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Abstract. We consider the linear regression model, where the residuals
have zero mean and an otherwise unspecified distribution F . Suppose that
least squares estimates are formed by using rounded values of the dependent
variables. We show that these are still unbiased, and that unbiased estimates
for the moments and cumulants of F are given by applying Sheppard’s cor-
rections to their estimates.
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1. INTRODUCTION

The linear regression model is one of the most popular models in statistics.
It is also one of the simplest models in statistics. It has received applications in
almost every area of science, engineering and medicine.

The data on the dependent variables are often rounded off. There may be many
reasons that the data are rounded off, for example: recording standard, faulty equip-
ments, human error or the lack of technology to measure variables accurately.

Many authors have considered the important problem: the estimates of linear
regression with the rounded values used instead of the actual ones. For most excel-
lent reviews of the literature, see Heitjan [5] and Schneeweiss et al. [8]. However,
much of the work has focused on correcting for bias of the estimates under suitable
conditions.

In this short note, we show that the estimates of linear regression can, in fact,
be unbiased if the rounded values are used instead of the actual ones; see Theo-
rem 2.1 in Section 2. We also give unbiased estimates for the rth moment and the
rth cumulant of the residuals of linear regression for any r; see Theorem 2.2 in
Section 2. The related proofs are given in Section 4. We assume throughout that
Sheppard’s corrections hold exactly.
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We believe it is the first time that a general result like Theorem 2.2 has been
proven. This result could have potentially wide spread applications. The first four
moments and the first two cumulants have obvious physical interpretations and use
in statistical inference. There are often situations, where one also needs higher mo-
ments and higher cumulants. For example, there are many situations in insurance
and economics that require moments of orders higher than four. We mention:

• Taleb [9] suggests using moments of order higher than four to measure the
risk of an option. For example, the fifth moment is presumed as the asymmetry
sensitivity of the fourth one. The seventh moment is suggested as the sign of the
convexity change as the underlying asset moves up or down.

• Avramidis and Matzinger [1] show that an estimator for pricing American
options can be improved using moments of order higher than four. An example in
the area of Cornish–Fisher expansions (Cornish and Fisher [2]; Fisher and Cornish
[3]) is described in Section 3.

2. MAIN RESULTS

Suppose we observe YN = x
′
Nβ + eN , 1 ¬ N ¬ n, where xN and β are

known and unknown q-vectors, respectively, and {eN} are independently and iden-
tically distributed according to F , an unknown distribution with zero mean and
unknown central moments and cumulants {µr, κr, r  2}.

Suppose we record not Y
′
= (Y1, . . . , Yn) but Z

′
= (Z1, . . . , Zn), where

ZN = Th(YN ), say, is YN rounded to the nearest integral multiple of a given h < 0,
with mid-values rounded down (or F continuous). Let β̂h denote the least squares
estimate about {ZN}:

β̂h = (X
′
X)−1X

′
Z, where X

′
= (x1, . . . , xn).

THEOREM 2.1. We have E[β̂h] = β.

In Withers and Nadarajah [12], unbiased estimates (UEs) were given for
{µr, κr, r  2}, say µ̂r = µ̂r(Y ), κ̂r = κ̂r(Y ). In particular,

µ̂2 = |Y −Xβ̂|2/(n− q),

as is well known.

THEOREM 2.2. UEs of {µr, κr, r  2} are given by applying Sheppard’s cor-
rections to {µ̂r,h,κ̂r,h, r  2}, where µ̂r,h = µ̂r(Z), κ̂r,h = κ̂r(Z). That is, UEs
are given by

µ̃2 = µ̂2,h −H/3,

µ̃3 = µ̂3,h,

µ̃4 = µ̂4,h − 2Hµ̂2,h + 7H2/5,

µ̃5 = µ̂5,h − 10Hµ̂3,h/3,
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where H = h2/4. In general, for r  2

µ̃r =
∑

0¬m¬r/2
bmHm

(
r

2m

)
µ̂r−2m,h,

κ̃r = κ̂r,h − hrBr/r,

where
µ̂r,h =

∑
0¬m¬r/2

(2m+ 1)−1Hm

(
r

2m

)
µ̃r,

bm = (2− 22−2m)B2m,

and Br is the rth Bernoulli number.

The conditions on F in these theorems are as for Sheppard’s corrections with
r = 1 for Theorem 2.1. Basically, this requires sufficient regularity of F in its tails.

3. EXAMPLE

Here, we describe an example, where the results of Theorem 2.2 can be ap-
plied.

Suppose we wish to make inferences about a parameter θ. Let θ̂ denote an
estimator of θ. Suppose the cumulants of θ̂ satisfy the standard expansion

(3.1) κr(θ̂) =
∞∑

j=r−1
ar,jn

−j

for r  1 with the coefficients {ar,j} bounded as n→∞, a2,1 bounded away from
zero. This assumption is key to obtaining Cornish–Fisher expansions for θ̂ and is
known to be true for a wide variety of estimates, including smooth functions of
sample means.

By (3.1), the mean and variance of θ̂ are asymptotic to a1,0 and a2,1/n, re-
spectively. So, a central limit approximation is to assume that

(3.2) Yn = (n/a2,1)
1/2 (θ̂ − a1,0)

has the standard normal distribution for n sufficiently large. But this approximation
can be crude.

It would be better to use corrections for the central limit version. Withers [10]
(see also Kolassa and McCullagh [7]) showed that under the assumption (3.1) the
asymptotic expansions of Cornish and Fisher [2] and Fisher and Cornish [3] for
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the distribution and quantiles of θ̂ reduce to the form

Pn(x) = P (Yn ¬ x) = Φ(x)− ϕ(x)
∞∑
r=1

n−r/2h0,r(x),(3.3)

Φ−1
(
Pn(x)

)
= x−

∞∑
r=1

n−r/2fr(x),(3.4)

P−1n

(
Φ(x)

)
= x+

∞∑
r=1

n−r/2gr(x),(3.5)

where Φ(x) and ϕ(x) are the distribution and density, respectively, of a standard
normal random variable. The functions h0,r(x), fr(x), gr(x) are certain polyno-
mials of degree 3r − 1, r + 1, r + 1 in x, respectively, and Ar,i = ar,i/a

r/2
2,1 .

The infinite sums on the right-hand sides of (3.3)–(3.5) can be truncated to
provide better inferences for θ than the central limit version given by (3.2). The
polynomials h0,r(x), fr(x), gr(x) involve the rth order cumulants of θ̂. Conse-
quently, higher order inferences for θ would require knowing estimates for higher
order cumulants of θ̂.

Withers and Nadarajah [11] have demonstrated how (3.1) and (3.3)–(3.5) can
be applied to construct improved confidence intervals for parameters of interest
when the data are rounded off.

4. PROOFS

P r o o f o f T h e o r e m 2.1. Sheppard showed (see Kendall and Stuart [6],
p. 76) that if X ∼ F is rounded to produce Xh = Th ∼ Fh, say, then their noncen-
tral moments and their cumulants are connected by

µ
′
r,h = µ

′
r (Fh) =

∑
0¬m

(2m+ 1)−1Hm

(
r

2m

)
µ
′
r,(4.1)

µ
′
r = µ

′
r(F ) =

∑
0¬m

bmHm

(
r

2m

)
µ
′
r,h(4.2)

and, for r ̸= 1,

(4.3) κr = κr,h − hrBr/r.

In particular,

(4.4) E (Xh) = E(X).

So, E(Z) = E(Y ) and Theorem 2.1 holds. �

To prove Theorem 2.2 we need the following lemma.
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LEMMA 4.1. For any constant c, Th(X − c) and Th(X) − c have the same
moments.

P r o o f. By (4.4), we have E[Th(X − c)] = E(X)− c = E[Th(X)]− c. Let
G(y) = P (X − c ¬ y) = F (y + c) and Gh be the distribution of Th(X − c).
Note that (4.1) and (4.2) hold for central moments, i.e. with the dashes dropped.
So, for r  2,

µr (Gh) =
∑

(2m+ 1)−1Hm

(
r

2m

)
µr(G)

=
∑

(2m+ 1)−1Hm

(
r

2m

)
µr(F )

= µr (Fh) = µr[Th(X)− c],

where F , Fh are the distributions of X , Th(X), respectively, and

µr[X] = µr(F ). �

P r o o f o f T h e o r e m 2.2. Set eh,N = ZN − x
′
Nβ. Then, by equations

(1.2), (2.2), (3.1) of Withers and Nadarajah [12], µ̂r,h and κ̂r,h each have the form
∑

Ri1,...,ir(X)eh,i1 . . . eh,ir .

Note that E[eh,i] = E[ei] = 0 by (4.4), so

E [eh,i1 . . . eh,ir ] =
∏
j

E[eajh,Lj
],

where {Lj} are the distinct values of {ij} and aj is the number of i’s equal
to Lj . By Theorem 2.1, E[eah,L] = µa(Fh), where Fh is the distribution of Th(eN ),
N  1. So,

E [eh,i1 . . . eh,ir ] =
∏
j

µaj (Fh).

But in the case of no round-off,

E [ei1 . . . eir ] =
∏
j

µaj (F )

and µr(F ) = E[µ̂r] = µr(F ), E[κ̂r] = µr(F ). So, E[µ̂r,h] = µr(Fh) and E[κ̂r,h]
= κr(Fh). Thus, the result for moments follows by the fact that Sheppard’s correc-
tions apply to central moments, and the result for cumulants is implied by (4.3). �
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