(Xn, Xn+1,Π

1
n,Π

2
n,Π

12
n ),(3.7)

Π12
n+1 = Π12(Xn, Xn+1,Π

1
n,Π

2
n,Π

12
n ),(3.8)

Πm,n+1 = Π(Xn, Xn+1,Π
1
n,Π

2
n,Π

12
n ,Πmn)(3.9)

with the boundary condition Π1
0 = π, Π2

0(x) = πρ, Π12
0 (x) = π̄ρ, and

Πmm = (1− ρ)
q1f

1
Xm−1

(Xm)

p1f0
Xm−1

(Xm)
(1−Π1

m).
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P r o o f. The cases (3.6), (3.7) and (3.9), when 0 < θ1 < θ2, have been proved
in [25] and [20]. Let 0 ¬ θ1 ¬ θ2 and suppose Bi ∈ B, 1 ¬ i ¬ n + 1. Let us
assume that X0 = x and put Dn = {ω : Xi(ω) ∈ Bi, 1 ¬ i ¬ n}.

(3.6) For Ai = {ω : Xi ∈ Bi} ∈ Fi, 1 ¬ i ¬ n + 1, and Dn+1 ∈ Fn+1, by
properties of Sn(x⃗n), where x⃗n = (x0, . . . , xn) (see Lemma 7.1), we have

∫
Dn+1

Px(θ1 > n+ 1|Fn+1)dPx =
∫

Dn+1

I{θ1>n+1}dPx

=
∫

×n+1
i=1 Bi

fn<θ1<θ2
x (x⃗1n) + fn<θ1=θ2

x (x⃗1n)

Sn(x⃗n)

p1f
0
xn
(xn+1)

H
(
xn, xn+1,

−→
Πn(x⃗n)

)µx(dx⃗1,n+1)

=
∫

Dn+1

(1−Π1
n)

p1f
0
Xn

(Xn+1)

H(Xn, Xn+1,
−→
Πn)

dPx.

Thus, taking into account (3.1) we have Π1
n+1 = 1 − Px (θ1 > n+ 1 | Fn+1) =

1 − (1 − Π1
n)p1f

0
Xn

(Xn+1)H
−1(Xn, Xn+1,

−→
Πn). This proves the formula (3.6).

(3.7) Under the same notation as in the proof of (3.6) we have, using the nota-
tion from Section 7.1 and the results of Lemma 7.3,

∫
Dn+1

Px(θ2 ¬ n+ 1 | Fn+1)dPx =
∫

Dn+1

I{θ2¬n+1}dPx

(7.1)
=

∫
×n+1

i=1 Bi

fθ1¬θ2¬n+1
x (x⃗1,n+1)

Sn(x⃗n)H
(
xn, xn+1,

−→
Πn(x⃗n)

)µx(dx⃗1,n+1)

=
∫

×n+1
i=1 Bi

[q2Π
1
n(x⃗0n) + p2Π

2
n(x⃗0n) + q1Π

12
n (x⃗0n)]f

2
xn
(xn+1)

H
(
xn, xn+1,

−→
Πn(x⃗n)

) µx(dx⃗1,n+1)

=
∫

Dn+1

[q2Π
1
n + p2Π

2
n + q1Π

12
n ]f2

Xn
(Xn+1)

H(Xn, Xn+1,
−→
Πn)

dPx.

Thus we get

Π2
n+1 = Px(θ2 ¬ n+ 1 | Fn+1)

= [(Π1
n −Π2

n)q2 +Π2
n + q1Π

12
n ]f2

Xn
(Xn+1)H

−1(Xn, Xn+1,
−→
Πn),

which leads to the formula (3.7).
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(3.8) By (3.2) and the results of Lemma 7.3 we have∫
Dn+1

Px(θ2 = θ1 > n+ 1 | Fn+1)dPx =
∫

Dn+1

I{θ2=θ1­n+1}dPx

=
∫

×n+1
i=1 Bi

fθ1=θ2>n
x (x⃗1,n+1)

Sn(x⃗n)H
(
xn, xn+1,

−→
Πn(x⃗n)

)µx(dx⃗1,n+1)

=
∫

×n+1
i=1 Bi

Π12
n (x⃗n)p1f

0
xn
(xn+1)

H
(
xn, xn+1,

−→
Πn(x⃗n)

)µx(dx⃗1,n+1)

=
∫

Dn+1

Π12
n p1f

0
Xn

(Xn+1)

H(Xn, Xn+1,
−→
Πn)

dPx,

and, consequently,

Π12
n+1 = p1Π

12
n f0

Xn
(Xn+1)H

−1(Xn, Xn+1,
−→
Πn),

which proves the formula (3.8).

(3.9) Similarly, by the definition (3.3) and the results of Lemma 7.3, we get∫
Dn+1

Px(θ1 = m, θ2 > n+ 1 | Fn+1)dPx =
∫

Dn+1

I{θ1=m,θ2>n+1}dPx

=
∫

×n+1
i=1 Bi

π̄ρ̄pm−11 q1p
n+1
2

∏m−1
s=1 f0

xs−1
(xs)

∏n
k=m f1

xk−1
(xk)f

1
xn
(xn+1)

Sn(x0n)H
(
xn, xn+1,

−→
Πn(x⃗n)

)
× µx(dx⃗1,n+1)

=
∫

×n+1
i=1 Bi

Πmn(x⃗n)p2f
1
xn
(xn+1)

H
(
xn, xn+1,

−→
Πn(x⃗n)

)µx(dx⃗1,n+1) =
∫

Dn+1

Πmnp2f
1
Xn

(Xn+1)

H(Xn, Xn+1,
−→
Πn)

dPx.

It leads to the relation

Πm,n+1 = p2Πmnf
1
Xn

(Xn+1)H
−1(Xn, Xn+1,

−→
Πn),

which proves the formula (3.9).

Further details concerning the recursive formula for conditional probabilities
can be found in Remark 7.1 in the Appendix. �

REMARK 3.1. Let us assume that the considered Markov processes have the
finite state space and x⃗n = (x0, x1, . . . , xn), x0 = x, are given. In this case, (3.9)
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follows from the Bayes formula:

Px(θ1 = j, θ2 = k|X⃗n = x⃗n)

=


pθjk

∏n
s=1 f

0
xs−1

(xs)
(
Sn(x⃗n)

)−1 if j > n,

pθjk
∏j−1

s=1 f
0
xs−1

(xs)
∏n

t=j f
1
xt−1

(xt)
(
Sn(x⃗n)

)−1 if j ¬ n < k,

pθjk
∏n

s=1 f
0
xs−1

(xs)
∏k−1

t=j f
1
xt−1

(xt)
∏n

u=k f
2
xu−1

(xu)
(
Sn(x⃗n)

)−1 if k ¬ n,

where pθjk = P(θ1 = j, θ2 = k) and Sn(·) is given by (7.5).

LEMMA 3.2. For each x ∈ E and each Borel function u : E −→ ℜ the fol-
lowing equations are fulfilled:

(3.10) Ex

(
u(Xn+1)(1−Π1

n+1) | Fn
)
= (1−Π1

n)p1
∫
E
u(y)f0

Xn
(y)µ(dy),

(3.11) Ex

(
u(Xn+1)(Π

1
n+1 −Π2

n+1) | Fn
)

= [q1(1−Π1
n −Π12

n ) + p2(Π
1
n −Π2

n)]
∫
E
u(x)f1

Xn
(y)µ(dy),

Ex

(
u(Xn+1)Π

2
n+1 | Fn

)
= [q2Π

1
n + p2Π

2
n + q1Π

12
n ]
∫
E
u(y)f2

Xn
(y)µ(dy),

(3.12)

Ex

(
u(Xn+1)Π

12
n+1 | Fn

)
= p1Π

12
n

∫
E
u(y)f0

Xn
(y)µ(dy),(3.13)

Ex

(
u(Xn+1)|Fn

)
=
∫
E
u(y)H(Xn, y,

−→
Πn)µ(dy).(3.14)

P r o o f. The relations (3.10)–(3.13) are consequences of a suitable division
of Ω defined by (θ1, θ2) and properties established in Lemma 7.3. Let us prove the
equation (3.12). To this end define a σ-field F̃n = σ(θ1, θ2, X0, . . . , Xn). Notice
that Fn ⊂ F̃n. We have

Ex

(
u(Xn+1)Π

2
n+1 | Fn

)
= Ex

(
u(Xn+1)Ex(I{θ2¬n+1} | Fn+1) | Fn

)
= Ex

(
u(Xn+1)I{θ2¬n+1} | Fn

)
= Ex

(
Ex

(
u(Xn+1)I{θ2¬n+1} | F̃n

)
| Fn

)
= Ex

(
I{θ2¬n+1}Ex

(
u(Xn+1) | F̃n

)
| Fn

)
=
∫
E
u(y)f2

Xn
(y)µ(dy)Px(θ2 ¬ n+ 1 | Fn)

L.7.3
= (q2Π

1
n + p2Π

2
n + q1Π

12
n )

∫
E
u(y)f2

Xn
(y)µ(dy).

We used the properties of conditional expectation and Lemma 7.3 (v). Similar
transformations give equations (3.10), (3.13) and (3.11) when parts (i) and (ii),
part (iv) and part (i) of Lemma 7.3, respectively, are applied. From (3.10)–(3.12)
we get (3.14). Thus the proof of the lemma is complete. �
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4. DETECTION OF A NEW HOMOGENEOUS SEGMENT

4.1. Equivalent optimal stopping problem. For X0 = x let us define Zn =
Px(θ1 ¬ n < θ2 | Fn) for n = 0, 1, 2, . . . We have

(4.1) Zn = Px(θ1 ¬ n < θ2 | Fn) = Π1
n −Π2

n,

Yn = ess sup{τ∈T , τ­n}Px(θ1 ¬ τ < θ2 | Fn) for n = 0, 1, 2, . . . and

(4.2) τ0 = inf{n ­ 0 : Zn = Yn}.

Notice that if Z∞ = 0, then Zτ = Px(θ1 ¬ τ < θ2 | Fτ ) for τ ∈ T . Since
Fn ⊆ Fτ (when n ¬ τ ), we have

Yn = ess sup
τ­n

Ex(Zτ | Fn).

LEMMA 4.1. The stopping time τ0 defined by the formula (4.2) is the solution
of the problem (2.4).

P r o o f. From the theorems presented in [3] it is enough to show that
limn→∞ Zn = 0. For all natural numbers n, k, where n ­ k, for each x ∈ E we
have

Zn = Ex(I{θ1¬n<θ2} | Fn) ¬ Ex(sup
j­n

I{θ1¬j<θ2} | Fn).

From Lévy’s theorem we obtain lim supn→∞ Zn ¬ Ex(supj­k I{θ1¬j<θ2} | F∞),
where F∞ = σ

(∪∞
n=1Fn

)
. It is true that

lim
k→∞

sup
j­k

I{θ1¬j<θ2} = 0 a.s.

and by the dominated convergence theorem we get

lim
k→∞

Ex(sup
j­k

I{θ1¬j<θ2} | F∞) = 0 a.s.,

which completes the proof of the lemma. �

The reduction of the disorder problem to optimal stopping of Markov sequence
is a consequence of the following lemma.

LEMMA 4.2. The system Xx={Xx
n}, where Xx

n=(Xn−1, Xn,Π
1
n,Π

2
n,Π

12
n ),

forms a family of random Markov functions.

P r o o f. Define a function

(4.3) φ(x1, x2, α⃗ ; z) =
(
x2, z,Π

1(x2, z, α⃗),Π
2(x2, z, α⃗),Π

12(x2, z, α⃗)
)
.
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Observe that

Xx
n = φ(Xn−2, Xn−1,

−→
Πn−1;Xn) = φ(Xx

n−1;Xn).

Hence Xx
n can be interpreted as a function of the previous state Xx

n−1 and the
random variable Xn. Moreover, applying (3.14), we see that the conditional distri-
bution of Xn given σ-field Fn−1 depends only on Xx

n−1. According to [19] (pp.
102–103) the system Xx is a family of random Markov functions. �

Lemma 4.2 implies that we can reduce the initial problem (2.4) to the optimal
stopping of the five-dimensional process (Xn−1, Xn,Π

1
n,Π

2
n,Π

12
n ) with reward

(4.4) h(x1, x2, α⃗) = α− β.

The reward function results from (4.1). By Lemma 4.2, in the sequel we construct
the solution using standard tools of the optimal stopping theory (cf. [19]).

For any Borel function v : E2× [0, 1]3→ [0, 1] and the set D={ω : Xn−1=y,
Xn = z,Π1

n = α,Π2
n = β,Π12

n = γ} we define two operators

Txv(y, z, α⃗) = Ex

(
v(Xn, Xn+1,

−→
Πn+1) | D

)
,

Qxv(y, z, α⃗) = max{v(y, z, α⃗),Txv(y, z, α⃗)}.

From the well-known theorems of optimal stopping theory (see [19]) we infer that
the solution of the problem (2.4) is the Markov time τ0:

(4.5) τ⋆0 = inf{n ­ 0 : h(Xn, Xn+1,
−→
Πn+1) ­ h∗(Xn, Xn+1,

−→
Πn+1)},

where
h∗(y, z, α⃗) = lim

k→∞
Qk

xh(y, z, α⃗).

Obviously,

Qk
xv(y, z, α⃗) = max{Qk−1

x v,TxQ
k−1
x v} = max{v,TxQ

k−1
x v}.

To obtain a clearer formula for τ⋆0 and the solution of the problem (2.4), we formu-
late (cf. (3.5) and (3.4)):

THEOREM 4.1. (a) The solution (4.5) of the optimal stopping problem for
the stochastic system Xx defined in Lemma 4.2 with payoff function (4.4) is given by

(4.6) τ∗0 = inf{n ­ 0 : (Xn, Xn+1,
−→
Πn+1) ∈ B∗},

where B∗ is the set of the form

B∗ =
{
(y, z, α⃗) : (α− β) ­ (1− α− γ)

[
p1
∫
E
R∗

(
y, u,
−→
Π 1(y, u, α⃗)

)
f0
y (u)µ(du)

+ q1
∫
E
S∗

(
y, u,
−→
Π 1(y, u, α⃗)

)
f1
y (u)µ(du)

]
+ (α− β)p2

∫
E
S∗

(
y, u,
−→
Π 1(y, u, α⃗)

)
f1
y (u)µ(du)

}
,
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and R∗(y, z, α⃗) = limk→∞Rk(y, z, α⃗), S∗(y, z, α⃗) = limk→∞ Sk(y, z, α⃗). The
functions Rk and Sk are defined recursively:R1(y, z, α⃗) = 0, S1(y, z, α⃗) = 1 and

Rk+1(y, z, α⃗) =
(
1− IRk

(y, z, α⃗)
)[
p1

∫
E
Rk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f0
y (u)µ(du)

(4.7)

+ q1
∫
E
Sk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f1
y (u)µ(du)

]
,

Sk+1(y, z, α⃗) = IRk
(y, z, α⃗) +

(
1− IRk

(y, z, α⃗)
)

(4.8)

× p2
∫
E
Sk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f1
y (u)µ(du),

where the setRk is

Rk = {(y, z, α⃗) : h(y, z, α⃗) ­ TxQ
k−1
x h(y, z, α⃗)}(4.9)

=
{
(y, z, α⃗) : (α− β) ­ (1− α− γ)

×
[
p1

∫
E
Rk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f0
y (u)µ(du)

+ q1
∫
E
Sk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f1
y (u)µ(du)

]
+ (α− β)p2

∫
E
Sk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f1
y (u)µ(du)

}
.

(b) The optimal value for (2.4) is given by the formula

V (x) = max{p2π̄ρ, V0(x)},

where

V0(x) = π̄ρ̄
[
p1

∫
E
R∗

(
x, u,
−→
Π 1(x, u, π, ρπ, ρπ̄)

)
f0
x(u)µ(du)

+ q1
∫
E
S∗

(
x, u,
−→
Π 1

(
x, u, π, ρπ, ρ(1− π)

))
f1
x(u)µ(du)

]
+ π̄ρp2

∫
E
S∗

(
x, u,
−→
Π 1

(
x, u, π, ρπ, ρ(1− π)

))
f1
x(u)µ(du)

and τ⋆ = 0 · I{p2π̄ρ­V0(x)} + τ⋆0 I{p2π̄ρ<V0(x)}.

P r o o f. Part (a) results from Lemma 3.2: the problem reduces to the optimal
stopping of the Markov process (Xn−1, Xn,Π

1
n,Π

2
n,Π

12
n ) with the payoff function
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h(y, z, α⃗) = α− β. Given (3.11) with the function u equal to unity we get on the
set D = {ω : Xn−1 = y,Xn = z,Π1

n = α,Π2
n = β,Π12

n = γ}:

Txh(y, z, α⃗) = Ex(Π
1
n+1 −Π2

n+1 | Fn) |D
=

[(
(1−Π1

n −Π12
n )q1 + (Π1

n −Π2
n)p2

) ∫
E
f1
Xn

(u)µ(du)
]∣∣

D

= (1− α− γ)q1 + (α− β)p2.

From the definition of R1 and S1 it is clear that

h(y, z, α⃗) = α− β = (1− α− γ)R1(y, z, α⃗) + (α− β)S1(y, z, α⃗).

AlsoR1={(y, z, α⃗) : h(y, z, α⃗) ­ Txh(y, z, α⃗)}. By the definition of Qx and the
facts above we obtain

Qxh(y, z, α⃗) = (1− α− γ)R2(y, z, α⃗) + (α− β)S2(y, z, α⃗),

where

R2(y, z, α⃗) = q1
(
1− IR1(y, z, α⃗)

)
and S2(y, z, α⃗) = p2+

(
(1− p2)IR1(y, z, α⃗)

)
.

Suppose the following induction hypothesis holds:

Qk−1
x h(y, z, α⃗) = (1− α− γ)Rk(y, z, α⃗) + (α− β)Sk(y, z, α⃗),

where Rk and Sk are given by equations (4.7) and (4.8), respectively. We will show
that

Qk
xh(y, z, α⃗) = (1− α− γ)Rk+1(y, z, α⃗) + (α− β)Sk+1(y, z, α⃗).

From the induction assumption and the equations (3.10), (3.13) and (3.11) we get:

(4.10) TxQ
k−1
x h(y, z, α⃗)

= Tx(1− α− γ)Rk(y, z, α⃗) +Tx(α− β)Sk(y, z, α⃗)

= (1− α− γ)p1
∫
E
Rk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f0
y (u)µ(du)

+ [(1− α− γ)q1 + (α− β)p2]
∫
E
Sk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f1
y (u)µ(du)

= (1− α− γ)
[
p1

∫
E
Rk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f0
y (u)µ(du)

+ q1
∫
E
Sk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f1
y (u)µ(du)

]
+ (α− β)p2

∫
E
Sk

(
y, u,
−→
Π 1(y, u, α⃗)

)
f1
y (u)µ(du).

Notice that the expression
(1− α− γ)Rk+1(y, z, α⃗) + (α− β)Sk+1(y, z, α⃗)
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is equal to α − β = h(y, z, α⃗) = Qk
xh(y, z, α⃗) for (y, z, α⃗) ∈ Rk and, by (4.10),

it is equal to TxQ
k−1
x h(y, z, α⃗) = Qk

xh(y, z, α⃗) for (y, z, α⃗) /∈ Rk, where Rk is
given by (4.9). Finally, we get

Qk
xh(y, z, α⃗) = (1− α− γ)Rk+1(y, z, α⃗) + (α− β)Sk+1(y, z, α⃗).

This proves (4.7) and (4.8). Using the monotone convergence theorem and the the-
orems of optimal stopping theory (see [19]) we conclude that the optimal stopping
time τ∗0 is given by (4.6), which completes the proof of part (a).

(b) First, notice that Π1
1, Π2

1 and Π12
1 are given by (3.6)–(3.8) and the boundary

condition formulated in Lemma 3.1. Under the assumption τ∗ <∞ a.s. we get

Px(τ
∗ <∞, θ1 ¬ τ∗< θ2) = sup

τ
EZτ

= Emax{h(x,X1,
−→
Π 1),Txh

∗(x,X1,
−→
Π 1)} = E lim

k→∞
Qk

xh(x,X1,
−→
Π 1)

= E[(1−Π1
1 −Π12

1 )R∗(x,X1,
−→
Π 1) + (Π1

1 −Π2
1)S
∗(x,X1,

−→
Π 1)]

= π̄ρ̄p1
∫
E
R∗

(
x, u,
−→
Π 1(x, u, π, ρπ, ρπ̄)

)
f0
x(u)µ(du)

+ (π̄ρ̄q1 + πρ̄p2)
∫
E
S∗

(
x, u,
−→
Π 1(x, u, π, ρπ, ρπ̄)

)
f1
x(u)µ(du).

We used Lemma 3.2 here and simple calculations for Π1
1, Π2

1 and Π12
1 . This com-

pletes the proof of Theorem 4.1. �

4.2. Remarks. Observe that the solution of the formulated problem depends
only on two-dimensional vector of posterior processes because Π12

n = ρ(1−Π1
n).

The obtained formulae are very general and for this reason – quite complicated.
We simplify the model by assuming that P (θ1 > 0) = 1 and P (θ2 > θ1) = 1.
However, it seems that some further simplifications can be made in special cases.
Further research should be carried out in this direction. From a practical point of
view, computer algorithms are necessary to construct B∗ – the set in which it is
optimally to stop our observable sequence.

5. IMMEDIATE DETECTION OF THE FIRST AND THE SECOND DISORDER

5.1. Equivalent double optimal stopping problem. Let us consider the prob-
lem D00 formulated in (2.5). A compound stopping variable is a pair (τ, σ) of
stopping times such that 0 ¬ τ ¬ σ a.e. The aim is to find a compund stopping
variable (τ⋆, σ⋆) such that

(5.1) Px

(
(θ1, θ2) = (τ∗, σ∗)

)
= sup

(τ,σ)∈T
0¬τ¬σ<∞

Px

(
(θ1, θ2) = (τ, σ)

)
.
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Write Tm = {(τ, σ) ∈ T : τ ­ m}, Tmn = {(τ, σ) ∈ T : τ = m,σ ­ n} and
Sm = {τ ∈ S : τ ­ m}. Let us put Fmn = Fn, m,n ∈ N, m ¬ n. We define
a two-parameter stochastic sequence ξ(x) = {ξmn, m, n ∈ N, m < n, x ∈ E},
where

ξmn = Px(θ1 = m, θ2 = n|Fmn).

We can consider for every x ∈ E, m,n ∈ N, m < n, the optimal stopping prob-
lem of ξ(x) on T +

mn = {(τ, σ) ∈ Tmn : τ < σ}. A compound stopping variable
(τ∗, σ∗) is said to be optimal in T +

m (or T +
mn) if

(5.2) Exξτ∗σ∗ = sup
(τ,σ)∈Tm

Exξτσ

(or Exξτ∗σ∗ = sup(τ,σ)∈T +
mn

Exξτσ). Let us define

(5.3) ηmn = ess sup
(τ,σ)∈T +

mn

Ex(ξτσ|Fmn).

If we put ξm∞ = 0, then

ηmn = ess sup
(τ,σ)∈T +

mn

Px(θ1 = τ, θ2 = σ|Fmn).

By the theory of optimal stopping for double indexed processes (cf. [8], [13]) the
sequence ηmn satisfies

ηmn = max{ξmn,E(ηm,n+1|Fmn)}.

Moreover, if σ∗m = inf{n > m : ηmn = ξmn}, then (m,σ∗n) is optimal in T +
mn and

ηmn = Ex(ξmσ∗n |Fmn) a.e. The case when there are no segment with the distribu-
tion f1

x(y) appears with probability ρ. It will be taken into account. Define

η̂mn = max{ξmn,E(ηm,n+1|Fmn)} for n ­ m.

If σ̂∗m = inf{n ­ m : η̂mn = ξmn}, then (m, σ̂∗m) is optimal in Tmn and η̂mm =
Ex(ξmσ∗m |Fmm) a.e.. For further consideration we put

(5.4) ηm = Ex(ηm,m+1|Fm).

LEMMA 5.1. The stopping time σ∗m is optimal for every stopping problem
defined by (5.3).

P r o o f. It suffices to prove that limn→∞ ξmn = 0 (cf. [3]). For m,n, k ∈ N,
n ­ k > m, and every x ∈ E we have

Ex(I{θ1=m,θ2=n}|Fmn) = ξmn(x) ¬ Ex(sup
j­k

I{θ1=m,θ2=j}|Fm),



Probability and Mathematical Statistics 31, 2011, z. 1
© for this edition by CNS

Random number of disorders 31

where IA is the characteristic function of the set A. By Lévy’s theorem we get

lim sup
n→∞

ξmn(x) ¬ Ex(sup
j­k

I{θ1=m,θ2=j}|Fn∞),

where F∞ = Fn∞ = σ
(∪∞

n=1Fn
)
. We have

lim
k→∞

sup
j­k

I{θ1=m,θ2=j} = 0 a.e.

and, by the dominated convergence theorem,

lim
k→∞

Ex(sup
j­k

I{θ1=m,θ2=j}|F∞) = 0. �

What is left is to consider the optimal stopping problem for (ηmn)
∞,∞
m=0,n=m

on (Tmn)
∞,∞
m=0,n=m. Let us define

(5.5) Vm = ess sup
τ∈Sm

Ex(ητ |Fm).

Then Vm = max{ηm,Ex(Vm+1|Fm)} a.e. and we define

τ∗n = inf{k ­ n : Vk = ηk}.

LEMMA 5.2. The strategy τ∗0 is the optimal first stop.

P r o o f. To show that τ∗0 is the optimal first stop strategy we prove that

Px(τ
∗
0 <∞) = 1.

To this end, we argue in the usual manner, i.e. we show that limm→∞ ηm = 0.
We have

ηm = Ex(ξmσ∗m |Fm) = Ex

(
Ex(I{θ1=m,θ2=σ∗m}|Fmσ∗m)|Fm

)
= Ex(I{θ1=m,θ2=σ∗m}|Fm) ¬ Ex(sup

j­k
I{θ1=j,θ2=σ∗j }|Fm).

As in the proof of Lemma 5.1 we have

lim sup
m→∞

ηm(x) ¬ Ex(sup
j­k

I{θ1=j,θ2=σ∗j }|F∞).

Since limk→∞ supj­k I{θ1=k,θ2=σ∗j } ¬ lim supk→∞ I{θ1=k} = 0, it follows that

lim
m→∞

ηm(x) ¬ lim
k→∞

Ex(sup
j­k

I{θ1=j,θ2=σ∗j }|F∞) = 0. �

Lemmas 5.1 and 5.2 describe the method of solving the “disorder problem”
formulated in Section 2 (see (5.1)).
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5.2. Solution of the equivalent double stopping problem. For the sake of sim-
plicity we shall confine ourselves to the case d1 = d2 = 0. It will be easily seen
how to generalize the solution of the problem to solve Dd1d2 for d1 > 0 or d2 > 0.
First of all we construct multidimensional Markov chains such that ξmn and ηm
will be the functions of their states. By considerations of Section 3 concerning
a posteriori processes we get ξ00 = πρ and for m < n

ξxmn = Px(θ1 = m, θ2 = n|Fmn)

= π̄ρ̄
pm−11 q1p

n−m−1
2 q2

∏j−1
s=1 f

0
Xs−1

(Xs)
∏n−1

t=j f1
Xt−1

(Xt)f
2
Xn−1

(Xn)

Sn(x0, X1, . . . , Xn)

=
q2
p2

Πmn(x)
f2
Xn−1

(Xn)

f1
Xn−1

(Xn)
;

moreover, for n = m, by Lemma 7.3,

(5.6) ξxmm = Px(θ1 = m, θ2 = m|Fmm) = ρ
q1
p1

f2
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m).

We can observe that (Xn, Xn+1,
−→
Πn+1,Πm,n+1) for n = m + 1,m + 2, . . . is a

function of (Xn−1, Xn,
−→
Πn,Πmn) and Xn+1. Besides, the conditional distribution

of Xn+1 given Fn (cf. (3.14)) depends on Xn, Π1
n(x) and Π2

n(x) only. These facts
imply that {(Xn, Xn+1,

−→
Πn+1,Πm,n+1)}∞n=m+1 forms a homogeneous Markov

process (see Chapter 2.15 of [19]). This allows us to reduce the problem (5.3)
for each m to the optimal stopping problem of the Markov process Zm(x) =

{(Xn−1, Xn,
−→
Πn,Πmn), m, n ∈ N, m < n, x ∈ E} with the reward function

h(t, u, α⃗, δ) =
q2
p2

δ
f2
t (u)

f1
t (u)

.

LEMMA 5.3. A solution of the optimal stopping problem (5.3) for m = 1, 2, . . .
has the form

(5.7) σ∗m = inf

{
n > m :

f2
Xn−1

(Xn)

f1
Xn−1

(Xn)
­ R∗(Xn)

}
,

where R∗(t) = p2
∫
E r
∗(t, s)f1

t (s)µ(ds). We have the function r∗ = limn→∞ rn,

where r0(t, u) = f2
t (u)/f

1
t (u) and

(5.8) rn+1(t, u) = max

{
f2
t (u)

f1
t (u)

, p2
∫
E
rn(u, s)f

1
u(s)µ(ds)

}
.
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Then r∗(t, u) satisfies the equation

(5.9) r∗(t, u) = max

{
f2
t (u)

f1
t (u)

, p2
∫
E
r∗(u, s)f1

u(s)µ(ds)

}
.

The value of the problem is

(5.10) ηm = Ex(ηmm+1|Fm) =
q1
p1

f1
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m)R⋆
ρ(Xm−1, Xm),

where

(5.11) R⋆
ρ(t, u) = max

{
ρ
f2
t (u)

f1
t (u)

,
q2
p2

(1− ρ)R⋆(u)

}
.

P r o o f. For any Borel function u : E× E× [0, 1]4 → [0, 1] and the set D =
{ω : Xn−1 = t,Xn = u,Π1

n(x) = α,Π2
n(x) = β,Π12

n = γ,Πmn(x) = δ} let us
define two operators

Txu(t, u, α⃗, δ) = Ex

(
u
(
Xn, Xn+1,

−→
Πn+1(x),Πm,n+1(x)

)∣∣D)
and

Qxu(t, u, α⃗, δ) = max{u(t, u, α⃗, δ),Txu(t, u, α⃗, δ)}.

By the well-known theorem from the theory of optimal stopping (see [19], [13])
we conclude that the solution of (5.3) is a Markov time:

σ∗m = inf
{
n > m : h(Xn−1, Xn,

−→
Πn,Πmn) = h∗

(
Xn−1, Xn,

−→
Πn(x),Πmn

)}
,

where h∗ = limk→∞Qk
xh(t, u, α⃗, δ). By (3.9) and (3.14) on D = {ω : Xn−1 = t,

Xn = u,Π1
n = α,Π2

n = β,Π12
n = γ,Πmn = δ} we have

Txh(t, u, α⃗, δ) = Ex

(
q2
p2

Πm,n+1

f2
Xn

(Xn+1)

f1
Xn

(Xn+1)

∣∣∣∣D)
=

q2
p2

δp2E

(
f1
u(Xn+1)

H(u,Xn+1, α⃗)

f2
u(Xn+1)

f1
u(Xn+1)

∣∣∣∣Fn)∣∣∣∣
D

(3.14)
= q2δ

∫
E

f2
u(s)

H(u, s, α⃗)
H(u, s, α⃗)µ(ds) = q2δ

and

(5.12) Qxh(t, u, α⃗, δ) =
q2
p2

δmax

{
f2
t (u)

f1
t (u)

, p2

}
.
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Let us define r0(t, u) = 1 and

rn+1(t, u) = max

{
f2
t (u)

f1
t (u)

, p2
∫
E
rn(u, s)f

1
u(s)µ(ds)

}
.

We show that

(5.13) Qℓ
xh(t, u, α⃗, δ) =

q2
p2

δrℓ(t, u)

for ℓ = 1, 2, . . . We infer by (5.12) that Qxh = (q2/p2)γr1. Let us assume (5.13)
holds for ℓ ¬ k. By (3.14), on the set D = {ω : Xn−1 = t,Xn = u,Π1

n = α,
Π2

n = β,Π12
n = γ,Πmn = δ} we have

TxQ
k
xh(t, u, α⃗, δ) = Ex

(
q2
p2

Πm,k+1rk(Xn, Xn+1)|D
)

=
q2
p2

δp2
∫
E
rk(u, s)f

1
u(s)µ(ds).

It is easy to show (see [19]) that

Qk+1
x h = max{h,TxQ

k
xh} for k = 1, 2, . . .

Hence Qk+1
x h = (q2/p2)δrk+1 and (5.13) is proved for ℓ = 1, 2, . . . This gives

(5.14) h∗(t, u, α⃗, δ) =
q2
p2

δ lim
k→∞

rk(t, u) =
q2
p2

δr∗(t, u)

and
ηmn = ess sup

(τ,σ)∈Tmn

Ex(ξτ,σ|Fmn) = h∗(Xn−1, Xn,
−→
Πn,Πmn).

By (5.14) and (3.9) we have

Txh
∗(t, u, α⃗, δ) =

q2
p2

δp2
∫
E
r∗(u, s)f1

u(s)µ(ds) =
q2
p2

δR∗(u)

and σ∗m takes the form (5.7). By (5.4), (5.6) and (3.14) we obtain

ηm = max{ξxmm,E(ηm,m+1|Fm)} = f(Xm−1, Xm,
−→
Πm,Πmm)(5.15)

= max

{
ρ
q1
p1

f2
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m),
q2
p2

(1−Πmm)R⋆(Xm)

}
L.3.1
=

q1
p1

f1
Xm−1

(Xm)

f0
Xm−1

(Xm)
(1−Π1

m)R⋆
ρ(Xm−1, Xm). �
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REMARK 5.1. By the results of Lemma 5.3 and properties of the a posteriori
process Πnm we infer that the expected value of success for the second stop when
the observer stops immediately at n = 0 is πρ, and when at least one observation
has been made, we get

E(η1|F0) =
q1
p1

E

(
(1−Π1

1)
f1
x(X1)

f0
x(X1)

R⋆
ρ(x,X1)|F0

)
=

q1
p1

(1− π)p1
∫
E
f1
x(u)R

⋆
ρ(x, u)µ(du).

As a consequence, we have the optimal second moment

σ̂⋆
0 =

{
0 if πρ ­ q1(1− π)

∫
E
f1
x(u)R

⋆
ρ(x, u)µ(du),

σ⋆
0 otherwise.

By Lemmas 5.3 and 3.1 (formula (3.9)) the optimal stopping problem (5.5) has
been transformed to the optimal stopping problem for the homogeneous Markov
process

W = {(Xm−1, Xm,
−→
Πm), m ∈ N, x ∈ E}

with the reward function

(5.16) f(t, u, α⃗) =
q1
p1

f1
t (u)

f0
t (u)

(1− α)R⋆
ρ(t, u).

THEOREM 5.1. A solution of the optimal stopping problem (5.5) for n =
1, 2, . . . has the form

(5.17) τ∗n = inf{k ­ n : (Xk−1, Xk,
−→
Π k) ∈ B∗},

where

B∗ =

{
(t, u, α⃗) :

f2
t (u)

f1
t (u)

R⋆
ρ(t, u) ­ p1

∫
E
v∗(u, s)f0

u(s)µ(ds)

}
.

We have the function v∗(t, u) = limn→∞ vn(t, u), where v0(t, u) = R⋆
ρ(t, u) and

(5.18) vn+1(t, u) = max

{
f2
t (u)

f1
t (u)

R⋆
ρ(t, u), p1

∫
E
vn(u, s)f

1
u(s)µ(ds)

}
.

Then v∗(t, u) satisfies the equation

(5.19) v∗(t, u) = max

{
f2
t (u)

f1
t (u)

R⋆
ρ(t, u), p1

∫
E
v∗(u, s)f1

u(s)µ(ds)

}
.

The value of the problem is Vn = v∗(Xn−1, Xn).
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P r o o f. For any Borel function u : E× E× [0, 1]3 → [0, 1] and the set D =
{ω : Xn−1 = t,Xn = u,Π1

n(x) = α,Π2
n(x) = β,Π12

n = γ} let us define two op-
erators

Txu(t, u, α⃗) = Ex

(
u(Xn, Xn+1,

−→
Πn+1)|D

)
and

Qxu(t, u, α⃗) = max{u(t, u, α⃗),Txu(t, u, α⃗)}.

As in the proof of Lemma 5.3 we infer that the solution of (5.5) is a Markov time

τ∗m = inf{n > m : f(Xn−1, Xn,
−→
Πn) = f∗(Xn−1, Xn,

−→
Πn)},

where f∗ = limk→∞Qk
xf(t, u, α⃗). By (3.14) and (5.16), on the set D = {ω :

Xn−1 = t, Xn = u, Π1
n = α,Π2

n = β,Π12
n = γ} we have

Txf(t, u, α⃗) = Ex

(
q1
p1

(1−Π1
n+1)

f1
Xn

(Xn+1)

f0
Xn

(Xn+1)
R⋆

ρ(Xn, Xn+1)|D
)

=
q1
p1

(1− α)p1E

(
f0
u(Xn+1)

H(u,Xn+1, α, β)

f1
u(Xn+1)

f0
u(Xn+1)

R⋆
ρ(Xn, Xn+1)|Fn

)∣∣∣∣
D

(3.14)
=

q1
p1

(1− α)p1
∫
E

f1
u(s)

H(u, s, α, β)
H(u, s, α, β)R∗ρ(u, s)µ(ds)

=
q1
p1

(1− α)p1
∫
E
R∗ρ(u, s)f

1
u(s)µ(ds)

and

(5.20) Qxf(t, u, α⃗)

=
q1
p1

(1−α)max

{
f1
t (u)

f0
t (u)

R⋆
ρ(t, u), p1

∫
E
R⋆

ρ(u, s)f
1
u(s)µ(ds)

}
=

q1
p1

αv1(t, u).

Let us define

v1(t, u) = max

{
f1
t (u)

f0
t (u)

R⋆
ρ(t, u), p1

∫
E
R∗ρ(u, s)f

1
u(s)µ(ds)

}
and

vn+1(t, u) = max

{
f1
t (u)

f0
t (u)

R⋆
ρ(t, u), p1

∫
E
vn(u, s)f

0
u(s)µ(ds)

}
.

We show that

(5.21) Qℓ
xf(t, u, α⃗) =

q1
p1

(1− α)vℓ(t, u)
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for ℓ = 1, 2, . . . By (5.20) we have Qxf(t, u, α⃗) = (q1/p1)(1− α)v1(t, u) and let
us assume (5.21) holds for ℓ ¬ k. By (3.14), on D = {ω : Xn−1 = t,Xn = u,
Π1

n = α,Π2
n = β,Π12

n = γ} we have

TxQ
k
xf(t, u, α⃗) = Ex

(
q1
p1

(1−Π1
k+1)vk(Xn, Xn+1)|D

)
=

q1
p1

(1− α)p1
∫
E
vk(u, s)f

0
u(s)µ(ds).

Hence we have Qk+1
x f = (q1/p1)(1−α)vk+1 and (5.21) is proved for ℓ = 1, 2, . . .

This gives

f∗(t, u, α⃗) =
q1
p1

(1− α) lim
k→∞

vk(t, u) =
q1
p1

αv∗(t, u)

and
Vm =

q1
p1

(1−Π1
m)v∗(Xm−1, Xm).

We have
Txf

∗(t, u, α⃗) =
q1
p1

(1− α)p1
∫
E
v∗(u, s)f0

u(s)µ(ds).

Define

B∗ =

{
(t, u, α⃗) :

f1
t (u)

f0
t (u)

R⋆
ρ(t, u) ­ p1

∫
E
v∗(u, s)f0

u(s)µ(ds)

}
.

Then τ∗n for n ­ 1 takes the form (5.17). The value of the problem (5.2), (5.5) and
(2.5) is equal to

v0(x) = max{π,Ex(V1|F0)} = max

{
π,

q1
p1

(1− π)p1
∫
E
v∗(u, s)f0

u(s)µ(ds)

}
and

τ̂∗0 =

{
0 if π ­ q1(1− π)

∫
E
v∗(u, s)f0

u(s)µ(ds),

τ∗0 otherwise. �

By Lemmas 5.3 and 5.1 the solution of the problem D00 can be formulated as
follows.

THEOREM 5.2. A compound stopping time (τ∗, σ∗τ∗), where σ∗m is given by
(5.7) and τ∗ = τ̂∗0 is determined by (5.17), is the solution of the problem D00. The
value of the problem is

Px(τ
∗ < σ∗ <∞, θ1 = τ∗, θ2 = σ∗τ∗)

= max
{
π, q1(1− π)

∫
E
v∗(u, s)f0

u(s)µ(ds)
}
.
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REMARK 5.2. The problem can be extended to optimal detection of more than
two successive disorders. The distribution of θ1, θ2 may be more general. The gen-
eral a priori distributions of disorder moments lead to more complicated formulae,
since the corresponding Markov chains are not homogeneous.

6. FINAL REMARKS

It is notable that the final optimal solutions turn out to have an unexpectedly
simple form. It seems that some further simplifications can be made in special
cases. From a practical point of view, computer algorithms are necessary to con-
struct B∗ – the set in which we stop our observable sequence. Since we always
refer to the transition densities, it is still an open problem of switching between the
independent Markov sequences.

7. APPENDIX – USEFUL RELATIONS

7.1. Distributions of disordered samples. Let us introduce the n-dimensional
distribution for various configuration of disorders:

(7.1) fθ1¬θ2¬n
x (x⃗1n)

= π̄ρ
n∑

j=1

{
pj−11 q1

j−1∏
s=1

f0
xs−1

(xs)
n∏

t=j

f2
xt−1

(xt)
}

+ π̄ρ̄
n−1∑
j=1

n∑
k=j+1

{
pj−11 q1p

k−j−1
2 q2

j−1∏
s=1

f0
xs−1

(xs)
k−1∏
t=j

f1
xt−1

(xt)
n∏

u=k

f2
xu−1

(xu)
}

+ πρ
n∏

s=1

f2
xs−1

(xs),

fθ1¬n<θ2
x (x⃗1n) = π̄ρ̄

n∑
j=1

{
pj−11 q1p

n−j
2

j−1∏
s=1

f0
xs−1

(xs)
n∏

t=j

f1
xt−1

(xt)
}

(7.2)

+ πρ̄
n∑

j=1

{
pj−12 q2

j−1∏
s=1

f1
xs−1

(xs)
n∏

t=j

f2
xt−1

(xt)
}
,

(7.3) fθ1=θ2>n
x (x⃗1n) = ρπ̄pn1

n∏
s=1

f0
xs−1

(xs),

(7.4) fn<θ1<θ2
x (x⃗1n) = ρ̄π̄pn1

n∏
s=1

f0
xs−1

(xs).

Let us define a sequence of functions Sn : ×n
i=1E → R as follows: S0(x0) = 1

and for n ­ 1

Sn(x⃗n) = fθ1¬θ2¬n
x (x⃗1n) + fθ1¬n<θ2

x (x⃗1n)(7.5)

+ fθ1=θ2>n
x (x⃗1n) + fn<θ1<θ2

x (x⃗1n).
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LEMMA 7.1. For n > 0 the function Sn(x⃗1,n) follows the recursion

(7.6) Sn+1(x⃗1,n+1) = H(xn, xn+1,
−→
Πn)Sn(x⃗1n),

where

H(x, y, α, β, γ) = (1− α)p1f
0
x(y) + [p2(α− β) + q1(1− α− γ)]f1

x(y)(7.7)

+ [q2α+ p2β + q1γ]f
2
x(y).

P r o o f. Let 0 ¬ θ1 ¬ θ2 and suppose Bi ∈ B, 1 ¬ i ¬ n+ 1. Let us assume
that X0 = x and put Dn = {ω : Xi(ω) ∈ Bi, 1 ¬ i ¬ n}. For Ai = {ω : Xi ∈
Bi} ∈ Fi, 1 ¬ i ¬ n + 1, by the properties of the density function Sn(x⃗) with
respect to the measure µ(·) we have∫
Dn+1

dPx =
∫

×n+1
i=1 Bi

Sn+1(x⃗n+1)µ(dx⃗1,n+1)

=
∫

×n
i=1Bi

∫
Bn+1

f(xn+1|x⃗n)µ(dxn+1)Sn(x⃗0n)µ(dx⃗1n)

=
∫

×n
i=1Bi

P(An+1|X⃗n = xn)µx(dx⃗1n)

=
∫
Dn

Px(An+1|X⃗1n)dPx =
∫
Dn

Px(An+1|Fn)dPx =
∫
Dn

IAn+1dPx.

Now we split the conditional probability of An+1 into the following parts:

Px(Xn+1 ∈ An+1 | Fn) = Px(n < θ1 < θ2, Xn+1 ∈ An+1 | Fn)(7.8)

+Px(θ1 ¬ n < θ2, Xn+1 ∈ An+1 | Fn)(7.9)

+Px(n < θ1 = θ2, Xn+1 ∈ An+1 | Fn)(7.10)

+Px(θ1 ¬ θ2 ¬ n,Xn+1 ∈ An+1 | Fn).(7.11)

In (7.8) we have∫
Dn

Px(θ2 > θ1 > n,Xn+1 ∈ An+1 | Fn)dPx

=
∫
Dn

(I{θ1=n+1} + I{θ1>n+1})IAn+1dPx

=
∫

×n+1
i=1 Bi

[
fn<θ1<θ2
x (x⃗1n)

(
p1f

0
xn
(xn+1) + q1f

1
xn
(xn+1)

)]
µ(dx⃗1,n+1)

=
∫

×n
i=1Bi

[
fn<θ1<θ2
x (x⃗1n)

∫
Bn+1

(
p1f

0
xn
(xn+1) + q1f

1
xn
(xn+1)

)
µ(dxn+1)

]
µ(dx⃗1n)

=
∫
Dn

Px(θ2 > θ1 > n | Fn)[P0
Xn

(An+1)p1 + q1P
1
Xn

(An+1)]dPx.
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In (7.9), by similar arguments to those for (7.8) we get

Px(θ1 ¬ n < θ2, Xn+1 ∈ An+1 | Fn)

= Px(θ1 ¬ n < θ2, θ2 = n+ 1, Xn+1 ∈ An+1 | Fn)
+Px(θ1 ¬ n < θ2, θ2 ̸= n+ 1, Xn+1 ∈ An+1 | Fn)

=
(
Px(θ1 ¬ n | Fn)−Px(θ2 ¬ n | Fn)

)
[q2P

2
Xn

(An+1) + p2P
1
Xn

(An+1)].

In (7.11) this part has the form:

Px(θ2 ¬ n,Xn+1 ∈ An+1 | Fn) = Px(θ2 ¬ n | Fn)P2
Xn

(An+1).

In (7.10) the conditional probability is equal to

Px(θ1 = θ2 > n,Xn+1 ∈ An+1 | Fn)

= Px(θ1 = θ2 > n, θ2 = n+ 1, Xn+1 ∈ An+1 | Fn)
+Px(θ1 = θ2 > n, θ2 ̸= n+ 1, Xn+1 ∈ An+1 | Fn)

= Px(θ1 = θ2 > n | Fn)[q1P2
Xn

(An+1) + p1P
0
Xn

(An+1)].

These formulae lead to

f(Xn+1|X⃗1,n) = H(Xn, Xn+1,Π
1
n,Π

2
n,Π

12
n ).

which proves the lemma. �

7.2. Conditional probability of various events defined by disorder moments.
According to the definition of Π1

n, Π2
n, Π12

n we get

LEMMA 7.2. For the model described in Section 2 the following formulae are
valid:

Px(θ2 > θ1 > n|Fn) = 1−Π1
n −Π12

n =
fn<θ1<θ2
x (x⃗1n)

Sn(x⃗n)
;(i)

Px(θ2 = θ1 > n|Fn) = Π12
n =

fθ1=θ2>n
x (x⃗1n)

Sn(x⃗n)
;(ii)

Px(θ1 ¬ n < θ2|Fn) = Π1
n −Π2

n;(iii)

Px(θ2 ­ θ1 > n|Fn) = 1−Π1
n =

π̄pn1
∏n

s=1 f
0
xs−1

(xs)

Sn(x⃗n)
.(iv)

P r o o f. (i) We have

Ω = {ω : n < θ1 < θ2} ∪ {ω : θ1 ¬ n < θ2}(7.12)

∪ {ω : θ1 ¬ θ2 ¬ n} ∪ {ω : θ1 = θ2 > n}.
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Hence 1 = Px(ω : n < θ1 < θ2|Fn) + (Π1
n −Π2

n) + Π2
n +Π12

n and

Px(ω : n < θ1 < θ2|Fn) = 1−Π1
n −Π12

n .

Let Bi ∈ B, 1 ¬ i ¬ n, X0 = x and put Dn = {ω : Xi(ω) ∈ Bi, 1 ¬ i ¬ n}.
For Ai = {ω : Xi ∈ Bi} ∈ Fi, 1 ¬ i ¬ n, and Dn ∈ Fn we have∫

Dn

I{θ2>θ1>n}dPx =
∫
Dn

Px(θ2 > θ1 > n|Fn)dPx

=
∫
Dn

Px(θ2 > θ1 > n|X⃗n)dPx = Px(θ2 > θ1 > n,Dn)

=
∫

×n
i=1Bi

fn<θ1<θ2
x (x⃗1n)µ(dx⃗1n) =

∫
×n

i=1Bi

fn<θ1<θ2
x (x⃗1n)

(
Sn(x⃗n)

)−1
µx(dx⃗1n)

=
∫
Dn

fn<θ1<θ2
x (X⃗1n)

(
Sn(X⃗n)

)−1
dPx.

Thus Px(θ2 > θ1 > n|Fn) = ρ̄π̄pn1
∏n

i=1 f
0
Xi−1

(Xi)
(
Sn(X⃗n)

)−1.
(ii) This formula can be obtained by a similar argument to that of (i).
(iii) Let θ1 ¬ θ2. Since {ω : θ2 ¬ n} ⊂ {ω : θ1 ¬ n}, we have

Px({ω : θ1 ¬ n < θn}|Fn) = Px({ω : θ1 ¬ n} \ {ω : θ2 ¬ n}|Fn) = Π1
n−Π2

n.

(iv) This is obvious.
Thus the proof of the lemma is complete. �

REMARK 7.1. Let Bi ∈ B, 1 ¬ i ¬ n+ 1, X0 = x and Dn = {ω : Xi(ω) ∈
Bi, 1 ¬ i ¬ n}. For Ai = {ω : Xi ∈ Bi} ∈ Fi, 1 ¬ i ¬ n, and Dn ∈ Fn we have∫

Dn

I{θ1>n}dPx =
∫
Dn

Px(θ1 > n|Fn)dPx =
∫
Dn

Px(θ1 > n|X⃗n)dPx

= Px(θ1 > n,Dn) =
∫

×n
i=1Bi

pn1
n∏

i=1

f0
xi−1

(xi)µ(dx⃗1n)

=
∫

×n
i=1Bi

pn1
n∏

i=1

f0
xi−1

(xi)
(
Sn(x⃗n)

)−1
µx(dx⃗1n).

Thus Px(θ1 > n|Fn) = pn1
∏n

i=1 f
0
Xi−1

(Xi)
(
Sn(X⃗n)

)−1. Moreover,

1−Π1
n+1 = p1f

0
Xn

(Xn+1)(1−Π1
n)Sn(X⃗n)

(
Sn+1(X⃗n+1)

)−1
and Sn+1(X⃗n+1) = H(Xn, Xn+1,

−→
Π 1

n)Sn(X⃗n). Hence

Π1
n+1 = 1−

p1f
0
Xn

(Xn+1)(1−Π1
n)

H(Xn, Xn+1,
−→
Πn)

.
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7.3. Some recursive formulae. In derivation of the formulae in Theorem 3.1
the form of the distribution of some random vectors is taken into account.

LEMMA 7.3. For the model described in Section 2 the following formulae are
valid:

Px(θ2 = θ1 > n+ 1|Fn) = p1Π
12
n = p1ρ(1−Π1

n);(i)

Px(θ2 > θ1 > n+ 1|Fn) = p1(1−Π1
n −Π12

n );(ii)

Px(θ1 ¬ n+ 1|Fn) = Px(θ1 ¬ n+ 1 < θ2|Fn) +Px(θ2 ¬ n+ 1|Fn);(iii)

Px(θ1 ¬ n+ 1 < θ2|Fn) = q1(1−Π1
n −Π12

n ) + p2(Π
1
n −Π2

n);(iv)

Px(θ2 ¬ n+ 1|Fn) = q2Π
1
n + p2Π

2
n + q1Π

12
n ;(v)

Px(θ1 = m, θ2 > n+ 1|Fn) = p2Πmn.(vi)

P r o o f. (i) On the set D={ω : X0=x,X1∈A1, X2∈A2, . . . , Xn∈An}∈
Fn we have∫

D

I{θ2=θ1>n+1}dPx = Px(D)Px(θ2 = θ1 > n+ 1|D)

= ρπ̄
∞∑

j=n+2

pj−11 q1
∫

×n
i=1Ai

n∏
i=1

f0
xi−1

(xi)µ(dx⃗1n)

= p1ρπ̄p
n
1

∫
×n

i=1Ai

n∏
i=1

f0
xi−1

(xi)µ(dx⃗1n)

= p1Px(D)Px(θ2 = θ1 > n|D) = p1
∫
D

I{θ2=θ1>n}dPx.

Consequently, by (3.2) and the definition of the conditional probability we have

Px(θ2 = θ1 > n+ 1|Fn) = p1Π
12
n .

Next, we get∫
D

I{θ1>n}dPx = Px(D)Px(θ1 > n|D)

= π̄
∞∑

j=n+1

pj−11 q1
∫

×n
i=1Ai

n∏
i=1

f0
xi−1

(xi)µ(dx⃗1n)

=
1

ρ
Px(D)Px(θ2 = θ1 > n|D) =

1

ρ

∫
D

I{θ2=θ1>n}dPx,

which proves (i) of the lemma.
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(ii) Similarly to the above we get∫
D

I{θ2>θ1>n+1}dPx = P(D)Px(θ2 > θ1 > n+ 1|D)

= p1ρπ̄p
n
1

∫
×n

i=1Ai

n∏
i=1

f0
xi−1

(xi)µ(dx⃗1n)

= p1P(D)Px(θ2 > θ1 > n|D) = p1
∫
D

I{θ2>θ1>n}dPx.

Therefore, by Lemma 7.2 (ii) we obtain the formula (ii) of Lemma 7.3.

(iii) It is obvious by the assumption θ1 ¬ θ2.

(iv) On the set D we have

∫
D

I{θ1¬n+1<θ2}dPx = P(D)Px(θ1 ¬ n+ 1 < θ2|D)

(2.1),(2.2)
=

n+1∑
j=0

P(ω : θ1 = j)
∞∑

k=n+2

ρ̄pk−j−12 q2

×
∫

×n
i=1Ai

j−1∏
s=1

f0
xs−1

(xs)
n∏

r=j

f1
xr−1

(xr)µ(dx⃗1n)

= π̄pn1q1(1− ρ)
∫

×n
i=1Ai

n∏
s=1

f0
xs−1

(xs)µ(dx⃗1n)

+ p2
n∑
0

P(ω : θ1 = j)pn+1−j
2

∫
×n

i=1Ai

j−1∏
s=1

f0
xs−1

(xs)
n∏

r=j

f1
xr−1

(xr)µ(dx⃗1n)

(L.7.2)
= q1P(D)Px(θ2 > θ1 > n|D) + p2P(D)Px(θ1 ¬ n < θ2|D)

= q1
∫
D

I{θ2>θ1>n}dPx + p2
∫
D

I{θ1¬n<θ2}dPx.

(v) If we substitute n+ 1 for n in (7.12), then we obtain

Px(θ2 ¬ n+ 1|Fn) = 1−Px(n+ 1 < θ1 = θ2|Fn)

−Px(n+ 1 < θ1 < θ2|Fn)−Px(θ1 ¬ n+ 1 < θ2|Fn)

= 1− p1Π
12
n − p1(1−Π1

n −Π12
n )− q1(1−Π1

n −Π12
n )

+ p2(Π
2
n −Π1

n) = q2Π
1
n + p2Π

2
n + q1Π

12
n .



Probability and Mathematical Statistics 31, 2011, z. 1
© for this edition by CNS

44 K. Szajowski

(vi) We have∫
D

I{θ1=m,θ2>n+1}dPx = Px(D)Px(θ1 = m, θ2 > n+ 1|D)

= π̄ρ̄pm−11 q1
∞∑

j=n+2

pj−m−12 q2
∫

×n
i=1Bi

m∏
i=1

f0
xi−1

(xi)
n∏

j=m+1

f1
xj−1

(xj)µ(dx⃗1n)

= p2π̄ρ̄p
m−1
1 q1p

n−m
2

∫
×n

i=1Bi

m∏
i=1

f0
xi−1

(xi)
n∏

j=m+1

f1
xj−1

(xj)µ(dx⃗1n)

= p2Px(D)Px(θ1 = m, θ2 > n|D) = p2
∫
D

I{θ1=m,θ2>n}dPx

and, consequently, by (3.3) and the definition of conditional probability we obtain

Px(θ2 = m, θ1 > n+ 1|Fn) = p2Πnm.

This proves the part (vi) of the lemma. �
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