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Abstract. The notion of conformal measures or densities goes back to
Patterson’s work [8]. By a theorem of Milnor and Thurston [7] a piecewise
monotone and continuous map of the interval is semiconjugate to one with
constant slopes. The semiconjugacies can be defined by distribution func-
tions of conformal measures as shown in [2]. In this note we show that for
some transformations the conjugacies are estimable functions and can be
used to improve estimation procedures, in particular density estimations.
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1. CONFORMAL MEASURES

Rokhlin’s theory of measurable partitions (see [9]) in ergodic theory treats,
among other topics, non-invertible measure-preserving transformations and their
Jacobian J . If R : Ω1 → Ω2 is a Borel map which is nonsingular with respect to
two measures mi on the Borel fields Σi (i = 1, 2), and if R is at most countable to
one on the support of m1, then the Jacobian J exists, i.e. it follows that

m2

(
R(A)

)
=
∫
A

Jdm1,

whenever A ∈ Σ1 and R is invertible on A. The Jacobian J is m1 a.e. uniquely
defined. In particular, this applies to nonsingular self-mappings R : Ω1 → Ω1.

The converse problem, when a nonsingular measure exists given a nonnegative
measurable function J , has a less general answer. Of course, if R is a differentiable
map on the unit interval, Lebesgue measure satisfies the above equality for J being
the modulus of the derivative. Also, it follows from Ruelle’s Perron–Frobenius
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theorem (see [1]) that for an expanding and open map R of a compact metric space
and a nonnegative continuous function J there is a measure µ satisfying

(1.1) m
(
R(A)

)
=
∫
A

Jdm

whenever A ∈ Σ and R is invertible on A. Such measures are called the Gibbs
ones. As the name suggests, the existence of such measures is closely connected to
thermodynamic formalism for discrete time dynamical systems. Gibbs measures
are special cases of conformal measures defined by equation (1.1) without any
restriction, and log J is called its potential.

In a certain sense, the work of Patterson on limit sets of Fuchsian groups con-
stitutes a breakthrough. Patterson’s main result in [8] states that the limit set of a
Fuchsian group of the second kind has Hausdorff dimension equal to the exponent
of convergence of the Poincaré series. It connects notions from algebraic number
theory with those from fractal geometry. The essential tool here is as well to con-
struct conformal measures (this time for each conformal map given by the Fuchsian
group).

As noted by Sullivan, Patterson’s construction of a conformal measure is also
valid for hyperbolic rational functions (see [11]). In fact, this follows as well from
Ruelle’s Perron–Frobenius theorem. In full generality the concept of conformal
measures was investigated in [3]. It leads to the construction of conformal measures
for (almost) any rational map, for maps on the unit interval, for circle maps and for
non-compact spaces [10], to name a few. In particular, we have

THEOREM 1.1 (Denker and Stadlbauer [2]). Let R be a continuous and piece-
wise monotone map with positive topological entropy 0 < h(R) <∞. Then there
exists a non-atomic conformal measure for the constant function exp[h(R)].

This theorem is used to give an explicit formula for estimating a conjugacy
in Section 3. In the following Section 2 we review basic notions and theorems of
conjugation between dynamical systems as needed in the sequel.

2. CONJUGACIES OF MAPS OF THE INTERVAL

In this note, a dynamical system consists of a topological space Ω and a con-
tinuous map T : Ω→ Ω. Two dynamical systems Ti : Ωi → Ωi (i = 1, 2) are said
to be conjugate if there exists a homeomorphism h : Ω1 → Ω2 such that

T2 ◦ h = h ◦ T1,

and semiconjugate if h is merely continuous and onto. In particular, if each Ωi is
the unit interval [0, 1], any semiconjugacy is a continuous monotone map of the
unit interval leaving the two endpoints invariant, hence is the distribution function
F (or 1− F ) of a measure with no atoms. In particular, the semiconjugacy can be
estimated if there are observables with distribution F .
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A map of the unit interval is called S-unimodal if it is continuous and there is
a partition of [0, 1] into S (maximal) subintervals, on which the map is monotone.
A theorem of Milnor and Thurston [7] states that every unimodal map is semiconju-
gate to a tent map (a piecewise linear map with two monotonicity intervals). More
generally, it is known that this result holds for S-unimodal maps and piecewise
linear transformations. In fact, the semiconjugacy is a conjugacy if the distribution
function of the associated conformal measure with respect to topological entropy is
strictly monotone. As a consequence, every such S-unimodal map of the unit inter-
val is conjugate to a piecewise monotone and continuous map of the interval with
constant slopes. Hence one can produce transformations conjugate to a piecewise
monotone map with constant slopes which have a given density f as its invariant
density.

A different proof of the theorem of Milnor and Thurston has been given in [2]
using a measure theoretic argument.

THEOREM 2.1 (Denker and Stadlbauer [2]). Let R : [0, 1]→ [0, 1] be a piece-
wise monotone and continuous transformation on the unit interval. Assume that

lim sup
n→∞

1

n
log cn = logM > 0,

where cn denotes the number of monotonicity intervals of Rn. Then there exists a
conformal measure m for the potential logM and

h(x) = m([0, x])

defines a semiconjugacy between R and a piecewise linear and continuous map T
of the unit interval with slope M . The semiconjugacy h defines a conjugacy if and
only if m is positive on nonempty open sets.

There has been a recent approach to formulate estimation problems for dy-
namical systems using the concept of computability of dynamical objects. This is
understood in the present context as computable transformations on computable
subsets of the real line in the sense of Turing machines. We refer to [6] for details.
We also adopt the notion of an estimable parameter or function. By this we mean
a sequence of statistics Wn (which is based on an i.i.d. sample of size n) which,
when the sample size tends to infinity, is a consistent estimator of the parameter or
the function.

An S-unimodal transformation R : [0, 1]→ [0, 1] is called a Bernoulli map if
each monotonicity interval is mapped onto the full unit interval. As an immediate
consequence of Theorem 2.1 we obtain

COROLLARY 2.1. Let R : [0, 1] → [0, 1] be a piecewise strictly monotone
Bernoulli transformation with M monotonicity intervals. Then R is conjugate to
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the map T : [0, 1]→ [0, 1] with

T (x) =

{
Mx− r + 1 if (r − 1)/M ¬ x < r/M, 1 ¬ r ¬M odd,
r −Mx if (r − 1)/M ¬ x < r/M, 1 ¬ r ¬M even.

If the inverse branches of R and the endpoints of the monotonicity intervals of R
are computable, so is the conjugacy. Moreover, if R is unknown and the inverse
branches of R are estimable, so is the conjugacy h.

P r o o f. The first assertion follows from the theorem above. Note that R is a
Bernoulli map, so that the number of monotonicity intervals of Rn is cn = Mn.
Hence R is semiconjugate to the map T as defined above. The conjugacy is given
by the conformal measure m for the map R and the potential x 7→ logM . It is easy
to see that m([a, b]) > 0 for all a < b, so that, by the above theorem, h defines a
conjugacy.

Let p0 = 0 < p1 < . . . < pM = 1 denote the endpoints of the monotonicity
intervals of R. Since R is a Bernoulli map and the potential is constant, each inter-
val [pi, pi+1] maps onto [0, 1] and is scaled by the factor M ; hence

h(pi) = i/M, i = 0, . . . ,M.

If pi,n denote the n-th preimages of Rn in increasing order (i = 0, . . . ,Mn), then
the interval [pi,n, pi+1,n] is mapped onto an interval of the form [pj,n−1, pj+1,n−1]
and scaled by the factor M . Since, by induction, m([pj,n−1, pj+1,n−1]) = M−n+1,
it follows that m([pi,n, pi+1,n]) = M−n. Thus the preimages and their h-function
values are computable. Since h is continuous, h is computable with arbitrary pre-
cision.

Finally, let µ be an R-invariant absolutely continuous measure with density f .
Then its inverse branches are estimable, and so is h as shown above. �

PROPOSITION 2.1. Let R0 : [0, 1]→ [0, 1] be a piecewise strictly monotone
and differentiable, continuous Bernoulli map such that the inverse branches are
computable. Let X be a random variable with values in [0, 1] and density f > 0.
Let Y = R0(X) and G(x) = P (Y ¬ x). Then R = F−1 ◦G ◦R0 is an invariant
transformation for the absolutely continuous measure with density f and its inverse
branches are estimable functions.

P r o o f. Let F denote the distribution function of X . Then F is strictly in-
creasing by assumption, whence

P
(
R(X) ¬ x

)
= P

(
R0(X) ¬ G−1

(
F (x)

))
= F (x).

Since the inverse branches of R0 are computable and since F and G and their
inverses are estimable, the inverse branches of R are estimable. �
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3. ESTIMATION OF CONJUGACIES

Let µ be an invariant probability measure for an S-unimodal transformation R
on the unit interval. Denote by F the distribution function of µ. We assume that µ
has no atoms and that F is strictly increasing on [0, 1]. We are interested in estimat-
ing the conjugacy from Theorem 2.1 using a sample X1, . . . , Xn of independent
F -distributed random variables, when R is unknown.

In general, this problem cannot be solved. However, if R is of a specific form,
we are able to find an estimator for the conjugacy. Assume R = F−1 ◦ G ◦ R0,
where G(t) = µ

(
{x : R0(x) ¬ t}

)
, and where R0 is a known S-unimodal trans-

formation. Of course, R can be estimated by estimation of F−1 from the sample
X1, . . . , Xn, and G can be estimated from the sample Y1 = R0(X1), . . . , Yn =
R0(Xn). The estimated transformation R will permit to estimate h, since h is well
defined in terms of the constant slope ±M and the endpoints of the monotonicity
intervals (see [2]).

To obtain more efficient estimators, we assume in addition that R0 is a Bernoulli
map with M monotonicity branches. In this case one easily calculates that

lim sup
n→∞

1

n
log cn = logM > 0,

since there are cn = Mn monotonicity pieces for Rn
0 . The conjugacy is given by

the conformal measure m which scales by the factor M .
For a Bernoulli transformation we can determine the conjugacy because the

preimages of 0 and 1 up to order N (denoted by p0 = 0 < p1 < . . . < pMN = 1 in
increasing order) determine the intervals which are mapped onto [0, 1] under RN

0 .
Since the map is one-to-one on these intervals, the conformality equation (1.1)
gives

m([pi, pi+1]) =
1

MN
,

which determines the distribution function h of the conformal measure m:

h(pi) =
i

MN
, i = 0, . . . ,MN .

Note that the conjugacy is between the map R and the piecewise linear, continuous
Bernoulli map with monotonicity intervals [i/M, (i+ 1)/M ], i = 0, . . . ,M − 1,
where the branches are increasing or decreasing corresponding to the map R.

It suffices to estimate preimages, say by p̂i, i = 0, . . . ,MN . We then define
the estimator ĥ for h by linear interpolation:

ĥ(x) =
i

MN
+

x− p̂i
p̂i+1 − p̂i

1

MN
, p̂i ¬ x ¬ p̂i+1;

other interpolation methods can be used as well. Let F̂ and Ĝ denote the em-
pirical distribution functions of F and G based on the samples X1, . . . , Xn and
Y1, . . . , Yn. Let X(i) and Y(i) (1 ¬ i ¬ n) denote the order statistics of the X- and
Y -samples.
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LEMMA 3.1. The preimages xl of t ∈ [0, 1] are determined by

F−1
(
G
(
R0(xl)

))
= t;

hence they can be estimated consistently by

xl = R−10,l (Y(k)), l = 1, . . . ,M,

where R−10,l denotes the inverse branch of R0 with image the l-th interval of monoto-
nicity, and where k is the number of random variables Xl which is less than or
equal to t.

P r o o f. F̂ (X(i)) = i/n = Ĝ(Y(i)), and hence G−1
(
F (X(i))

)
is estimated

by Y(i). Since X(k) converges to t, where X(k) ¬ t < X(k+1), and F̂ and Ĝ−1 are
consistent estimators for F and G−1, the claim follows. �

Once having estimated the inverses of the sample, we can estimate the inverses
of the partition points z1, . . . , zM−1. We have (in case R(0) = 0 and R(1) = 1, the
other cases are similar)

R−1(1) = {z1, . . . , zM−1, 1},

R−1(0) = {0, z1, . . . , zM−1}

and the preimages R−1l (zi) of zi are estimated by R−10,l (Y(k)), where X(k) ¬ zi <
X(k+1). Linear (or other) interpolation is advisable here. In this way we can gen-
erate the tree of inverse images of the endpoints of the unit interval. Note that we
need to assume that the inverse branches of R0 are computable.

Of course, we can define the estimator of h−1 in an analogous manner.

REMARK 3.1. Note that the iterates of R, Rm for m  1, can be estimated by
the conjugacy as well:

( ̂F−1 ◦G ◦R0)
m(x) = ĥ−1

(
Tm

(
ĥ(x)

))
, 0 ¬ x ¬ 1.

This follows from the fact that h ◦Rm = Tm ◦ h.
Resampling of order m of the sample X1, . . . , Xn is defined by

X
(m)
i = ĥ−1

(
Tm

(
ĥ(Xi)

))
, i = 1, . . . , n.

4. DENSITY ESTIMATION

The estimation of the conjugacy in Section 3 can be used for resampling proce-
dures in order to improve estimators. Here we shall restrict to a discussion of den-
sity estimation using the resampling procedure explained in the previous section.
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There are several procedures in the literature where resampling works well: jack-
knifing algorithm, bootstrapping, rank statistics for U-statistics, or log-averaging
(almost sure central and local limit theorems) to name a few. While the new exper-
iments in these cases are simple algebraic, probabilistic or analytic modifications of
the data, the method here is more conceptual, since the analytic data manipulation
relies on ergodic theory for interval maps.

Nonparametric density estimations are usually based on kernel estimations,
orthogonal series estimations, splines or wavelet estimations. Here we restrict to
kernel estimations in applications for simplicity. This is sufficient to show how
the proposed method works. We will demonstrate by two examples in Sections 5
and 6 that stationarity allows one to draw more information from the data than
independence alone permits. We propose the following algorithm for density esti-
mation based on resampling; its detailed features are well known in nonparametric
estimation (see, e.g., [12], [4], [5]).

As before, let X1, . . . , Xn be independent and identically distributed random
variables with values in the unit interval having density function f . In general,
when the random variables take values in R, we may transform to the unit interval
using a differentiable map. Hence the above situation is general for an absolutely
continuous distribution.

In particular, the choice of a bandwidth follows the general advice in the liter-
ature. Reproving the known theorems on optimal bandwidth in the present context
is certainly possible (though not trivial).

We now explain the steps leading to an improved estimator based on a piece-
wise monotone and continuous map R of the unit interval. Some obvious variations
are deduced from this algorithm.

Let x1, . . . , xn be a random sample taken from this sequence of random vari-
ables.

Step 0. Transform the data to the unit interval using an invertible affine trans-
formation, also denoted by x1, . . . , xn.

Step 1. Find a first nonparametric density estimation f̃ based on the sample
x1, . . . , xn, using one of the standard nonparametric density estimation procedures.

Step 2. Choose an integer M  3 odd. Adapt a transformation R0 to the (ap-
proximate) range of the data [minxi,maxxi] by setting R0 to be the identity out-
side of the range, having M monotonicity intervals, and satisfying R0(0) = 0. This
transformation has to be a Bernoulli transformation, e.g., define the transformation
on the monotonicity pieces itself piecewise linear.

Step 3. Set yi = R0(xi) (mod 1) for i = 1, . . . , n. If the original data comes
from a distribution function F , and if under the transformation the new variables
yi represent the distribution function G, then the map R = F−1 ◦ G ◦ R0 of the
unit interval leaves F invariant (by Proposition 2.1).
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Step 4. Estimate the conjugacy h between R and the map T which is defined
by the formula

T (x) =



Mx if 0 ¬ x ¬ 1/M,

2−Mx if 1/M ¬ x ¬ 2/M,

Mx− 2 if 2/M ¬ x ¬ 3/M,

4−Mx if 3/M ¬ x ¬ 4/M,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Mx− (M − 1) if (M − 1)/M ¬ x ¬ 1.

Step 5. Fix m. Find the resampling of order m from x1, . . . , xn by the esti-
mated transformation R to obtain z1, . . . , zn.

Step 6. Find a nonparametric density estimation f̂ of the transformed data
from Step 5. Compare this with f̃ .

Step 7. Find a nonparametric density estimator f of f based on the combined
sample

x1, . . . , xn, z1, . . . , zn.

It is clear from the foregoing discussions, if n tends to infinity, then f̂ and f
are consistent estimators as long as the nonparametric density estimators and the
transformation estimators are consistent. The bandwidth of the smoother and the
second nonparametric density estimator are not found in the literature. However,
the order is the same as for the independent case. Hence one may use the same as
in Step 1, where a usual cross-validation provides a reasonable bandwidth.

The method here is restricted to estimation of a density on some compact
interval (one-dimensional estimation). It seems to be an interesting question to
extend the method to two dimensions (like the Milnor–Thurston result is extended
to two-dimensional setting in [2]). This has possible application in image analysis.

5. NUMERICAL EXAMPLE: GAUSSIAN DENSITIES

We illustrate the algorithm for data of the normal density with parameters
µ = 0.5 and σ = 0.1. Choosing these parameters avoids transforming the data to
the unit interval [0, 1] since it is unlikely that an observation falls outside of this
interval.

We created a sample of 40 points using the Mathematica random generator for
normal distributions (see Table 1).

In this numerical example we have chosen the map R0 piecewise linear: Let
a be the minimum and b be the maximum of the data set, ϵ = 10−3. Define points
q0 = 0, q1 = a, q2= a+(b−a)/3−ϵ, q3= a+(b−a)/3, q4= a+(b−a)/3+ϵ,
q5 = a + [2(b− a)]/3 − ϵ, q6 = a + [2(b− a)]/3, q7 = a + [2(b− a)]/3 + ϵ,
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Table 1. A sample of 40 random numbers fromN (0.5, 0.1)

0.2793477465775748 0.3189803299987347 0.3280039351987041
0.32937649327833474 0.3341873744577941 0.3509460493227462
0.37040988475312386 0.40839417131290184 0.4278725092176636
0.4343782997566407 0.4366380504552651 0.43722272310765375
0.4383535393175012 0.44698176229713144 0.4526806329695241
0.46147553894532484 0.46581162135041665 0.4811459155174444
0.4824342046026437 0.48690570695079405 0.48758337672241336
0.4895385089720199 0.5081612541014502 0.5150922835298403
0.5152187708070246 0.5196125504711763 0.5257071417718275
0.5333088530164423 0.547680924349553 0.5556449245557475
0.5741634496492634 0.5769541655097403 0.5885220901351191
0.5910341159576358 0.5928556560241721 0.608084747824479
0.6220367003216917 0.6344369511691449 0.6444635575704425
0.6524555370984191

q8 = b, q9 = 1. Then R0 is defined to be linear on these intervals leaving a and
b fixed. The transformation T is defined by

T (x) =


3x if 0 ¬ x ¬ 1

3 ,

2− 3x if 1
3 ¬ x ¬ 2

3 ,

3x− 2 if 2
3 ¬ x ¬ 1.

Finally, we used resampling of order 1, 2, 3, and 4, and kernel density estimators
with the Gaussian kernel. While the improvements for order less than or equal to 3
are about 5%, the resampled data set of order 4 gives almost the exact density. The
result is shown in Figures 1 and 2 together with the true normal density. The new
estimator is surprisingly close to the original density.

Figure 1. Density estimation from data of Table 1: Original data set

We also calculated the sample means of both data sets. While it is 0.486353
for the original sample, it becomes 0.492501 for the resampled data of order 4 (it
is ∼ 0.485 for order 2).

It should be noted that the new method relies on precise data up to the fourth
digit (note that T 4 scales by the factor 81). Rounding the fifth decimal in the data
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Figure 2. Density estimation from data of Table 1: Resampled data set of order 4

from Table 1 shows the same density as in Figure 2. Although the method needs
accurate measurements, it is not demanding a practically unrealistic amount of
precision (depending on the order of resampling).

REMARK 5.1. 1. We would like to point out that this example does not re-
place a systematic study of numerical applications of the method. We are just
showing here that the new method has some potential, but it is not yet completely
understood.

2. The resampled data set may be used in many ways, in particular also for
density estimation: One may consider the combined data set together with a new
bandwidth, or one may use the second sample to correct the density estimation
from the original data.

3. Other parameters of the distribution may also be reexamined by the resam-
pled data (to obtain a possibly biased but better estimate).

4. We did not attempt to provide a theoretical justification for the applicability
of the method, except consistency (which is trivial).

6. LIFE BALANCE SCORES

In this section we discuss a data set collected in 2008 and show how the trans-
formation method can be used to analyse a discrete data set. Strictly speaking, the
method is not applicable when the distribution is not continuous. However, for dis-
tributions with sufficiently small jumps we expect the method to work. This will
be demonstrated in this section using the 2008 data set of life balance scores.

In this example, seven variables, rated on 1–10 scales, were summed for an
overall score, which was then scaled by 100. The data is from a “Life Balance Sur-
vey” administered via the Internet to 75 students at a Midwestern university in the
United States in the fall of 2008. Respondents were asked to rate from seven to nine
variables related to each type of balance in their lives, then an overall balance ques-
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tion for the section was rated. Only the overall balance scores for each section were
used in the analysis. These ratings summarized the respondents: self-perception of
overall physical balance, spiritual balance, balance of mind, emotions, relation-
ships, work, and environment.

The overall scores are reproduced in Table 2, which is rounded off from the
original data. We have chosen a random sample from this population of size 17.
This sample is reproduced in Table 3.

Table 2. Balance Score Data

0.114 0.3 0.414 0.5 0.614 0.614 0.657 0.657
0.671 0.686 0.686 0.686 0.686 0.686 0.686 0.7
0.7 0.714 0.714 0.729 0.743 0.743 0.743 0.743
0.743 0.757 0.757 0.764 0.764 0.764 0.764 0.764
0.764 0.764 0.764 0.764 0.764 0.764 0.764 0.764
0.764 0.764 0.764 0.764 0.771 0.771 0.786 0.786
0.8 0.8 0.8 0.8 0.814 0.814 0.814 0.814
0.829 0.857 0.857 0.857 0.871 0.871 0.886 0.886
0.886 0.886 0.914 0.914 0.929 0.943 0.943 0.971
0.971 0.999 0.999

Table 3. Balance Score Data

0.414 0.614 0.657 0.686 0.686 0.686 0.686 0.743
0.764 0.764 0.764 0.8 0.8 0.814 0.929 0.999
0.999

Our goal is to show how well we can recover the information in the grand data
set from the sample of 17, which is roughly 20% of the observations. To this end we
first choose representations for the data: One is obviously the mean, the other one
a continuous representation of the data given by a smoothed density obtained from
the full data set using a Gaussian kernel smoother and the traditional bandwidth
O(n1/5). This gives a representation of the data set in form of some type of density
function. Figure 3 shows this representation derived from the full data set.

Figure 3. Gauss kernel representation for the life balance data
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Next we produced the Gaussian kernel representation for the random sample
in Table 3 using the same smoother as before. Figure 4 shows this representation.
The agreement with Figure 3 is not too good. We repeated the last procedure with

Figure 4. Gauss kernel representation for the random sample

the transformed data, which was combined with the original sample of 17 to make a
sample of size 34. We used the order two for the resampling algorithm. The results
are shown in Figure 5. Again, the agreement is not overwhelming.

Figure 5. Gauss kernel representation for the transformed random sample

There are different ways to produce a new estimator of the representation for
the grand data set. One estimator is that one based on the combined sample as
shown in Figure 5. The other one is constructed as follows: Let f denote the repre-
sentation of the grand data set, f̂ the corresponding estimator of the random sample
and f̃ the estimator based on the transformed data. Then f̂ − f̃ is a consistent es-
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timator of f − f̂ , and hence
ˆ̂
f = 2f̂ − f̃

is a consistent estimator of f . This estimator is shown in Figure 6 together with the
representation of the grand data set.

Figure 6. Gauss kernel representation of life balance data set vs. random sample data

The first representation of the data by their means results in the following
estimates. The means of the three samples are as follows:

• Mean of the life balance score data: 0.763627.
• Mean of the random sample: 0.753235.
• Mean of the transformed random sample combined with the random sample:

0.760736.
As a conclusion of this discussion note that both characteristics can be esti-

mated more accurately using the transformed data.
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