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Abstract. A Gilbert tessellation arises by letting linear segments
(cracks) in R2 unfold in time with constant speed, starting from a homo-
geneous Poisson point process of germs in randomly chosen directions.
Whenever a growing edge hits an already existing one, it stops growing in
this direction. The resulting process tessellates the plane. The purpose of the
present paper is to establish a law of large numbers, variance asymptotics
and a central limit theorem for geometric functionals of such tessellations.
The main tool applied is the stabilization theory for geometric functionals.
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1. INTRODUCTION AND MAIN RESULTS

Let X ⊆ R2 be a finite point set and let µ denote a non-degenerate probability
measure on [0, π). Each x ∈ X is independently marked with a unit length ran-
dom vector α̂x making an angle αx ∈ [0, π) distributed according to µ with the
x-axis. In the case when X is a realization of a point process we additionally as-
sume that the marks are independent of the ground process. In the sequel we will
refer to the marking described above as to the usual marking and to µ as to the
marking measure. The collection X̄ = {(x, αx)}x∈X determines a crack growth
process (tessellation) according to the following rules. Initially, at the time t = 0,
the growth process consists of the points (seeds) in X . Subsequently, each point
x ∈ X gives rise to two segments growing linearly at constant unit rate in the di-
rections of α̂x and−α̂x from x. Thus, prior to any collisions, by the time t > 0 the
seed has developed into the edge with endpoints x− tα̂x and x+ tα̂x, consisting
of two segments, say the upper one [x, x + tα̂x] and the lower one [x, x − tα̂x].
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Whenever a growing segment is blocked by an existing edge, it stops growing in
that direction, without affecting the behaviour of the second constituent segment
though. Since the possible number of collisions is bounded, eventually we obtain
a tessellation of the plane. The resulting random tessellation process is variously
called: the Gilbert model/tessellation, the crack growth process, the crack tessella-
tion, and the random crack network; see, for example, [8], [12] and the references
therein.

Let G(X̄ ) denote the tessellation determined by X̄ . We shall write ξ+(x̄, X̄ ),
x ∈ X , for the total length covered by the upper segment emanating from x in
G(X̄ ), and likewise we let ξ−(x̄, X̄ ) stand for the total length of the lower seg-
ment from x. Note that we use x̄ for a marked version of x, according to our
general convention of putting bars over marked objects. For future use we adopt
the convention that if x̄ does not belong to X̄ , we extend the definition of ξ±(x̄, X̄ )
by adding x̄ to X̄ and endowing it with a mark drawn according to the usual rules.
Observe that for some x the values of ξ± may be infinite. However, in most cases
in the sequel X will be a realization of the homogeneous Poisson point process
P = Pτ of intensity τ > 0 in growing windows of the plane. We shall use the so-
called stabilization property of the functionals ξ+ and ξ−, as discussed in detail
below, to show that the construction of G(X̄ ) above can be extended to the whole
plane yielding a well-defined process G(P̄), where, as usual, P̄ stands for a ver-
sion of P marked according to the usual rules. This yields well-defined and a.s.
finite whole-plane functionals ξ+(·, P̄) and ξ−(·, P̄).

Conceptually somewhat similar growth processes whereby seeds are the re-
alization of a time marked Poisson point process in an expanding window of R2

and which subsequently grow radially in all directions until meeting another such
growing seed have received considerable attention in [1]–[5], [11], [17], where it
has been shown that the number of seeds satisfies a law of large numbers and cen-
tral limit theorem as the window size increases. In this paper we wish to prove
analogous limit results for natural functionals (total edge length, sum of power-
weighted edge lengths, number of cracks with lengths exceeding a given threshold,
etc.) of the crack tessellation process defined by Poisson points in expanding win-
dows of R2. We will formulate this theory in terms of random measures keeping
track not only of the cumulative values of the afore-mentioned functionals but also
of their spatial profiles.

One interesting subclass of the birth-and-growth processes described above is
the class of Voronoi tessellations [13], [21] where all seeds are born at time 0. In
this model as well as in the Gilbert model, growth starts at time 0 and is stopped at a
contact point when two growing objects touch, but is continued in other directions.
In a sense, we may treat the Gilbert model as a lower-dimensional analogue of the
Voronoi tessellation. In opposition to Voronoi and Gilbert tessellations we find the
so-called lilypond models which have recently attracted considerable attention [6],
[7], [9], [10] and where the entire (rather than just directional) growth is blocked
upon a collision of a growing object (a ball, a segment etc.) with another one.
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To proceed, consider a function ϕ : [R+ ∪ {+∞}]2 → R with at most poly-
nomial growth, i.e. for some 0 < q < +∞

(1.1) ϕ(r1, r2) = O
(
(r1 + r2)

q
)
.

With Qλ := [0,
√
λ]2 standing for the square of area λ in R2, we consider the

empirical measure

(1.2) µϕ
λ :=

∑
x∈P∩Qλ

ϕ
(
ξ+(x̄, P̄), ξ−(x̄, P̄)

)
δx/
√
λ.

Thus, µϕ
λ is a random (signed) measure on [0, 1]2 for all λ > 0. The large λ asymp-

totics of these measures is the principal object of study in this paper. Recalling that
τ stands for the intensity of P = Pτ , we define

(1.3) e(τ) := Eϕ
(
ξ+(0̄, P̄), ξ−(0̄, P̄)

)
,

where 0 is marked independently of P̄ and according to µ.
Notice that because of translation invariance of the functionals ξ+ and ξ− the

random variables ξ+(0̄, P̄) and ξ−(0̄, P̄) may be interpreted as lengths of typical
upper and lower segments.

The first main result of this paper is the following law of large numbers:

THEOREM 1.1. For any continuous function f : [0, 1]2 → R we have

lim
λ→∞

1

λ

∫
[0,1]2

fdµϕ
λ = τe(τ)

∫
[0,1]2

f(x)dx

in Lp, p > 1.

Note that for f(x) = 1 the above theorem implies that

lim
λ→∞

1

λ

∑
x∈P∩Qλ

ϕ
(
ξ+(x̄, P̄), ξ−(x̄, P̄)

)
= τe(τ).

Since the expected cardinality of P ∩ Qλ is τλ, we may interpret e(τ) as the
asymptotic mass per point in µϕ

λ. To characterize the second order asymptotics
of random measures µϕ

λ we consider the pair-correlation functions

(1.4) cϕ[x] := Eϕ2
(
ξ+(x̄, P̄), ξ−(x̄, P̄)

)
, x ∈ R2,

and

cϕ[x, y] := Eϕ
(
ξ+(x̄, P̄ ∪ {ȳ}), ξ−(x̄, P̄ ∪ {ȳ})

)
(1.5)

× ϕ
(
ξ+(ȳ, P̄ ∪ {x̄}), ξ−(ȳ, P̄ ∪ {x̄})

)
− [e(τ)]2,
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where x and y are marked independently of each other and of P̄ . In fact, it easily
follows by translation invariance that cϕ[x] above does not depend on x whereas
cϕ[x, y] only depends on y − x. In terms of these functions we define the asymp-
totic variance per point:

(1.6) V (τ) = cϕ[0] + τ
∫
R2

cϕ[0, x]dx.

Notice that in a special case when function ϕ(·, ·) is homogeneous of degree k (i.e.
for c ∈ R we have ϕ(cr1, cr2) = ckϕ(r1, r2)) one can simplify (1.3) and (1.6).
Then the following remark is a direct consequence of standard scaling properties
of Gilbert’s tessellation construction and those of homogeneous Poisson point pro-
cesses, whereby upon multiplying the intensity parameter τ by some factor ρ we
get all lengths in G(P̄) re-scaled by factor ρ−1/2.

REMARK 1.1. For ϕ : [R+ ∪ {+∞}]2 → R with at most polynomial growth
and homogeneous of degree k we have

(1.7)
e(τ) = τ−k/2e(1),

V (τ) = τ−kV (1).

In other words, e(·) and V (·) are homogeneous of degree −k/2 and −k, respec-
tively.

Our second theorem gives the variance asymptotics for µϕ
λ.

THEOREM 1.2. The integral in (1.6) converges and V (τ) > 0 for all τ > 0.
Moreover, for each continuous f : [0, 1]2 → R

lim
λ→∞

1

λ
Var

[ ∫
[0,1]2

fdµϕ
λ

]
= τV (τ)

∫
[0,1]2

f2(x)dx.

Our final result is the central limit theorem:

THEOREM 1.3. For each continuous f : [0, 1]2 → R the family of random
variables {

1√
λ

∫
[0,1]2

fdµϕ
λ

}
λ>0

converges in law to N
(
0, τV (τ)

∫
[0,1]2

f2(x)dx
)

as λ→∞. Even more, we have

(1.8) sup
t∈R

∣∣∣∣P{ ∫
[0,1]2

fdµϕ
λ√

Var
[ ∫

[0,1]2
fdµϕ

λ

] 6 t

}
− Φ(t)

∣∣∣∣ 6 C(log λ)6√
λ

for all λ > 1, where C is a finite constant.
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Principal examples of functional ϕ where the above theory applies are:
1. ϕ(l1, l2) = l1 + l2. Then the total mass of µϕ

λ coincides with the total length
of edges emitted in G(P̄) by points in P ∩Qλ. Clearly, the so-defined ϕ is homo-
geneous of order one, and thus Remark 1.1 applies.

2. More generally, ϕ(l1, l2) = (l1 + l2)
α, α > 0. Again, the total mass of µϕ

λ
is seen here to be the sum of power-weighted lengths of edges emitted in G(P̄) by
points in P ∩Qλ. The so-defined ϕ is homogeneous of order α.

3. ϕ(l1, l2) = 1{l1+l2>θ}, where θ is some fixed threshold parameter. In this
set-up, the total mass of µϕ

λ is the number of edges in G(P̄) emitted by points in
P ∩ Qλ and of lengths exceeding threshold θ. This is not a homogeneous func-
tional.

The main tool used in our argument below is the concept of stabilization ex-
pressing in geometric terms the property of rapid decay of dependencies enjoyed
by the functionals considered. The formal definition of this notion and the proof
that it holds for Gilbert tessellations are given in Section 2. Next, in Section 3 the
proofs of our Theorems 1.1, 1.2 and 1.3 are given.

2. STABILIZATION PROPERTY FOR GILBERT TESSELLATIONS

2.1. Concept of stabilization. Consider a generic real-valued translation-in-
variant geometric functional ξ defined on pairs (x,X ) for finite point configura-
tions X ⊂ R2 and with x ∈ X . For notational convenience we extend this defini-
tion for x ̸∈ X as well, by putting ξ(x,X ) := ξ(x,X ∪ {x}) then. More generally,
ξ can also depend on i.i.d. marks attached to points of X , in which case the marked
version of X is denoted by X̄ .

For an input i.i.d. marked point process P̄ on R2, where P in this paper is
always taken to be homogeneous Poisson of intensity τ, we say that the functional
ξ stabilizes at x ∈ R2 on input P̄ iff there exists an a.s. finite random variable
R[x, P̄] with the property that

(2.1) ξ
(
x̄, P̄ ∩B(x,R[x, P̄])

)
= ξ

(
x̄,

(
P̄ ∩B(x,R[x, P̄])

)
∪ Ā

)
for each finite A ⊂ B(x,R[x, P̄])c, with Ā standing for its marked version and
with B(x,R) denoting ball of radius R centered at x. Note that here and henceforth
we abuse the notation and refer to intersections of marked point sets with domains
in the plane – these are to be understood as consisting of those marked points whose
spatial locations fall into the domain considered. When (2.1) holds, we say that
R[x, P̄] is a stabilization radius for P̄ at x. By translation invariance we see that if
ξ stabilizes at one point, it stabilizes at all points of R2, and we say that ξ stabilizes
on (marked) point process P̄. In addition, we say that ξ stabilizes exponentially on
input P̄ with rate C > 0 iff there exists a constant M > 0 such that

(2.2) P{R[x, P̄] > r} 6 Me−Cr
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for all x ∈ R2 and r > 0. Stabilizing functionals are ubiquitous in stochastic ge-
ometry; we refer the reader to [1] and [14]–[20] for further details, where promi-
nent examples are discussed including random geometric graphs (nearest neighbor
graphs, sphere of influence graphs, Delaunay graphs), random sequential pack-
ing and variants thereof, Boolean models and functionals thereof, as well as many
others.

2.2. Finite input Gilbert tessellations. Let X ⊂ R2 be a finite point set in
the plane and let µ be a non-degenerate probability measure on [0, π). As already
mentioned in the Introduction, each x ∈ X is independently marked with a unit
length random vector α̂x = [cos(αx), sin(αx)] making an angle αx ∈ [0, π) dis-
tributed according to µ with the x-axis, and the so-marked configuration is de-
noted by X̄ . In order to formally define the Gilbert tessellation G(X̄ ) as already
informally presented above, we consider an auxiliary partial tessellation mapping
G(X̄ ) : R+ → F(R2), where F(R2) is the space of closed sets in R2 and where,
roughly speaking, G(X̄ )(t) is to be interpreted as the portion of tessellation G(X̄ ),
identified with the set of its edges, constructed by the time t in the course of the
construction sketched above.

Figure 1. Finite input Gilbert tessellation

We proceed as follows. For each x̄ = (x, αx) ∈ X̄ at the time moment 0 the
point x emits in directions α̂x and −α̂x two segments, referred to as the x̄+- and
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x̄−-branches, respectively. Each branch keeps growing with constant rate 1 in its
fixed direction until it meets on its way another branch already present, in which
case we say it gets blocked, and it stops growing thereupon. The moment when this
happens is called the collision time. For t > 0 we denote by G(X̄ )(t) the union of
all branches as grown by the time t. Note that, with X = {x1, . . . , xm}, the overall
number of collisions admits a trivial bound given by the number of all intersection
points of the family of straight lines

{
{xj + sα̂j , s ∈ R}; j=1, 2, . . . ,m

}
which

is m(m − 1)/2. Thus, eventually there are no more collisions and all growth un-
folds linearly. It is clear from the definition that G(X̄ )(s) ⊂ G(X̄ )(t) for s < t.
The limit set G(X̄ )(+∞) =

∪
t∈R+

G(X̄ )(t) is denoted by G(X̄ ) and referred to
as the Gilbert tessellation. Obviously, since the number of collisions is finite, the
so-defined G(X̄ ) is a closed set arising as a finite union of (possibly infinite) linear
segments. For x̄ ∈ X̄ we denote by ξ+(x̄, X̄ ) the length of the upper branch x̄+

emanating from x and, likewise, we write ξ−(x̄, X̄ ) for the length of the corre-
sponding lower branch.

For future reference it is convenient to consider for each x ∈ X the branch
history functions x̄+(·), x̄−(·) defined by requiring that x̄±(t) be the growth tip
of the respective branch x̄± at the time t ∈ R+. Thus, prior to any collision in the
system, we have just x̄±(t) = x ± α̂xt, that is to say, all branches grow linearly
with their respective speeds ±α̂x. Next, when some ȳ±, y ∈ X , gets blocked by
some other x̄±, x ∈ X , at time t, i.e. ȳ±(t) = x̄±(s) for some s 6 t, the blocked
branch stops growing and its growth tip remains immobile ever since. Eventually,
after all collisions have occurred, the branches not yet blocked continue growing
linearly to∞.

2.3. Stabilization for Gilbert tessellations. We are now in a position to ar-
gue that the functionals ξ+ and ξ− arising in Gilbert tessellation are exponen-
tially stabilizing on Poisson input P = Pτ with usual marking according to a non-
degenerate probability measure µ on [0, π). The following is the main theorem of
this subsection.

THEOREM 2.1. The functionals ξ+ and ξ− stabilize exponentially on input P̄.
Before proceeding to the proof of Theorem 2.1 we formulate some auxiliary

lemmas.

LEMMA 2.1. Let X be a finite point set in R2 and X̄ the marked version
thereof, according to the usual rules. Further, let y ̸∈ X . Then for any t > 0 we
have

G(X̄ )(t)△G(X̄ ∪ {ȳ})(t) ⊂ B(y, t)

with△ standing for the symmetric difference.

P r o o f. For a point set Y ⊂ R2 and x ∈ Y we will use the notation (x̄, Ȳ)+
and (x̄, Ȳ)− to denote, respectively, the upper and lower branch outgrowing from
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x̄ in G(Ȳ). Also, we use the standard extension of this notation for branch-history
functions. Note first that, by the construction of G(Ȳ) and by the triangle inequal-
ity, we have
(2.3)

(x̄, Ȳ)ε(s′) ∈ B(y, s′)⇒ ∀s>s′(x̄, Ȳ)ε(s) ∈ B(y, s), s′ > 0, ε ∈ {−1,+1}.

This is a formal version of the obvious statement that, regardless of the collisions,
each branch grows with speed at most one throughout its entire history.

Next, write X ′ = X ∪ {y} and ∆(t) = G(X̄ )(t)△G(X̄ ′)(t) for t > 0. Fur-
ther, let t1 < t2 < t3 < . . . < tn be the joint collection of collision times for con-
figurations X̄ and X̄ ′.

Choose arbitrary p ∈ ∆(t). Then there exist unique Y = Y(p) ∈ {X ,X ′} and
x ∈ Y as well as ε ∈ {+,−}with the property that p = (x̄, Ȳ)ε(u) for some u 6 t.
We also write Y ′ for the second element of {X ,X ′}, i.e. {Y,Y ′} = {X ,X ′}. With
this notation, there is a unique i = i(p) with ti marking the collision time in Y ′
where the branch (x̄,Y ′)ε gets blocked in G(Ȳ ′); clearly, u > ti then and for s < ti
we have (x̄, Ȳ)ε(s) /∈ ∆(t).

We should show that p ∈ B(y, t). We proceed inductively with respect to i.
For i = 0 we have x = y and Y = X ′. Since (ȳ, X̄ ′)ε(0) = y ∈ B(y, 0), the ob-
servation (2.3) implies that p = (ȳ, X̄ )ε(u) ∈ B(y, u) ⊂ B(y, t). Further, consider
the case i > 0 and assume with no loss of generality that Y(p) = X , the argument
in the converse case being fully symmetric. The fact that p ∈ G(X̄ )(t)△G(X̄ ′)(t)
and that p = (x̄, X̄ )ε(u) implies the existence of a point z ∈ X ′ such that a branch
emitted from z does block x̄ε in G(X̄ ′) (by definition, necessarily at the time ti)
but does not block it in G(X̄ ). In particular, we see that (z̄, X̄ ′)δ(s) = (x̄, X̄ )ε(ti)
and (z̄, X̄ ′)δ(s′) ∈ ∆(s′) for some δ, s, s′ such that δ ∈ {+,−} and s′ < s 6 ti.
By the inductive hypothesis we get (z̄, X̄ ′)δ(s′) ∈ B(y, s′). Using again the obser-
vation (2.3) we conclude thus that (x̄, X̄ )ε(ti) = (z̄, X̄ ′)δ(s) ∈ B(y, s), and hence
p = (x̄, X̄ )ε(u) ∈ B(y, u) ⊂ B(y, t). This shows that p ∈ B(y, t), as required.
Since p was chosen arbitrary, this completes the proof of the lemma. �

Our second auxiliary lemma is

LEMMA 2.2. For an arbitrary finite point configuration X ⊂ R2 and x̄ ∈ X̄
we have

(2.4)
ξ+(x̄, X̄ ) = ξ+

(
x̄, X̄ ∩B

(
x, 2ξ+(x̄, X̄ )

))
,

ξ−(x̄, X̄ ) = ξ−
(
x̄, X̄ ∩B

(
x, 2ξ−(x̄, X̄ )

))
.

P r o o f. We only show the first equality in (2.4), the proof of the second one
being fully analogous. Define A(X̄ , x̄) = X̄ \B

(
x, 2ξ+(x̄, X̄ )

)
. Clearly, A(X̄ , x̄)

is finite and we will proceed by induction on its cardinality.
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If |A(X̄ , x̄)| = 0, our claim is trivial. Assume now that |A(X̄ , x̄)| = n for
some n > 1 and let ȳ = (y, αy) ∈ A(X̄ , x̄). Put t = ξ+(x̄, X̄ ) and X̄ ′ = X̄ \{ȳ}.
Applying Lemma 2.1 we see that G(X̄ )(t)△G(X̄ ′)(t) ⊂ B(y, t). We claim that
ξ+(x̄, X̄ ) = ξ+(x̄, X̄ ′). Assume by contradiction that ξ+(x̄, X̄ ) ̸= ξ+(x̄, X̄ ′). Then
for arbitrarily small ϵ > 0 we have

(
G(X̄ )(t)△G(X̄ ′)(t)

)
∩ B(x, t + ϵ) ̸= ∅. On

the other hand, since ∥x − y∥ > 2t as y /∈ B(x, 2t), for ε0 > 0 small enough we
get B(x, t+ ϵ0) ∩B(y, t) = ∅. Thus, we are led to

∅ ̸=
(
G(X̄ )(t)△G(X̄ ′)(t)

)
∩B(x, t+ ε0) ⊂ B(y, t) ∩B(x, t+ ε0) = ∅,

which is a contradiction. Consequently, we conclude that ξ+(x̄, X̄ ) = ξ+(x̄, X̄ ′),
as required. Since |A(X̄ ′, x̄)| = n− 1, the inductive hypothesis yields ξ+(x̄, X̄ ′) =
ξ+

(
x̄, X̄ ′ ∩B(x, 2ξ+(x̄, X̄ ′))

)
= ξ+

(
x̄, X̄ ′ ∩B(x̄, 2t)

)
. Moreover, X̄ ′ ∩B(x, 2t)

= X̄ ∩B(x, 2t). Putting these together we obtain

ξ+(x̄, X̄ ) = ξ+(x̄, X̄ ′) = ξ+
(
x̄, X̄ ′ ∩B(x, 2t)

)
= ξ+

(
x̄, X̄ ∩B(x, 2t)

)
,

which completes the proof. �

In full analogy to Lemma 2.2 we obtain

LEMMA 2.3. For a finite point configuration X ⊂ R2 and x ∈ X we have

ξ+(x̄, X̄ ) = ξ+(x̄, X̄ ∪ Ā1) and ξ−(x̄, X̄ ) = ξ−(x̄, X̄ ∪ Ā2)

for arbitrary A1 ⊂ B
(
x, 2ξ+(x̄, X̄ )

)c, A2 ⊂ B
(
x, 2ξ−(x̄, X̄ )

)c.
Combining Lemmas 2.2 and 2.3 we conclude

COROLLARY 2.1. Assume that finite marked configurations X̄ and Ȳ coin-
cide on B

(
x, 2ξ+(x̄, X̄ )

)
. Then

ξ+
(
x̄, X̄ ∩B

(
x, 2ξ+(x̄, X̄ )

))
= ξ+(x̄, X̄ ) = ξ+(x̄, Ȳ).

Analogous relations hold for ξ−.

In the sequel we will also need the following remark:

REMARK 2.1. For a non-degenerate measure µ on [0, π) there exist constants
δ > 0 and ϵ ∈ (0, π/2) such that for all x ∈ [0, π)

µ(x+ π/2− ϵ, x+ π/2 + ϵ) > δ,

where µ is treated as a measure on the circle and points x and x+ π are identified.

We are now ready to proceed with the proof of Theorem 2.1.
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P r o o f o f T h e o r e m 2.1. We are going to show that the functional ξ+

stabilizes exponentially on input process P̄. The corresponding statement for ξ−

follows in full analogy. Consider auxiliary random variables ξ+ϱ , ϱ  0, given by

ξ+ϱ = ξ+
(
x̄, P̄ ∩B(x, ϱ)

)
,

which is clearly well defined in view of the a.s. finiteness of P̄ ∩B(x, ϱ). We claim
that there exist constants M,C > 0 such that for ϱ > t > 0

(2.5) P(ξ+ϱ > t) 6 Me−Ct.

Figure 2

Indeed, let ϱ > 0. For the marking measure µ choose ϵ as in Remark 2.1 and
take r = 1

2(1 + tgϵ+ 1/cos ϵ). Consider the branch x̄+ :=
(
x̄, P̄ ∩B(x, ϱ)

)+ and
planar regions Bi and Di, i > 1, along the branch as represented in Figure 2. Say
that the event Ei occurs iff

• the region Bi contains exactly one point y of P and the angular mark αy

lies within (αx + π/2− ϵ, αx + π/2 + ϵ), and
• there are no further points of P falling into Di.

Notice that the choice of r ensures that with probability one on Ei the branch x̄+

does not extend past Bi, either getting blocked in Bi or in an earlier stage of its
growth. Let p stand for the common positive value of P(Ei), i > 0. By standard
properties of Poisson point process the events Ei are stochastically independent.
We conclude that, for N ∋ n 6 ϱ/(2r),

P(ξ+ϱ > 2rn) 6 P
( n∩
i=1

Eci
)
= (1− p)n,

which decays exponentially, whence the desired relation (2.5) follows.
Our next step is to define a random variable R+ = R+[x, P̄] and to show it

is a stabilization radius for ξ+ at x for input process P̄. We shall also establish
exponential decay of tails of R+. For ϱ > 0 we put R+

ϱ = 2ξ+ϱ . Further, we set
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ϱ̂ = inf{m ∈ N | R+
m 6 m}. As P

(∩
m∈N{R

+
m > m}

)
6 infm∈NP(R+

m > m),
which is 0 by (2.5), we readily conclude that so defined ϱ̂ is a.s. finite. Take

(2.6) R+ := R+
ϱ̂ .

Consequently, since R+ 6 ϱ̂ by definition, for any finite A ⊂ B(x,R+)c we get
a.s. by Lemma 2.3 and Corollary 2.1

ξ+
(
x̄,

(
P̄ ∩B(x,R+)

)
∪A

)
= ξ+

(
x̄, P̄ ∩B(x, ϱ̂) ∩B

(
x, 2ξ+

(
x̄, P̄ ∩B(x, ϱ̂)

))
∪A

)
= ξ+

(
x̄, P̄ ∩B(x, ϱ̂) ∩B

(
x, 2ξ+

(
x̄, P̄ ∩B(x, ϱ̂)

)))
= ξ+

(
x̄, P̄ ∩B(x,R+)

)
.

Thus, R+ is a stabilization radius for ξ+ on P̄ , as required. Further, taking into
account that R+

k = R+ for all k > ϱ̂ by Corollary 2.1, we have for m ∈ N

P(R+ > m) = P( lim
k→∞

R+
k > m) = lim

k→∞
P(R+

k > m)(2.7)

= lim
k→∞

P(ξ+k > m/2) 6 Me−Cm/2,

whence the desired exponential stabilization follows. �

Using the just proved stabilization property of ξ+ and ξ− we can now define

(2.8) ξ+(x̄, P̄) := ξ+
(
x̄, P̄ ∩B(x,R+)

)
= lim

ϱ→∞
ξ+

(
x̄, P̄ ∩B(x, ϱ)

)
= R+/2

and likewise for ξ−. Clearly, the knowledge of these infinite volume functionals
allows us to define the whole-plane Gilbert tessellation G(P̄).

3. PROOFS OF THE MAIN RESULTS

Theorems 1.1, 1.2 and 1.3 are now an easy consequence of the exponential
stabilization Theorem 2.1. Indeed, observe first that, by (1.1), (2.8) and (2.7), the
geometric functional

ξ(x̄, X̄ ) := ϕ
(
ξ+(x̄, X̄ ), ξ−(x̄, X̄ )

)
satisfies the p-th bounded moment condition ([20], (4.6)) for all p > 0. Hence,
Theorem 1.1 follows by Theorem 4.1 in [20]. Further, Theorem 1.2 holds true
by Theorem 4.2 in [20]. Finally, Theorem 1.3 follows by Theorem 4.3 in [20] and
Theorem 2.2 and Lemma 4.4 in [14].
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