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Abstract. Let X = X1, X2, . . . be a sequence of random variables,
let W be a Brownian motion independent of X and let Zk = W (Xk).
A numerical sequence (tk) will be called an upper (lower) class sequence
for {Zk} if

P (Zk > tk for infinitely many k) = 0 (or 1, respectively).

At a first look one might be tempted to believe that a “separating line” (t0k),
say, between the upper and lower class sequences for {Zk} is directly re-
lated to the corresponding counterpart (s0k) for the process {Xk}. For ex-
ample, by using the law of the iterated logarithm for the Wiener process a
functional relationship

(0.1) t
0
k =

√
2s0k log log s0k

seems to be natural. If Xk = |W2(k)| for a second Brownian motion W2

then we are dealing with an iterated Brownian motion, and it is known that
the multiplicative constant

√
2 in (0.1) needs to be replaced by 2 · 3−3/4,

contradicting this simple argument.
We will study this phenomenon from a different angle by letting {Xk}

be an i.i.d. sequence. It turns out that the relationship between the separating
sequences (s0k) and (t0k) in the above sense depends in an interesting way
on the extreme value behavior of {Xk}.
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1. INTRODUCTION

Let W+
1 , W−1 , W2 be independent Brownian motions, and set W1(t) = W+

1 (t)
for t  0 and W1(t) = W−1 (−t) for t < 0. The process

{
W1

(
W2(t)

)
, t  0

}
,

called iterated Brownian motion, was introduced by Burdzy [1]. It has been proven
in this paper that

(1.1) lim sup
t→0

W1

(
W2(t)

)
t1/4

(
log log(1/t)

)3/4 =
25/4

33/4
a.s.

This has been significantly generalized by Csáki et al. [2], [3], who obtained results
similar to (1.1) for a general class of iterated processes. They also proved a global
version of (1.1):

(1.2) lim sup
t→∞

W1

(
W2(t)

)
t1/4(log log t)3/4

=
25/4

33/4
a.s.

and

lim sup
t→∞

W1

(
|W2(t)|

)
t1/4(log log t)3/4

=
25/4

33/4
a.s.

(The asymptotic behavior of W1

(
W2(t)

)
and W1

(
|W2(t)|

)
needs not always be the

same as has been shown in [6] and [7] for the so-called “other law of the iterated
logarithm”.)

The interesting feature of relation (1.2) is the following: by the law of the
iterated logarithm (LIL) for W2 there exists for any h > 0 an almost surely (a.s.)
finite random variable T0 such that

W2(t) ¬ (1 + h)
√

2t log log t for all t > T0.

From this relation and the LIL for W1 one obtains the upper bound

(1.3) lim sup
t→∞

W1

(
W2(t)

)
t1/4(log log t)3/4

¬ 21/4 a.s.,

where 21/4 ≈ 1.189, while 25/43−3/4 ≈ 1.043. This shows that the LIL behavior
of the two independent processes W1 and W2 cannot be simply combined to obtain
a similar result for the process W1(W2).

In this paper we try to explore the just described phenomenon from a different
angle. To this end we switch to a discrete-time version of (1.2):

(1.4) lim sup
k→∞

W1

(
W2(k)

)
k1/4(log log k)3/4

=
25/4

33/4
a.s.,
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where k runs through the set of positive integers. Let Xk = W2(k), k  1. Then
{Xk} is a (strongly dependent) sequence of random variables, having normal dis-
tribution with mean 0 and variance k, and (1.4) has the form

P

(
W1(Xk) > (1 + h)

25/4

33/4
k1/4(log log k)3/4 i.o.

)
= 0 or 1,

depending on h > 0 or h < 0, respectively. (Here i.o. stands for “infinitely often”.)
Letting

t0k =
25/4

33/4
k1/4(log log k)3/4,

we say, in other words, that {(1 + h)t0k} belongs to the upper class of {W1(Xk)}
if h > 0 and it belongs to the lower class if h < 0. In short, we will write (tk) ∈
U
(
{W1(Xk)}

)
for an upper class sequence and (tk) ∈ L

(
{W1(Xk)}

)
for a lower

class sequence. In this sense, (t0k) is a separating sequence between upper and
lower class sequences for {W1(Xk)}. Of course, the phrase “separating sequence”
has to be given with much care. There does not necessarily exist a unique sep-
arating sequence dividing upper and lower classes. For example, for a Wiener
process {W (k) , k  1} the law of the iterated logarithm suggests as a candidate
s0k =

√
2k log log k as a dividing line between U

(
{W (k)}

)
and L

(
{W (k)}

)
. The

Kolmogorov–Erdős–Petrovski integral test states that
√
kφ(k) belongs to the upper

or lower class of {W (k)} according as

(1.5) I(φ) :=
∞∫
1

t−1φ(t) exp
(
−φ(t)2/2

)
dt <∞ or =∞,

and gives thus a much sharper characterization of upper and lower class sequences
than the LIL does (see e.g. Feller [4] and [5]). It implies, e.g., that (s0k) belongs to
L
(
{W (k)}

)
and that (s1k) defined by

s1k =
√

2k log log k + 3(1 + h) log log log k

is in U
(
{W (k)}

)
if h > 0 and in L

(
{W (k)}

)
if h ¬ 0. Adding further logp k

terms (where logp is the p-times iterated logarithm) one can get sharper and sharper
characterization of upper and lower class behavior. To clarify the usage of the no-
tion “separating sequence” we introduce the following definition.

DEFINITION 1.1. Let {Xk} be any random sequence and (ak) a positive and
non-decreasing sequence. We call (s0k) a UL-separating sequence with respect to
(ak) for {Xk} if for any h > 0 there exist (suk) ∈ U({Xk}) and (sℓk) ∈ L({Xk})
such that

sℓk ¬ s0k ¬ suk and lim
k

sℓk
suk

ak 
1

1 + h
.

If ak = 1 for all k  1, we say that (s0k) is UL-separating for {Xk}.
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Roughly speaking, the sequence (ak) tells us how sharp our separating line
(s0k) is. For example, s0k =

√
2k log log k defines a UL-separating sequence for

{W (k)}. (Choose sℓk = s0k and suk = (1 + h)s0k.) If {Xk} is an i.i.d. sequence with
P (Xk > x) = x−1 for x  1, then by the Borel–Cantelli lemma s0k = k log k is
UL-separating for {Xk} with respect to

(
(log log k)1+γ

)
for any γ > 0. (Choose

sℓk = s0k and suk = s0k(log log k)
1+γ .) More generally, s0k = k

∏P
p=1 logp k is UL-

separating for {Xk} with respect to
(
(logP+1 k)

1+γ
)

for any γ > 0. Note also that
if (s0k) is UL-separating for {Xk} with respect to some (ak), then if bk  ak for
k  1, it follows that (s0k) is UL-separating for {Xk} with respect to (bk).

In this paper we propose to study random processes of the form {W (Xk)},
where W is a Brownian motion and {Xk} is a sequence of random variables, inde-
pendent of W . We are interested in finding a relation between sequences (s0k) and
(t0k) which are UL-separating for {Xk} and {W (Xk)}, respectively. For example,
if Xk = W2(k) then we have just seen that s0k =

√
2k log log k is UL-separating

for {Xk}. On the other hand, we infer by (1.4) that

(1.6) t0k =
2

33/4

√
s0k log log s

0
k

is UL-separating for {W1(Xk)}.
Clearly, the behavior of {W (Xk)} can be very complicated in a general model,

and we shall thus restrict ourselves in this attempt to the case when {Xk} is an
i.i.d. sequence. We will show that in this case the relationship between (s0k) and
(t0k) depends on the tail structure of the Xk’s. This leads to the field of extreme
value theory (a classical monograph is, e.g., Leadbetter et al. [9]). The arguably
most important theorem in extreme value theory, known as the Fisher–Tippet–
Gnedenko theorem, states that if for a sequence {Xk} of i.i.d. random variables
with maximum Mn = max{X1, . . . , Xn} there exists a two-dimensional sequence
(an, bn)n1 such that

(1.7) a−1n (Mn − bn)
d−→ G

( d−→ denotes convergence in distribution) for some non-degenerate distribution
function G, then G belongs either to the Gumbel, Fréchet or Weibull family of
distributions (also called type I, type II or type III distributions), respectively.
The Weibull distribution (or type III distribution) can only appear if the Xk’s are
bounded, which is not of interest in our situation. Type I and type II distributions
can appear in different situations, but a typical case for which the (normalized)
maximum has type I distribution is when the Xk’s have exponential tails, and a
typical case for the (normalized) maximum having type II distribution is when the
Xk’s have Pareto tails.
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Roughly speaking, our Theorem 2.1 below shows that the argument leading
to (1.3) is optimal in the case when {max1¬k¬nXk} has type I limiting behavior.
This is, when (s0k) is UL-separating for {Xk}, then

t0k =
√

2s0k log log s
0
k

is UL-separating for {W (Xk)}. One could say that this (t0k) is “natural” or “un-
biased” in contrast to the (t0k) given in (1.6). Theorem 2.2 shows that the situation
is radically different if the limit of {max1¬k¬nXk} is of type II. In this case it
turns out that (t0k) is biased in the sense that

t0k =
√

s0k .

2. RESULTS

As we have pointed out in the Introduction our results need to be related to
results in extreme value theory, which we shall now briefly recall. Let {Xk} be
an i.i.d. sequence, and let F denote the common distribution function of the Xk’s.
If (1.7) holds, then the distribution G belongs to one of three types of so-called
max-stable distributions which are given (up to location and scale) by

Type I: G(x) = exp(−e−x), −∞ < x <∞;

Type II: G(x) =

{
0, x ¬ 0,
exp(−x−α) for some α > 0, x > 0;

Type III: G(x) =

{
exp

(
− (−x)α

)
for some α > 0, x ¬ 0,

1, x > 0.

If the maximum of an i.i.d. sequence {Xk} satisfies (1.7), then depending on which
of the G’s appears in the limit we say that {Xk} belongs to type I, II or III. If {Xk}
belongs to type III, then {Xk} needs to be bounded from above, and we are not
interested in this case. Let xF = sup{x : F (x) < 1}. Then {Xk} is:

(A) of type I if and only if there exists a strictly positive function g(t) such
that

lim
t→xF

1− F
(
t+ xg(t)

)
1− F (t)

= e−x for all x > 0;

(B) of type II if and only if xF =∞ and

lim
x→∞

tαP (X1 > tx)/P (X1 > x) = 1 for some α > 0 and for all t > 0.

In the case of (A) we write {Xk}∈DG and in the case of (B) we write {Xk}∈DF .
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The classes DG and DF are slightly too general for our investigations. For
example, DG still contains bounded sequences {Xk} which we want to exclude
from our analysis. We will thus define the subclasses D′G and D′F which exclude
such cases and provide some technical simplifications for the proofs. We recall that
a function q(x) is slowly varying (at∞) if

lim
x→∞

q(λx)/q(x) = 1 for all λ > 0.

DEFINITION 2.1. We say that {Xk} belongs to D′G if there is an α > 0 and a
slowly varying function q(x) such that P (X1 > x) = exp

(
− xαq(x)

)
for x > 0.

We say that {Xk} belongs to D′F if there is an α > 0 and a slowly varying function
q(x) such that

P (X1 > x) = x−αq(x)

and

(2.1) lim
x→∞

sup
t∈[1,(log x)2/α]

q(tx)/q(x) = 1.

REMARK 2.1. It is obvious that D′F ⊂ DF and it is not hard to prove that
D′G ⊂ DG. Essentially, conditions D′F and D′G require a certain degree of smooth-
ness of the distributions, which is not satisfied by all distributions in DF and DG.
Nevertheless, the classes D′F and D′G contain many practically relevant classes of
distribution functions, including normal, exponential and Pareto distributions (see
Corollaries 2.1–2.3).

To simplify the presentation we assume throughout this paper that W (t) = 0
for t < 0. Anyway, only minor changes are required to obtain exactly the same re-
sults for W (t) = 1(−∞,0)(t)W

−(−t) + 1[0,∞)(t)W
+(t), where W− and W+ are

independent Brownian motions. For the sake of simplicity, we call the resulting
W , defined now on the whole real line, again a Brownian motion. Furthermore,
throughout this paper log x is meant as max(1, log x).

We are now ready to formulate our first result.

THEOREM 2.1. Let X = X1, X2, . . . be a system of i.i.d. random variables,
and let W be a Brownian motion independent of X. Assume that the Xk’s have a
continuous distribution function and that {Xk} ∈ D′G. Then

(2.2) lim sup
k→∞

W (Xk)√
2mk log log log k

= 1 a.s.,

where

(2.3) mk = min

{
x ∈ R : F (x) = 1− 1

k

}
.
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It is not difficult to show (see Subsection 3.2) that under the assumptions of
Theorem 2.1

lim sup
k→∞

Xk

mk
= 1 a.s.,

and thus (s0k) given by s0k = mk is a UL-separating sequence for {Xk}. It is also
quite easy to show that under the assumptions of Theorem 2.1 we always have

lim
k→∞

log logmk

log log log k
= 1,

and (2.2) can be replaced by

lim sup
k→∞

W (Xk)√
2s0k log log s

0
k

= 1 a.s.,

showing that t0k =
√
2s0k log log s

0
k is a UL-separating sequence for {W (Xk)}.

Here are two special cases of Theorem 2.1.

COROLLARY 2.1 (Normal distribution). Let X = X1, X2, . . . be a system of
i.i.d. random variables having normal distribution with mean µ and variance σ.
Let W be a Brownian motion independent of X. Then

lim sup
k→∞

W (Xk)√
2 (log k)1/2 log log log k

=
(
2σ2

)1/4
a.s.

COROLLARY 2.2 (Exponential distribution). Let X = X1, X2, . . . be a sys-
tem of i.i.d. random variables having exponential distribution with parameter λ.
Let W be a Brownian motion independent of X. Then

lim sup
k→∞

W (Xk)√
2 log k log log log k

=
1√
λ

a.s.

The following theorem describes the behavior of the Brownian motion W (Xk)
in the case of the Xk’s having polynomial tails, which corresponds to type II be-
havior of max1¬k¬N Xk in the sense of extreme value theory:

THEOREM 2.2. Let X = X1, X2, . . . be a system of i.i.d. random variables,
and let W be a Brownian motion independent of X. Assume that the Xk’s have a
continuous distribution function and that {Xk} ∈ D′F . Moreover, let α be defined
as in (2.1). Then

(2.4)
(√

mk(log k)1/α(log log k)1/α+ε

)
k1
∈

{
U
(
{W (Xk)}

)
if ε > 0,

L
(
{W (Xk)}

)
if ε ¬ 0,

where mk (k  1) is defined as in (2.3).
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Theorem 2.2 shows that the sequence (t0k) defined by

t0k =
√

mk(log k)1/α(log log k)1/α

is UL-separating for {W (Xk)} with respect to (ak), when ak = (log log k)ε with
arbitrary ε > 0. Furthermore, under the assumptions of Theorem 2.2 we can show

k1/α−ε ¬ mk ¬ k1/α+ε

(for arbitrary ε > 0 and sufficiently large k). Thus we may also choose

t0k =
√

mk(logmk)1/α(log logmk)1/α,

and, similarly, the left-hand side in (2.4) can be replaced accordingly. A routine
application of the Borel–Cantelli lemma together with our assumptions on the tails
of the distribution of the Xk’s shows that

s0k = mk(logmk)
1/α(log logmk)

1/α

is UL-separating for {Xk} with respect to (ak), when ak = (log log k)ε with arbi-
trary ε > 0. This shows the relationship

t0k =
√

s0k,

which is radically different from the one obtained in Theorem 2.1.

Here is a simple example for Theorem 2.2.

COROLLARY 2.3 (Pareto distribution). Let X = X1, X2, . . . be a system of
i.i.d. random variables, and let W be a Brownian motion independent of X. As-
sume that the distribution function F (x) of the Xk’s is

F (x) =

{
1− (x0/x)

α for x  x0,
0 for x < x0

for some x0 > 0 and α > 0. Then(√
k1/α(log k)1/α(log log k)1/α+ε

)
k1
∈

{
U
(
{W (Xk)}

)
if ε > 0,

L
(
{W (Xk)}

)
if ε ¬ 0.

Table 1 below summarizes possible relationships between the UL-separating
sequences (s0k) for the different sequences {Xk} we have seen in this paper and
UL-separating sequences (t0k) for {W (Xk)}. For comparison we also mention the
case Xk = W2(k), although in this case {Xk} is of course not an i.i.d. sequence.

REMARK 2.2. It is important to note that we are talking here about possible
relationships between (s0k) and (t0k) in Table 1. As we have seen, UL-separating
sequences are not unique, and hence the transformation from s0k to t0k is also not
unique.
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Table 1. Relationships between (s0k) and (t0k)

Xk = W2(k) t0k = 2
33/4

√
s0k log log s

0
k

{Xk} ∈ D′G t0k =
√

2s0k log log s
0
k

{Xk} ∈ D′F t0k =
√

s0k

3. PROOFS

For the proofs we will use the following standard notation: [x] denotes the
integer part of some real x. We write an ≪ bn if lim supn→∞ |an/bn| <∞.

3.1. Proof of the upper bound in Theorem 2.1. We have for k  1 and for
ε > 0

P (Xk  m[k1+ε]) =
1

[k1+ε]
.

Therefore, by the Borel–Cantelli lemma,

lim sup
k→∞

Xk

m[k1+ε]
¬ 1 a.s.

Our assumptions imply that mα
k q(mk) = log k, with slowly varying q. One easily

obtains
m[k1+ε]

mk
→ (1 + ε)1/α as k →∞.

As ε can be chosen arbitrarily small, we conclude that

lim sup
k→∞

Xk

mk
¬ 1 a.s.

and, consequently, by the law of the iterated logarithm for W we have

lim sup
k→∞

W (Xk)√
2mk log logmk

¬ 1 a.s.

3.2. Proof of the lower bound in Theorem 2.1. Let ε > 0 be arbitrary, but
fixed. We choose θ > 1 so large that

(3.1) 2ε−α ¬ θ

(and, to shorten the notation, we will assume throughout this section that θ is an
integer). Set

in = exp
(
(θn)

)
and In = {k : in−1 < k ¬ in},
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and

Mn = min

{
x ∈ R : F (x) = 1− 1

in

}
.

Then, for sufficiently large n,

(log in)
1/α−ε ¬Mn ¬ (log in)

1/α+ε.

Since for sufficiently large x

−(ε−1x)αq(ε−1x)  −2ε−αxαq(x),

by (3.1) for sufficiently large n we have

1− F (ε−1Mn)  exp
(
−(ε−1Mn)

αq(ε−1Mn)
)

 exp
(
−2ε−αMα

n q(Mn)
)


(
1− F (Mn)

)−2ε−α

=

(
1

in

)2ε−α

≫ 1

in+1
,

and

(3.2) Mn+1  ε−1Mn.

Set further
φ(n) =

√
(1− 4ε)2Mn log log log in

and
tn = (1 + ε)Mn−1, B(n) = [(1− ε)Mn, (1 + ε)Mn].

Informally speaking, we will show that with large probability maxk∈In Xk ∈ B(n),
and prove a lower bound for

lim sup
n→∞

W
(
(1− ε)Mn

)
−W (tn)

φ(n)
.

To get this lower bound we will use the fact that W
(
(1− ε)Mn

)
−W (tn), n  1,

are independent random variables. Finally, we will show that W (maxk∈In Xk) is
almost of the same size as W

(
(1− ε)Mn

)
, provided maxk∈In Xk ∈ B(n). Com-

bining these results will prove Theorem 2.1.

There exists an n0  1 such that all intervals B(n), n  n0, are disjoint. We
define events

An = {max
k∈In

Xk ∈ B(n)} ∩
{
W

(
(1− ε)Mn

)
−W (tn)  φ(n)

}
, n  n0.
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Then these events are independent, since the sets In are disjoint and since tn+1 >
(1− ε)Mn.

The events {maxk∈In Xk ∈ B(n)} and
{
W

(
(1− ε)Mn

)
−W (tn)  φ(n)

}
are also independent for n  n0, which implies

(3.3) P (An) = P
(
max
k∈In

Xk ∈ B(n)
)
× P

(
W

(
(1− ε)Mn

)
−W (tn)  φ(n)

)
.

We have

P
(
max
k∈In

Xk ∈ B(n)
)

= P
(
max
k∈In

Xk ¬ (1 + ε)Mn

)
− P

(
max
k∈In

Xk < (1− ε)Mn

)
.

Since q is slowly varying, for sufficiently large x we get

q
(
(1 + ε)x

)
 1

(1 + ε)α/2
q(x).

Therefore, for sufficiently large n,

1− F
(
(1 + ε)Mn

)
¬ exp

(
−(1 + ε)α/2

(
Mα

n q(Mn)
))

¬
(
1− F (Mn)

)(1+ε)α/2

=

(
1

in

)((1+ε)α/2)

,

and, since
in − in−1

i
((1+ε)α/2)
n

→ 0 as n→∞,

we obtain

(3.4) P
(
max
k∈In

Xk ¬ (1 + ε)Mn

)


(
1−

(
1

in

)((1+ε)α/2))in−in−1


((

1−
(

1

in

)((1+ε)α/2))i
((1+ε)α/2)
n

)(in−in−1)/i
((1+ε)α/2)
n

 3

4
,

for sufficiently large n.
Similarly, since q is slowly varying, for sufficiently large x we have

q
(
(1− ε)x

)
¬ 1

(1− ε)α/2
q(x).
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Thus

1− F
(
(1− ε)Mn

)


(
exp

(
−(Mα

n )q(Mn)
))((1−ε)α/2)

=

(
1

in

)((1−ε)α/2)

,

and, since
in − in−1

i
((1−ε)α/2)
n

→∞ as n→∞,

we obtain

(3.5) P
(
max
k∈In

Xk ¬ (1− ε)Mn

)
¬

((
1−

(
1

in

)((1−ε)α/2))i
((1−ε)α/2)
n

)(in−in−1)/i
((1−ε)α/2)
n

¬ 1

4

for sufficiently large n.
Combining (3.4) and (3.5) we get

(3.6) P
(
max
k∈In

Xk ∈ B(n)
)
 1

2

for sufficiently large n.
For sufficiently large n, by (3.2) we have

P
(
W

(
(1− ε)Mn

)
−W (tn)  φ(n)

)
= P

(
W

(
(1− ε)Mn − (1 + ε)Mn−1

)
 φ(n)

)
 P

(
W

(
(1− 3ε)Mn

)
 φ(n)

)
= P

(
W (1) 

√
2(1− 4ε)(1− 3ε)−1 log log log in

)
≫

exp
(
−(1− 4ε)(1− 3ε)−1 log log log in

)
√
log log log in

≫ 1

n(1−4ε)/(1−3ε)√log n
.

This combined with (3.3) and (3.6) yields

(3.7) P (An)≫
1

n(1−4ε)/(1−3ε)√log n
,

and hence
∞∑

n=n0

P (An) =∞.

Thus we have shown that, by the second Borel–Cantelli lemma, with probability
one infinitely many events An occur.
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Next we want to replace W
(
(1− ε)Mn

)
by W (maxk∈In Xk). We have

P
(∣∣ min

t∈B(n)
W (t)−W

(
(1− ε)Mn

)∣∣  2
√
εφ(n)

)
= P

(
max

t∈[0,2εMn]
W (t)  2

√
εφ(n)

)
= 2P

(
W (2εMn)  2

√
εφ(n)

)
= 2P

(
W (1) 

√
2(1− 4ε) log log log in

)
≪ n−2(1−4ε).

We can assume without loss of generality that 1 − 4ε > 1/2. Thus, by the first
Borel–Cantelli lemma, we infer that with probability one only finitely many events(∣∣ min

t∈B(n)
W (t)−W

(
(1− ε)Mn

)∣∣  2
√
εφ(n)

)
occur.

To replace W
(
(1− ε)Mn

)
−W (tn) by W

(
(1− ε)Mn

)
we consider the fol-

lowing. Since by (3.2) for sufficiently large n (assuming without loss of generality
that ε is “small”)

tn ¬ (1 + ε)εMn ¬ 2εMn,

we have

P
(
W (tn) 

√
2εφ(n)

)
¬ P

(
W (Mn)  φ(n)

)
= P

(
W (1) 

√
2(1− 4ε) log log log in

)
≪ n−2(1−4ε).

Thus, assuming again without loss of generality that 1 − 4ε > 1/2, by the first
Borel–Cantelli lemma with probability one only finitely many events(

W (tn) 
√
2εφ(n)

)
occur.

This means that with probability one infinitely many events

{max
k∈In

Xk ∈ B(n)} ∩
{
W

(
(1− ε)Mn

)
−W (tn)  φ(n)

}
∩
{∣∣ min

t∈B(n)
W (t)−W

(
(1− ε)Mn

)∣∣ ¬ 2
√
εφ(n)

}
∩ {W (tn) ¬

√
2εφ(n)}

occur. Therefore, with probability one, also infinitely many events

{W (max
k∈In

Xk)  (1− 4
√
ε)φ(n)}

occur. Thus we have

lim sup
n→∞

W (maxk∈In Xk)

(1− 4
√
ε)φ(n)

 1 a.s.,
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which implies

lim sup
k→∞

W (Xk)

(1− 4
√
ε)
√

(1− 4ε)2mk log log log k

 lim sup
n→∞

maxk∈In W (Xk)

(1− 4
√
ε)φ(n)

 lim sup
n→∞

W (maxk∈In Xk)

(1− 4
√
ε)φ(n)

 1 a.s.,

and therefore

lim sup
k→∞

W (Xk)√
2mk log log log k

 (1− 4
√
ε)
√
1− 4ε a.s.

Since ε can be chosen arbitrarily small, this proves Theorem 2.1.

3.3. Proof of the upper bound in Theorem 2.2. Let θ > 1 be arbitrary, but
fixed, and set

in = [θn] and In = {k : 1 ¬ k ¬ in},

and

Mn = min

{
x ∈ R : F (x) = 1− 1

in

}
.

Let ε > 0 be fixed and set

φ(n) =
√

Mn(log in)1/α(log log in)1/α+ε.

Then for any n  1 and

Sn = 2−1Mn(log in)
1/α(log log in)

1/α−1+ε,

Tn = (1 + α)Mn(log in)
1/α(log log in)

1/α+ε(log log log in)
−1

we have

P
(
max
k∈In

W (Xk)  φ(n)
)

¬ P
(

max
t∈[0,Sn]

W (t)  φ(n)
)

(3.8)

+ P
(
{max
k∈In

Xk  Sn} ∩ { max
t∈[0,Tn]

W (t)  φ(n)}
)

(3.9)

+ P (max
k∈In

Xk  Tn).(3.10)

The term (3.8) is bounded by

(3.11) 2P
(
W (Sn)  φ(n)

)
= 2P

(
W (1) 

√
2 log log in

)
≪ 1

(log in)2
.



Probability and Mathematical Statistics 31, 2011, z. 2
© for this edition by CNS

Brownian motion with random argument 197

For sufficiently large x and y ∈ [1, (log x)2/α], by (2.1), we have

q(yx) ¬ (1 + ε)q(x).

Thus for sufficiently large n for all y ∈ [1, (logMn)
2/α] we get

1− F (yMn) =
1

yαMα
n

q(yMn) ¬ (1 + ε)

(
1

yα
1

Mα
n

q(Mn)

)
= (1 + ε)

1

yα
(
1− F (Mn)

)
= (1 + ε)

1

yα
1

in
,

and

P (max
k∈In

Xk  yMn) ¬ 1−
(
1− (1 + ε)

1

yα
1

in

)in

(3.12)

¬ 1−
(
1

e

)(1+ε)2/yα

¬ (1 + ε)2

yα
.

Since Sn ¬ Tn and Tn ¬Mn(logMn)
2/α for sufficiently large n, the term (3.9) is

bounded by

(3.13) 2P (max
k∈In

Xk  Sn)P
(
W (Tn)  φ(n)

)
≪ 1

log in(log log in)α(1/α−1+ε)

1

(log log in)1+α
.

For the term (3.10) we have

(3.14) P (max
k∈In

Xk  Tn)≪
(log log log in)

α

log in(log log in)1+αε
.

Combining the estimates (3.11), (3.13) and (3.14) for (3.8), (3.9) and (3.10), we
obtain

P
(
max
k∈In

W (Xk)  φ(n)
)
≪ 1

log in(log log in)1+ε1

for some appropriate (small) ε1 > 0. In particular,∑
nn0

P
(
max
k∈In

W (Xk)  φ(n)
)
<∞,

and, by the first Borel–Cantelli lemma, with probability one only finitely many
events

{max
k∈In

W (Xk)  φ(n)}

occur. Since

lim sup
n→∞

φ(n+ 1)

φ(n)
<∞,
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this implies

lim sup
k→∞

W (Xk)√
mk(log k)1/α(log log k)1/α+ε

<∞ a.s.

3.4. Proof of the lower bound in Theorem 2.2. We will use the following
version of the second Borel–Cantelli lemma (which is due to Kochen and Stone
[8] and Spitzer [11]; cf. also [10]):

LEMMA 3.1. Let A1, A2, . . . be events such that

∞∑
n=1

P (An) =∞.

If, additionally,

lim inf
n→∞

∑n

k,l=1
P (AkAl)(∑n

k=1
P (Ak)

)2 = L,

then

P (lim sup
n→∞

An) 
1

L
.

Let ε > 0 be given. Choose θ > 1 such that

(3.15) θ >

(
8

ε2min(α, 1)

)1/α

and set
in = [θn] and In = {k : in−1 < k ¬ in}.

Set further

Mn = min

{
x ∈ R : F (x) = 1− 1

in

}
and

φ(n) =
√

Mn(log in)1/α(log log in)1/α(log log log in)1/α,

Tn = Mn(log in)
1/α(log log in)

1/α(log log log in)
1/α,

B(n) = [Tn, (1 + ε)7/αTn].

Then we have

(3.16)
Tn+1

Tn
→ θα >

8

ε2min(α, 1)
as n→∞.
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For some appropriate n0  1 the intervals B(n), n  n0, are disjoint, and by (2.1)
and (3.15) we get

(3.17)
Mn

Mn+1
¬ ε,

Tn

Tn+1
¬ ε and

φ(n)

φ(n+ 1)
¬
√
ε

for sufficiently large n.
Define events

An = {max
k∈In

Xk ∈ B(n)} ∩ {W (t) ∈ [φ(n), 2φ(n)] for all t ∈ B(n)}, n > n0.

Then the events An, n > n0, are not independent, but the events

{max
k∈In

Xk ∈ B(n)}, n  n0,

are independent since the sets In, n  n0, are disjoint.
For sufficiently large x and y ∈ [1, (log x)2/α], by (2.1), we have

q(yx)  (1− ε)q(x).

Thus, for sufficiently large n for all y ∈ [1, (logMn)
2/α] we get

1− F (yMn) =
1

yαMα
n

q(yMn)  (1− ε)

(
1

yα
1

Mα
n

q(Mn)

)
=

1− ε

yα
(
1− F (Mn)

)
= (1− ε)

1

yα
1

in
,

and, since by (3.15) for sufficiently large n

in − in−1
in

 1− ε,

we obtain (if without loss of generality ε is sufficiently small)

P (max
k∈In

Xk  yMn)  1−
(
1− (1− ε)

1

yα
1

in

)in−in−1

(3.18)

 1−
(
1

e

)(1−ε)3/yα

 (1− ε)3

yα
exp

(
−(1− ε)3

yα

)
.

Using (3.12) we get

(3.19) P (max
k∈In

Xk  yMn) ¬ P ( max
1¬k¬in

Xk  yMn) ¬
(1 + ε)2

yα
.

We use inequality (3.18) for

y = Tn/Mn = (log in)
1/α(log log in)

1/α(log log log in)
1/α,



Probability and Mathematical Statistics 31, 2011, z. 2
© for this edition by CNS

200 C. Aist le i tner and S. Hörmann

in which case we have

exp

(
−(1− ε)3

yα

)
 1− ε and P (max

k∈In
Xk  yMn) 

(1− ε)4

yα

for sufficiently large n. Moreover, we use (3.19) for y = (1 + ε)7/αTn/Mn. Then
we get, since Tn ¬Mn(logMn)

2/α for sufficiently large n,

P
(
max
k∈In

Xk ∈ B(n)
)

 1

(1 + ε)4 log in log log in
− (1 + ε)2

(1 + ε)7 log in log log in log log log in


(

1

(1 + ε)4
− 1

(1 + ε)5

)
︸ ︷︷ ︸

>0

1

log in log log in log log log in

for sufficiently large n. On the other hand, it is easy to see that

(3.20) P
(
W (t) ∈ [φ(n), 2φ(n)] for all t ∈ B(n)

)
 P

(
W (Tn) ∈ [(5/4)φ(n), (7/4)φ(n)]

)
− P

(
max
t∈B(n)

W (t)−W (Tn) 
1

4
φ(n)

)
= P

(
W (1) ∈ [5/4, 7/4]

)
− 2P

(
W

(
(1 + ε)7/α

)
 1

4

)
 1

20
,

if we assume (without loss of generality) that ε is sufficiently small.
Thus

P (An)≫
1

log in log log in log log log in
and

(3.21)
∑

n>n0

P (An) =∞.

Let n1 < n2 be two positive integers. Define the events

En = {W (t) ∈ [φ(n), 2φ(n)] for all t ∈ B(n)}.
Then

(3.22) P (An1An2)

= P
(
{max
k∈In1

Xk ∈ B(n1)} ∩ En1 ∩ {max
k∈In2

Xk ∈ B(n2)} ∩ En2

)
= P

(
max
k∈In1

Xk ∈ B(n1)
)
× P

(
max
k∈In2

Xk ∈ B(n2)
)
× P (En1 ∩En2) .

Define

(3.23) E′(n,m)

=
{
W (t)−W

(
(1+ ε)7/αTn

)
∈ [φ(m)− 2φ(n), 2φ(m)] for all t ∈ B(m)

}
.
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Then

(3.24) P (En1 ∩ En2) ¬ P
(
En1 ∩ E′(n1, n2)

)
= P (En1)× P

(
E′(n1, n2)

)
.

By (3.17) for sufficiently large n1, n2 we have

Tn1

Tn2

¬ ε and
φ(n1)

φ(n2)
¬
√
ε,

and if (without loss of generality) ε is sufficiently small we get

(1 + ε)7/α <
8

min(α, 1)
ε,

which by (3.15) and (3.16) implies

(1 + ε)7/αTn1 ¬ εTn2 .

Therefore, if we assume without loss of generality that ε is so small that

2P
(
|W (1)|  α1/28−1/2ε−1/4

)
¬ ε1/4 and P

(
W (1)  ε−1/4

)
¬ ε1/4,

we get, using (3.20),

(3.25) P
(
E′(n1, n2)

)
¬ P

(
W (t) ∈ [(1− 3ε1/4)φ(n2), 2φ(n2)] for all t ∈ B(n2)

)
+ P

(
W

(
(1 + ε)7/αTn1

)
 ε1/4φ(n2)

)
¬ P (En2)

+ P
(
W (Tn2) ∈ [(1− 4ε1/4)φ(n2), (1 + ε1/4)φ(n2)]

)
+ P

(
max

t∈B(n2)
|W (t)−W (Tn2)|  ε1/4φ(n2)

)
+ P

(
W (εTn2)  ε1/4φ(n2)

)
¬ P (En2)

+ P
(
W (1) ∈ [(1− 4ε1/4), (1 + ε1/4)]

)
+ P

(
max

t∈[0,8ε/min(α,1)]
|W (t)|  ε1/4

)
+ P

(
W (1)  ε−1/4

)
¬ P (En2) + 7ε1/4

¬ (1 + 140ε1/4)P (En2).

Thus, combining (3.22), (3.24) and (3.25), we have

P (An1An2) ¬ (1 + 140ε1/4)P (An1)P (An2).

By Lemma 3.1 and formula (3.21), infinitely many events An occur with proba-
bility greater than or equal to (1 + 140ε1/4)−1. Therefore, with probability greater
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than or equal to (1 + 140ε1/4)−1 we get

lim sup
k→∞

W (Xk)√
mn(log k)1/α(log log k)1/α(log log log k)1/α

 1.

Since ε > 0 was arbitrary, we obtain

lim sup
k→∞

W (Xk)√
mn(log k)1/α(log log k)1/α(log log log k)1/α

 1 a.s.,

and

lim sup
k→∞

W (Xk)√
mn(log k)1/α(log log k)1/α

=∞ a.s.,

which proves Theorem 2.2.
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