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Abstract. Let W be a finite Coxeter group and let λW be the Haar
measure on W, i.e., λW (w) = |W |−1 for every w ∈ W. We prove that
there exist a symmetric set T ̸= W of generators of W consisting of ele-
ments of order not greater than 2 and a finite set of probability measures
{µ1, . . . , µk} with their supports in T such that their convolution product
µ1 ∗ . . . ∗ µk = λW .
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1. INTRODUCTION

The aim of this note is to prove in a constructive way the following factor-
ization of the Haar measure on finite Coxeter groups (for the definition of finite
Coxeter groups see Section 2).

THEOREM 1.1. Let W be a finite Coxeter group and let λW (w) = |W |−1
for every w ∈ W. Then there exist a symmetric set T ̸= W of generators of W
consisting of elements of order not greater than 2 and a finite set of probability
measures {µ1, . . . , µk}, k  2, with their supports in T such that their convolution
product µ1 ∗ . . . ∗ µk takes the form

(1.1) µ1 ∗ . . . ∗ µk = λW .

If W is a symmetric group Sn, then the result of Theorem 1.1 is well known
and widely used both in practical and theoretical problems (see e.g. the classi-
cal book by Knuth [8] and the lectures by Diaconis [3]). In this case one can
take the set of generators consisting of transpositions T = {(i, j) : 1 ¬ i, j ¬ n}
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and define n− 1 probability measures as follows. Let µj , 1 ¬ j ¬ n, be a probabil-
ity measure which is uniformly distributed on the set {(j, j), (j, j+1), . . . , (j, n)}.
Then it is clear that µ1 ∗ . . . ∗ µn−1 = λSn .

The result for Sn motivated us to consider other finite Coxeter groups. In the
case when W is a finite Coxeter group of type An, n  1, Bn, n  2, Dn, n  4,
F4, G2 or I2(m), m = 5 or 7 ¬ m <∞, Theorem 1.1 was proved, in a construc-
tive way, by the author in [15]. Here we consider the remaining types: E6, E7, E8,
H3 and H4. In some steps of the proof a computer algebra system GAP (see [10])
will be used. In particular, we use the functions contained in the CHEVIE share
package of GAP. (See [5] and [2] for more information on CHEVIE.)

The problem of factorization of a given probability measure on a finite or
compact group goes back to Lévy [9]. Recently, this problem and its particular case
– the problem of existence of the “square root” from a given probability measure
– has been studied by Diaconis [3], Diaconis and Shahshahani [4], Turnwald [13],
and Sherstnev [11], [12].

We should also mention that there are, however, groups and symmetric sets T
of generators for which (1.1) does not hold for any finite set of symmetric proba-
bility measures supported on T . Some examples are given in [14].

The paper is organized as follows. In Section 2 we recall some basic facts
about Coxeter groups and state classification of finite Coxeter groups. In Section 3
we prove Theorem 1.1.

Acknowledgments. The author would like to thank Ms. Monika Tomczak for
a discussion on the subject of the paper.

2. COXETER GROUPS

For basic references on the subject of this section see [1] and [7].
A Coxeter graph (Γ,m) is a finite graph Γ with the set of vertices S in

which every two vertices are joined by at most one edge, while m : S × S →
{2, 3, 4, . . .} ∪ {∞} is a function such that m(s, t) = 2 if and only if there are no
edges joining s and t. Therefore m(s, t)  3 if and only if there exists exactly one
edge joining s with t. Such an edge will be written as follows:

•
m(s,t)

•

If m(s, t) = 3, then the edge is not labeled.
With every Coxeter graph (Γ,m) we associate the corresponding Coxeter

group W (Γ,m) (we also use the notation W (Γ), W (S,m) or, simply, W (S) if
there is no reason for confusion) specifying its presentation:

W (Γ,m) = ⟨s ∈ S | s2 = 1, (st)m(s,t) = 1, s ̸= t ∈ S⟩,

i.e., W (S) is generated by the symbols s ∈ S satisfying the following relations:
s2 = 1 for every s ∈ S and (st)m(s,t) = 1 for all pairs s, t ∈ S with m(s, t)  3.
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Let W be a Coxeter group with its distinguished set of generators S. A sub-
group WJ ⊂ W generated by a subset J of S is a Coxeter group and is called a
parabolic subgroup.

The length function ℓ : W → N ∪ {0} is defined as follows. Let w ∈ W =
W (S). If w = 1, then ℓ(w) = 0. Otherwise, there exists a minimal k  1 and
elements s1, . . . , sk ∈ S such that w = s1 . . . sk (i.e., we have a reduced expression
for w) and we set ℓ(w) = k.

We will need the following classification of finite Coxeter groups.

THEOREM 2.1. Let (Γ,m) be a connected Coxeter graph and W (Γ,m) be
the Coxeter group of the Coxeter graph (Γ,m). The group W (Γ,m) is finite if and
only if the graph (Γ,m) is one of the following Coxeter–Dynkin diagrams:

An (n  1) • • • . . . • E6 • • • • •
•

Bn (n  2) • 4 • • . . . • E7 • • • • • •
•

Dn (n  4) • • • . . . •
•

E8 • • • • • • •
•

F4 • • 4 • • G2 • 6 •

H3 • 5 • • H4 • 5 • • •

I2(m), m = 5 or 7 ¬ m <∞ • m •

P r o o f. For the proof see, e.g., [1], [7], [6]. �

3. PROOF OF THEOREM 1.1

It is clear that it is enough to consider only finite Coxeter groups correspond-
ing to connected Dynkin diagrams given in Theorem 2.1 (i.e., irreducible Coxeter
groups). Otherwise, we have the direct product of such irreducible groups and The-
orem 1.1 clearly works for the direct products.

By the result of Urban [15] we are left with the groups E6, E7, E8, H3 and H4.
The idea of proof is the following. We show that for a given group W of the

above types there exists a parabolic subgroup WJ = ⟨s | s ∈ J⟩, J ⊂ S, for which
the factorization (1.1) holds and, moreover, there exists a set X̃J of right coset
representatives of WJ in W consisting of elements of order not greater than 2. Then
Theorem 1.1 will follow from the subgroup algorithm (see [3]). In the simplest case
the subgroup algorithm states the following. Let G be a finite group and let H be a
subgroup of G (not necessarily normal). Let C be a set of coset representatives for
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H in G. Then every element g ∈ G has a unique representation: g = hc with h ∈
H and c ∈ C. If λC is a uniform distribution on C and λH is a uniform distribution
(the Haar measure) on H , then the convolution λH ∗ λC is the factorization of the
Haar measure on G.

3.1. Coset representatives. Let WJ be a parabolic subgroup of W. The Cox-
eter group W is partitioned, with respect to WJ , into right cosets WJw = {vw |
v ∈ WJ}. The set XJ given in the next proposition will be called a set of distin-
guished right coset representatives of WJ in W .

PROPOSITION 3.1. Let J ⊂ S and define

XJ = {w ∈W | ℓ(sw) > ℓ(w) for all s ∈ J}.

Then:
(a) For each w ∈ W there exists a unique v ∈ WJ and x ∈ XJ such that

w = vx. Moreover, ℓ(w) = ℓ(v) + ℓ(x).

(b) For any x ∈W the following are equivalent:
(i) x ∈ XJ ;

(ii) ℓ(vx) = ℓ(v) + ℓ(x) for all v ∈WJ ;

(iii) x is a unique element of minimal length in WJx.
In particular, XJ is a complete set of right coset representatives of WJ in W.

P r o o f. See [6], Proposition 2.1.1. �

There is an algorithm for computing XJ . In the sequel we use the following
convention. The expression X ← Y means that we assign to a variable X the value
of a variable Y.

ALGORITHM 1 ([6], Algorithm B, p. 40). Given W (S) and a subset J of S,
the set XJ is constructed.

(1) Set k ← 0, Y0 ← {1} and X0 ← Y0.

(2) Set k ← k + 1 and

Yk ← {xs | x ∈ Yk−1, s ∈ S, ℓ(xs) > ℓ(x) and ℓ(txs) > ℓ(tx) for all t ∈ J}.

Set X ← X ∪ Yk.

(3) Repeat (2) until Yk = ∅. Then set XJ ← X and stop.

In the proof of Theorem 1.1, for a given J ⊂ S we are going to find, if pos-
sible, the set X̃J of right coset representatives consisting of elements of order not
greater than 2. For this purpose the following proposition will be useful.

PROPOSITION 3.2. Let x ∈ Yk ∩ XJ and let x̃ ∈ X̃J be such that WJx =
WJ x̃. Suppose that w = xs ∈ Yk+1 with s ∈ J. Then the element w̃ = sx̃s satisfies
w̃2 = 1 and WJw = WJ w̃.
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P r o o f. Clearly, w̃2 = 1. Since xx̃ ∈ WJ , we have ww̃ = xx̃s ∈ WJ and
WJw = WJ w̃. �

Proposition 3.2 states that if the representative w ∈ Yk+1 is constructed in
Algorithm 1 from the previous one by appending s ∈ J to its end, then the corre-
sponding representative of order 2 is constructed by appending s to the beginning
and to the end of the previously constructed one.

The situation is more complicated if we append s ̸∈ J to the end of the pre-
vious representative x in Algorithm 1. Then, as will be seen in Section 3.3 and
Section 3.6, it may happen that the coset Wjxs does not contain elements of
order 2. Hence, our strategy in order to construct X̃J is as follows. We choose
a parabolic subgroup WJ on which Theorem 1.1 holds. Next we generate XJ

(in CHEVIE there is a function ReducedRightCosetRepresentatives
which produces XJ using Algorithm 1). By Proposition 3.2, it is enough to con-
sider the following subset Z of XJ :

Z = {x ∈ XJ | order(x) > 2}
∩ {x ∈ XJ | the last letter in the reduced expression of x is in S \ J},

and for every z ∈ Z we check if there is an element w ∈WJ such that order(wz)
¬ 2 (simply by checking all elements in the coset WJz). If this fails, we choose a
different parabolic subgroup and repeat our procedure.

R e m a r k. It would be interesting to find sufficient (and necessary) condi-
tions on J which guarantee that for every z ∈ Z there exists w ∈ WJ such that
order(wz) ¬ 2, i.e., there exists a set X̃J of right coset representatives consisting
of elements of order not greater than 2.

For a finite set A we write |A| to denote the number of its elements.

3.2. Coxeter group H3. We take

H3 : s1
5
s2 s3 , J = {s1, s2}.

Hence WJ is of type I2(5). We have |WJ | = 10, |XJ | = 12. The set Z contains
only one element z = s3s2s1s2s1s3. We check that s1z can be taken as the corre-
sponding representative of order 2. By [15], Proposition 3.2, there is a factorization
of the Haar measure on I2(5), so Theorem 1.1 is proved in this case.

Alternatively, one can also take the subgroup J = {s2, s3}. Then WJ is of
type A2, |WJ | = 6, |XJ | = 20, Z = {z = s1s2s1s2s1s2s3s2s1}. The correspond-
ing representative of order 2 is s3z = s1s2s3s2s1s2s1s3.

3.3. Coxeter group H4. Let us take

H4 : s1
5
s2 s3 s4, J = {s2, s3, s4}.
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Thus WJ is of type A3. We have |WJ | = 24, |XJ | = 600, |Z| = 88. It turns out
that this is a wrong choice for the parabolic subgroup. There are 51 cosets which
do contain only elements of order greater than 2, e.g., the coset

WJs1s2s1s2s3s2s1s2s1s4s3s2s1.

Therefore, we try another subgroup and we take

J = {s1, s2, s3}.

Thus WJ is of type H3. We have |WJ | = |XJ | = 120, |Z| = 22. For example, the
shortest and the longest elements in Z are

z1 =s4s3s2s1s2s1s3s4,

z2 =s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s3s4s3s2s1s2s1s3s2s1s2s4.

The corresponding representatives of order 2 are

s1z1, s2s1s2s1s3s2s1z2.

For all other elements from the set Z we succeeded in finding corresponding rep-
resentatives of order not greater than 2. Since, by the results of Section 3.2, The-
orem 1.1 is valid for groups of type H3, we have proved that it is also valid for
groups of type H4.

3.4. Coxeter group E6. We take

E6 : s1 s3 s4 s5 s6

s2

, J = {s1, s3, s4, s5, s6}.

Hence WJ is of type A5. We have |WJ | = 720, |XJ | = 72, |Z| = 4. The set Z
contains the following elements:

z1 = s2s4s3s1s5s4s2,

z2 = s2s4s3s1s5s4s2s3s6s5s4s2,

z3 = s2s4s3s1s5s4s2s3s4s6s5s4s2,

z4 = s2s4s3s1s5s4s2s3s4s5s6s5s4s2.

The corresponding representatives of order 2 are

s1z1 = s1s2s4s3s1s5s4s2,

s4z2 = s2s4s2s3s1s5s4s2s3s6s5s4s2,

s5s4z3 = s2s4s3s1s5s4s2s3s1s4s3s6s5s4s2,

s6s5s4z4 = s2s4s3s1s5s6s5s4s2s3s1s4s3s5s4s2s6.

Thus we are done in this case. We could also choose J = {s1, s2, s3, s4, s5}. Then
WJ is of type D5 (there is a factorization on WJ by the results of [15]), |WJ | =
1920, |XJ | = 27, |Z| = 4, and so X̃J exists.
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3.5. Coxeter group E7. We take

E7 : s1 s3 s4 s5 s6 s7

s2

, J = {s1, s3, s4, s5, s6, s7}.

Hence WJ is of type A6. We have |WJ | = 5,040, |XJ | = 576, |Z| = 32. Since for
every z ∈ Z there exists w ∈WJ such that order(wz) ¬ 2, Theorem 1.1 is proved
in this case.

We can also take J = {s1, s2, s3, s4, s5, s6}. Then WJ is of type E6. By the
above, there is a factorization on WJ . In this case we have |WJ | = 51,840, |XJ | =
56, |Z| = 9 and for every z we can construct a corresponding representative of
order less than or equal to 2.

3.6. Coxeter group E8. If we take

E8 : s1 s3 s4 s5 s6 s7 s8

s2

, J = {s1, s3, s4, s5, s6, s7, s8}

then WJ is of type A7. We have |WJ | = 40,320, |XJ | = 17,280. Unfortunately,
this is not a right choice since there are cosets which contain only elements of order
greater than 2, as, e.g., the following one:

WJs2s4s3s1s5s4s3s6s5s4s2s7s6s5s4s3s8s7s6s5s4s2.

However, we take J = {s1, s2, s3, s4, s5, s6, s7}. That is, WJ is of type E7. We
have |WJ | = 2,903,040, |XJ | = 240, |Z| = 26. In this case our procedure works.
From Section 3.5 we know that there is a factorization on WJ , so the last case of
Theorem 1.1 has been proved.
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