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Abstract. An asymptotic behavior of a continuous time random walk
is investigated in the case when the sequence of pairs of jump vectors and
times between jumps is chain dependent.

2000 AMS Mathematics Subject Classification: Primary: 60G50,
60F17; Secondary: 60H30.

Key words and phrases: Continuous time random walk, chain de-
pendence, Lévy process, Lévy measure.

1. INTRODUCTION

The aim of the paper is to investigate an asymptotic behavior of a continu-
ous time random walk (CTRW), i.e. a random walk in which both spatial vectors
representing jumps and moments of jumps are random. Such a process is defined
by a sequence of jump vectors and a sequence of random waiting times separating
successive jumps. We consider a situation when pairs of jump vectors and waiting
times between jumps form a chain dependent sequence.

Let {(Yk, Jk), k ­ 1} be a sequence of random vectors in Rd × R+, defined
on a common probability space, where Jk, k ­ 1, are positive random variables.
For each k the spatial vector Yk represents the k-th jump of a particle and Jk
is the k-th waiting time for the next jump to occur. A CTRW process given by
{(Yk, Jk), k ­ 1} is defined as follows:

X(t) =
N(t)∑
k=1

Yk, t ­ 0,

where N(t) = max
{
k :
∑k

j=1 Jj ¬ t
}

is the number of jumps of the particle up
to time t. With such a definition, X(t) represents the position of a particle at time
t which is also the position of a particle just after the last jump before time t.
Closely related to the process X is a process X̃ defined as X̃(t) =

∑N(t)+1
k=1 Yk,

which can be interpreted as the position of a particle just after the first jump after
time t. Both X and X̃ describe simple diffusion mechanisms. The process X is a
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location of the diffusing particle which first waits for a jump by the random time
Jk and then jumps according to the spatial vector Yk, while X̃ corresponds to the
situation in which the particle first jumps along Yk and then remains in the reached
position for the random time Jk. These diffusion models have numerous applica-
tions in physics, financial mathematics and many other fields. For an overview of
applications see [10], [8], [4] and [6].

It is convenient to consider an asymptotic behavior of CTRW in terms of a
weak convergence of CTRW sequences. Let {(Yn,k, Jn,k), n, k ­ 1} be an array
of random vectors in Rd × R+, d ­ 1, defined on a common probability space
where Jn,k are positive random variables. Define sequences of processes

Sn(t) =
[nt]∑
k=1

Yn,k, Tn(t) =
[nt]∑
j=k

Jn,k for t > 0, Sn(0) = 0, Tn(0) = 0,

a sequence of renewal processes

Nn(t) = max
{
k ­ 1 :

k∑
j=1

Jn,j ¬ t
}

and sequences of CTRWs

Xn(t) =
Nn(t)∑
k=1

Yn,k = Sn
(
Nn(t)/n

)
and

X̃n(t) =
Nn(t)+1∑

k=1

Yn,k = Sn
(
Nn(t)/n+ 1/n

)
.

If Jn,k have finite means, then Xn(t) and X̃n(t) behave like Sn(t) as n→∞, so
we consider only situation when Jn,k have infinite means. The aim of the paper
is to find conditions for weak convergence of {Xn(t)} and {X̃n(t)} and the form
of distributions of their limits M(t) and M̃(t), respectively, in the case of chain
dependence of array {(Yn,k, Jn,k)}.

The problem of convergence was considered extensively by Meerschaert and
Scheffler in [10] (see also [1] and [9]) in the case when the pairs (Yn,k, Jn,k), k ­1,
are iid in the rows. They have shown that if processes (Sn, Tn), n ­ 1, converge
weakly to a Lévy process (A,D), in J1 topology, where A and D have no simul-
taneous jumps, then Xn ⇒ A(D−1) in J1 topology. Moreover, for Lévy measure
νD of D such that νD(0,∞) =∞ and

∫ 1

0
u| lnu|νD(du) <∞, Meerschaert and

Scheffler have found the form of the distribution ofA
(
D−1(t)

)
. In [7] Meerschaert

et al. obtained similar results dealing with an asymptotic of X generated by a se-
quence {(Yk, Jk)} when {Jk} is an iid sequence of random variables independent
of {Yk} being a stationary time series of type moving average: MA(∞). In [14]
Tejedor and Metzler investigated an asymptotic of CTRW generated by a sequence
{(Yk, Jk)} with structure similar to the chain-dependence one, considered in this
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paper. The recent papers [5] and [13] reveal that distributions of M(t) and M̃(t)
may be different. The work [5] was indicated to us by the Referee.

The structure of the paper is the following. In Section 2 the notion of chain
dependence is introduced and some auxiliary results related to it are given. They
are used to get the main result of the paper, stated in Theorem 3.1 in Section 3. It
gives conditions for the weak convergences Xn(t) ⇒ M(t) and X̃n(t) ⇒ M̃(t)
when array {(Yn,k, Jn,k)} is chain dependent and it also states the formulas for
the distributions of M(t) and M̃(t). To get those distributions we do not need
the assumption

∫ 1

0
u|lnu|νD(du) <∞. In Sections 4 and 5 we discuss conditions

under which the distributions of M(t) and M̃(t) are equal or different along with
some examples.

2. PRELIMINARIES

2.1. Structure of chain dependence. In the paper we use the following nota-
tion: R = (−∞,∞) denotes the real line, R+ = [0,∞),Rm the Cartesian product
of m copies of R and B(Rm) stands for the Borel σ-field in Rm. Furthermore, we
use the notation⇒ for weak convergence of distributions and for convergence in
distribution of random elements.

Let {Lk, k ­ 0} ≡ {Lk} be a homogeneous Markov chain on a probability
space (Ω,F , P ) with a countable state space L ⊂ {1, 2, . . . } and with transition
matrix P = (pi,j , i, j ∈ L). An array {ζn,k, k, n ­ 1} of random vectors in Rm

on probability space (Ω,F , P ) is called chain dependent with respect to Markov
chain {Lk} if for all j ∈ L, k ­ 1 and all Borel sets B in Rm we have

(2.1) P (ζn,k ∈ B,Lk = j|Jn,k−1)
P.1
= P (ζn,k ∈ B,Lk = j|Lk−1)

= P (ζn,k ∈ B|Lk−1)pLk−1,j = µn,Lk−1
(B)pLk−1,j ,

where Jn,k = σ(ζn,i, Li, i ¬ k) and µn,j(B) = P (ζn,k ∈ B|Lk−1 = j).
Hence we also have

(2.2) P (ζn,k ∈ B|Jn,k−1)
P.1
= P (ζn,k ∈ B|Lk−1) = µn,Lk−1

(B).

Furthermore, for any Borel sets Bi ∈ B(Rm), 1 ¬ i ¬ k, we have

(2.3) P
( k∩
i=1

{ζn,i ∈ Bi}|L0, L1, . . . , Lk−1
) P.1
=

k∏
i=1

P (ζn,i ∈ Bi|Li−1).

The notion of chain dependence and limit theorems for chain dependence were
considered by many authors; see, for example, [11] and [3].

Now we give a construction of a chain dependent array {ηn,k, n, k ­ 1} ≡
{ηn,k} such that for each n ­ 1 the process {ηn,k, k ­ 1} has the same finite-
dimensional distributions as the process {ζn,k, k ­ 1}. Let {L̃k, k ­ 0} be a ho-
mogeneous Markov chain on a probability space (Ω̃, F̃ , P̃ ) with the same tran-
sition probability matrix P = (pi,j , i, j ∈ L) as for the Markov chain {Lk}. Let
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{ξn,k,i, n, k, i ­ 1} ≡ {ξn,k,i} be an array of mutually independent random vec-
tors in Rm on (Ω̃, F̃ , P̃ ) such that ξn,k,i, i ­ 1, have distribution µn,k and let this
array be independent of a Markov chain {L̃k}. Define an array {ηn,k, n, k ­ 1} as
follows:

(2.4) ηn,k = ξn,L̃k−1,k
, k, n ­ 1.

PROPOSITION 2.1. (i) The array {ηn,k, n, k ­ 1} is chain dependent with
respect to {L̃k}.

(ii) If P (ζn,k ∈ B|Lk−1 = j) = µn,j(B), then for all n ­ 1 the processes
{ζn,k, k ­ 1} and {ηn,k, k ­ 1} have the same finite-dimensional distributions.

The array {ηn,k} defined in (2.4) is called the canonical representation of
chain dependent array {ζn,k}.

P r o o f. Let J̃n,k = σ(L̃0, L̃i, ηn,i, i ¬ k). Then for anyB ∈ B(Rm) and any
j ∈ L we have

P̃ (ηn,k ∈ B, L̃k = j|J̃n,k−1) = P̃ (ξn,L̃k−1,k
∈ B, L̃k = j|J̃n,k−1)

P.1
= P̃ (ξn,L̃k−1,k

∈ B, L̃k = j|L̃k−1) = P̃ (ξn,L̃k−1,k
∈ B|L̃k−1)pL̃k−1,j

= µn,L̃k−1
(B)pL̃k−1,j

.

This proves the assertion (i). To prove (ii) let us notice that for any Borel sets
Bi ∈ B(Rm) and all j0, j1, . . . , jk−1 from the state space L we have

P̃
( k∩
i=1

{ηn,i ∈ Bi}|L̃0 = j0, L̃1 = j1, . . . , L̃k−1 = jk−1
)

=
k∏

i=1

P̃ (ηn,i ∈ Bi|L̃i−1 = ji−1) =
k∏

i=1

µn,ji−1(Bi)

=
k∏

i=1

P (ζn,i ∈ Bi|Li−1 = ji−1).

Hence we get (ii), which completes the proof of the proposition. �

2.2. Convergence to Lévy process under chain dependence. Let Z = {Z(t),
t ­ 0} be an m-dimensional Lévy process. Then its characteristic function has the
form E exp

{
i
(
θ, Z(t)

)}
= exp

(
tψ(θ)

)
with θ ∈ Rm and

ψ(θ) = i⟨a, θ⟩+ 1

2
⟨θ,Qθ⟩+

∫
x ̸=0

(
ei⟨θ,x⟩ − 1− i⟨θ, x⟩1(∥x∥ < γ)

)
ν(dx),

where ⟨·, ·⟩ denotes the inner product in Rm, ∥x∥ =
√
⟨x, x⟩, a ∈ Rm, Q is a

nonnegative definite matrix of size m×m, ν is a Lévy measure on Rm
0 = Rm \ 0
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and γ is a constant such that ν(∂{x ∈ Rm
0 : ∥x∥ < γ}) = 0, where ∂(A) stands

for the edge of the set A. Vector a is called a drift parameter of process Z and
matrix Q is said to be a Gaussian component of Lévy process. Lévy process is
characterized by the triple (a,Q, ν).

In the sequel we give conditions for convergence in distribution of processes∑[nt]
k=1 ζn,k to a Lévy process when {ζn,k, k, n ­ 1} is a chain dependent array. In

view of Proposition 2.1 we can assume, without loss of generality, that

(2.5) ζn,k = ξn,Lk−1,k, k ­ 1, n ­ 1,

where, for simplicity of the notation, we putLk instead of L̃k and{ξn,k,i, n, k, i­1}
is an array of mutually independent random vectors such that for each n, k ­ 1 the
random vectors ξn,k,1, ξn,k,2, . . . have a common distribution, say µn,k, and the
array {ξn,k,i, n, k, i ­ 1} is independent of {Lk}. Define the processes

Sn(t) ≡
[nt]∑
k=1

ζn,k, t ­ 0, n ­ 1,

Sn,j(t) =
[nt]∑
i=1

ξn,j,i, t ­ 0, n ­ 1, j ∈ L.

Notice that, for each n ­ 1, the processes Sn,j , j ∈ L, are mutually independent.
Let Cj(t) be a number of visits to state j of the process {Lk} up to time t.

PROPOSITION 2.2. Let {Lk} be an irreducible, homogeneous, aperiodic, pos-
itive recurrent Markov chain with state space L and with stationary distribution
π = {πj , j ∈ L}. Let {ζn,k, k, n ­ 1} be chain dependent with respect to {Lk}
and with representation (2.5) and let for each j ∈ L

(2.6) Sn,j ⇒ Zj in D
(
[0,∞),Rm

)
with J1 topology,

where Zj , j ∈ L, are Lévy processes with triples (aj ,Qj , νj), j ∈ L, respectively.
Furthermore, assume that for any t ­ 0 and for any ε > 0, δ > 0 there exist
j0 ­ 1 and n0 ∈ N such that

(2.7) P
( ∑
j∈L,j­j0

sup
0¬s¬t

∥∥ Cj(ns)∑
i=1

ξn,j,i
∥∥ > δ

)
¬ ε

for all n ­ n0 and j ­ j0. Then

(2.8) Sn ⇒ Z in D
(
[0,∞),Rm

)
with J1 topology,

where Z is a Lévy process with triple
(∑

j∈L πjaj ,
∑

j∈L πjQj ,
∑

j∈L πjνj
)
.
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P r o o f. Since processes Sn,j , j ∈ L, are mutually independent, we can as-
sume, without loss of generality, that processes Zj , j ∈ L, are also independent,
which jointly with assumption (2.6) gives the following convergence:

(2.9) (Sn,j , j ∈ L)⇒ (Zj , j ∈ L) in D
(
[0,∞),Rm

)∞
.

Notice that

Sn(t) ≡
[nt]∑
k=1

ζn,k =
[nt]∑
k=1

ζn,k
∑
j∈L

1(Lk−1 = j)(2.10)

=
∑
j∈L

[nt]∑
k=1

ζn,k1(Lk−1 = j)
D
=

∑
j∈L

Cj([nt])∑
i=1

ξn,j,i,

where 1(A) is the indicator of the set A. Moreover, for any t1 < t2 < . . . < tr we
get

(2.11)
(
Sn(t1), Sn(t2), . . . , Sn(tr)

)
D
=
( ∑
j∈L

Cj([nt1])∑
i=1

ξn,j,i,
∑
j∈L

Cj([nt2])∑
i=1

ξn,j,i, . . . ,
∑
j∈L

Cj([ntr])∑
i=1

ξn,j,i
)
.

For simplicity, we show that (2.11) holds true only for r = 2. In this case we have

P
(
Sn(t1) ∈ B1, Sn(t2) ∈ B2|

[nt2]∩
i=0

Li = ji
)

= P
( ∑
j∈L

[nt1]∑
k=1

ζn,k1(Lk−1=j)∈B1,
∑
j∈L

[nt2]∑
k=1

ζn,k1(Lk−1 = j)∈B2|
[nt2]∩
i=0

Li=ji
)

= P
( ∑
j∈L

Cj([nt1])∑
i=1

ξn,j,i ∈ B1,
∑
j∈L

Cj([nt2])∑
i=1

ξn,j,i ∈ B2|
[nt2]∩
i=0

Li = ji
)
.

Now summing the above over all ji ∈ L we get (2.11) for r = 2.
Hence, to show the convergence (2.8) it is enough to prove S̃n ⇒ Z for pro-

cesses S̃n defined as

(2.12) S̃n(t) =
∑
j∈L

Cj([nt])∑
i=1

ξn,j,i.

By the ergodic theorem for Markov chains we have the following convergences:

(2.13)
Cj([nt])

n
→ πjt a.e. as n→∞, j ∈ L.
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Hence, by (2.9) and by using the method of the random change of time, we infer
that

( Cj([n·])∑
i=1

ξn,j,i, j ∈ L
)
⇒
(
Zj(πj ·), j ∈ L

)
in D

(
[0,∞),Rm

)∞
.

Since processes Zj(πj ·), j ∈ L, are mutually independent, by Theorem 4.1 in [15]
we get

(2.14)
∑
j¬j0

Cj([n·])∑
i=1

ξn,j,i ⇒
∑
j¬j0

Zj(πj ·) in D
(
[0,∞),Rm

)
.

Now, using the assumption (2.7) and P
(∑

j∈L,j­j0 sup0¬s¬t ∥Zj(πjs)∥>δ
)
¬ε

for sufficiently large j0, we obtain the convergence

(2.15) S̃n(·) =
∑
j∈L

Cj([n·])∑
i=1

ξn,j,i ⇒
∑
j∈L

Zj(πj ·) = Z(·) in D
(
[0,∞),Rm

)
,

which completes the proof of the assertion. �

REMARK 2.1. If the state space L of Markov chain {Lk} is finite, then con-
dition (2.7) holds.

Later on we use the following result.

PROPOSITION 2.3. Under the conditions of Proposition 2.2 we have the con-
vergences

( [ns]∑
i=1

ζn,i|L[ns] = j
)
⇒ Z(s) for all s ­ 0 and j ∈ L,

where Z is a Lévy process as in Proposition 2.2.

P r o o f. Notice that

P
( [ns]∑
i=1

ζn,i ∈ B|L[ns] = j
)

= P
(∑
l∈L

Cl([ns]−1)∑
i=1

ξn,l,i + ξn,j,[ns] ∈ B|L[ns] = j
)

=
∫
Rm

P
(∑
l∈L

Cl([ns]−1)∑
i=1

ξn,l,i ∈ B − x|L[ns] = j
)
P (ξn,j,[ns] ∈ dx|L[ns] = j)

=
∫
Rm

P
( [ns]−1∑

i=1

ζn,i ∈ B − x|L[ns] = j
)
µn,j(dx).
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Since
Cl([ns])

n
→ πls a.e.,

we infer that Cl([ns]) are asymptotically independent of the process {Lk}. There-
fore, as in the proof of Proposition 2.2 we get(∑

l∈L

Cl([ns]−1)∑
i=1

ξn,l,i|L[ns] = j
)
⇒

∑
l∈L

Zl(πls)
D
= Z(s).

This and the convergence µn,j ⇒ δ0 for all j ∈ L, where δ0 is the probability
measure at 0 ∈ Rm, give the assertion. �

3. CONVERGENCE OF SEQUENCES OF CHAIN DEPENDENT CTRWs

Let us recall that processes Sn, Tn, Nn, Xn and X̃n are defined, as in Sec-
tion 1, by an array {ζn,k = (Yn,k, Jn,k), k, n ­ 1} ≡ {ζn,k} of random vectors in
Rd × R+. Let us introduce the notation (C1)–(C6) for conditions on the array
{ζn,k = (Yn,k, Jn,k)} and on the process (A,D).

(C1) Array {ζn,k = (Yn,k, Jn,k)}, where Yn,k are random vectors in Rd and
Jn,k > 0 with EJn,k =∞, is chain dependent with respect to an irreducible, ape-
riodic, positive recurrent homogeneous Markov chain {Lk, k ­ 0} ≡ {Lk} with
state space L ⊂ {1, 2, . . . } and stationary distribution π = {πj , j ∈ L}.

In view of Proposition 2.1 we may assume, without loss of generality, that

(3.1) ζn,k = ξn,Lk−1,k, k, n ­ 1,

where {ξn,k,i} ≡ {ξn,k,i = (Yn,k,i, Jn,k,i), n, k, i ­ 1} is an array of mutually in-
dependent random vectors in Rd × R+, independent of Markov chain {Lk} and
such that random vectors ξn,k,i = (Yn,k,i, Jn,k,i), i ­ 1, have common distribution
µn,k. Let

Sn,j(t) =
[nt]∑
i=1

Yn,j,i, Tn,j(t) =
[nt]∑
i=1

Jn,j,i, t ­ 0, n ­ 1, j ∈ L.

For each n ­ 1 the processes (Sn,j , Tn,j), j ­ 1, are mutually independent.

(C2) For all j ∈ L the following convergences hold:

nP
(
(Yn,j,1, Jn,j,1) ∈ B

)
→ νj(B)

for all B ∈ B(Rd × R+) such that 0 /∈ B and νj(∂B) = 0, where νj are Lévy
measures on Rd × R+ \ {0}.

(C3) Process (A,D) is such that the process A has a Gaussian component
or its Lévy measure νA =

∑
j∈L πjν

A
j is such that νA(Rd) =∞, where νAj (·) =

νj(· × R+), and the process D has Lévy measure νD =
∑

j∈L πjν
D
j such that

νD(0,∞) =∞ and
∫∞
0

(1 ∧ x)νD(dx) <∞, where νDj (·) = νj(Rd × ·).
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(C4) For any δ > 0,

sup
j∈L

sup
n­1

nP (Jn,j,1 > δ) ≡ c(δ) <∞.

(C5) For each t ­ 0 and j ∈ L the following convergences hold:

P
(
Sn(t) ∈ B1, Tn(t) ∈ B2|L[nt] = j

)
→ P

(
A(t) ∈ B1, D(t) ∈ B2

)
for all sets B1 and B2 being continuity sets of distributions of A(t) and D(t),
respectively, where (A,D) is a Lévy process with triplet(

(a, 0),

[
Q 0
0 0

]
, ν(A,D)

)
,

and ν(A,D) =
∑

j∈L πjνj , a ∈ Rd, Q is a nonnegative definite d× d matrix.

(C6) For all j ∈ L the following convergences hold:

(Sn,j , Tn,j)⇒ (Aj , Dj) in D
(
[0,∞),Rd × R+

)
with J1 topology,

where (Aj , Dj), j ∈ L, are Lévy processes with Lévy triplets(
(aj , 0),

[
Qj 0
0 0

]
, νj

)
,

respectively, aj ∈ Rd, Qj are nonnegative definite d× d matrices and νj are Lévy
measures on Rd × R+.

REMARK 3.1. If an array {(Yn,k, Jn,k)} satisfies the conditions (C1) and
(C6), then it satisfies (C2). Moreover, if it satisfies (2.7) with ξn,j,i = (Yn,j,i, Jn,j,i),
then by Proposition 2.3 it satisfies (C5) and, additionally, (Sn, Tn) ⇒ (A,D) in
the space D

(
[0,∞),Rd × R+

)
with J1 topology and with Lévy triplets(∑

j∈L
πj(aj , 0),

[ ∑
j∈L

πjQj 0

0 0

]
,
∑
j∈L

πjνj

)
.

THEOREM 3.1. Let the array {(Yn,k, Jn,k)} satisfy the conditions (C1)–(C5)
and let, for fixed t > 0, P

(∑Nn(t)
k=1 Jn,k = t

)
= 0 for sufficiently large n. Then the

convergencesXn(t)⇒M(t) and X̃n(t)⇒ M̃(t) hold and for any setB ∈ B(Rd)
we have

(3.2) P
(
M(t) ∈ B

)
=
∞∫
0

t∫
0

νD(t− u,∞)P
(
A(s) ∈ B,D(s) ∈ du

)
ds,

(3.3) P
(
M̃(t) ∈ B

)
=
∞∫
0

t∫
0

∫
Rd

ν(A,D)
(
(B − v)× (t− u,∞)

)
P
(
A(s) ∈ dv,D(s) ∈ du

)
ds.
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P r o o f. First we prove the convergence Xn(t)⇒M(t). Let us observe that
νD(0,∞) =∞ and, by Theorem 3.1 in [10], it follows that the integral

∞∫
0

t∫
0

νD(t− u,∞)P
(
D(s) ∈ du

)
ds

is finite. Therefore for any ε > 0 there exists a positive integer b1(ε) ≡ b1 such that

∞∫
b1

t∫
0

νD(t− u,∞)P
(
A(s) ∈ B,D(s) ∈ du

)
ds ¬ ε.

Notice that the weak convergence of {Tn} yields the weak convergence of the
sequence {Nn(t)/n}, so the sequence {Nn(t)/n} is tight. Therefore, for ε > 0 let
b be a positive integer such that b > b1 and P

(
Nn(t)/n > b

)
< ε for all n ­ 1 and

let Rn = {r = k/n : k ¬ bn}.
By the weak convergence Tn ⇒ D and by Theorem 1 in [13] it follows that∑Nn(t)

k=1 Jn,k⇒(D ◦D−1)−1(t)≡Z(t). Thus the sequence
{∑Nn(t)

k=1 Jn,k, n­1
}

is

tight. The inequality
∑Nn(t)

k=1 Jn,k ¬ t and the assumption P
(∑Nn(t)

k=1 Jn,k = t
)
=0

allow us to restrict the state space of
∑Nn(t)

k=1 Jn,k to the interval [0, t). Therefore,
by the tightness of

{∑Nn(t)
k=1 Jn,k, n ­ 1

}
we infer that for ε there exists δ > 0

such that P
(∑Nn(t)

k=1 Jn,k ¬ t− δ
)
­ 1− ε for all n ­ 1. Hence for any fixed set

B ∈ B(Rd) we have

P
(
Xn(t) ∈ B

)
= P

(
Xn(t) ∈ B,

Nn(t)∑
k=1

Jn,k ¬ t
)

= P
(
Sn
(
Nn(t)/n

)
∈ B,

{
Tn
(
Nn(t)/n

)
> t− δ

}
∪ {Nn(t)/n > b}

)
+ P

(
Sn
(
Nn(t)/n

)
∈ B, Tn

(
Nn(t)/n

)
¬ t− δ,Nn(t)/n ¬ b

)
¬ 2ε+

∑
r∈Rn

P
(
Sn
(
Nn(t)/n

)
∈ B, Tn

(
Nn(t)/n

)
¬ t− δ, Nn(t) = nr

)
= 2ε+

∑
r∈Rn

P
(
Sn(r) ∈ B, Tn(r) ¬ t− δ, Nn(t) = nr

)
,

which implies the inequality
(3.4)∣∣P (Xn(t) ∈ B

)
−

∑
r∈Rn

P
(
Sn(r) ∈ B, Tn(r) ¬ t− δ, Nn(t) = nr

)∣∣ ¬ 2ε.
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But

(3.5) P
(
Sn(r) ∈ B, Tn(r) ¬ t− δ, Nn(t) = nr

)
= P

(
Sn(r) ∈ B, Tn(r) ¬ t− δ, Nn(t) ­ nr

)
− P

(
Sn(r) ∈ B, Tn(r) ¬ t− δ, Nn(t) ­ nr + 1

)
= P

(
Sn(r) ∈ B, Tn(r) ¬ t− δ, Tn(r) ¬ t

)
− P

(
Sn(r) ∈ B, Tn(r) ¬ t− δ, Tn(r) + Jn,Lnr,nr+1 ¬ t

)
.

Since {ζn,k} is chain dependent with respect to the Markov chain {Lk}, we have

P
(
Sn(r) ∈ B, Tn(r) ¬ t− δ, Tn(r) + Jn,Lnr,nr+1 ¬ t

)
=

∑
j∈L

P
(
Sn(r)∈B, Tn(r)¬ t− δ, Tn(r) + Jn,j,nr+1¬ t|Lnr=j

)
P (Lnr=j)

=
∑
j∈L

t−δ∫
0

P (Jn,j,nr+1 ¬ t− u|Lnr = j)

× P
(
Sn(r) ∈ B, Tn(r) ∈ du|Lnr = j

)
P (Lnr = j)

=
∑
j∈L

t−δ∫
0

P (Jn,j,1 ¬ t− u)P
(
Sn(r) ∈ B, Tn(r) ∈ du|Lnr = j

)
P (Lnr = j).

Notice also that

P
(
Sn(r) ∈ B, Tn(r) ¬ t− δ

)
=

∑
j∈L

t−δ∫
0

P
(
Sn(r) ∈ B, Tn(r) ∈ du|Lnr = j

)
P (Lnr = j).

Therefore, by (3.5) and the above equality, we have

(3.6) P
(
Sn(r) ∈ B, Tn(r) ¬ t− δ, Nn(t) = nr

)
=

1

n

∑
j∈L

Hn,j(B, r),

where for any s ­ 0

Hn,j(B, s)
df
=

t−δ∫
0

n
(
1−P (Jn,j,1 ¬ t−u)

)
P
(
Sn(s) ∈ B, Tn(s) ∈ du|L[ns] = j

)
P (L[ns] = j).

Since sample paths of Sn and Tn are step functions, for any nonnegative integer k
we have

(k+1)/n∫
k/n

P
(
Sn(s) ∈ B, Tn(s) ∈ du|L[ns] = j

)
ds

=
1

n
P
(
Sn(k/n) ∈ B, Tn(k/n) ∈ du|Lk = j

)
.
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Hence by (3.6) we get

(3.7)
∑

r∈Rn

P
(
Sn(r) ∈ B, Tn(r) ¬ t− δ,Nn(t) = nr

)
=

b∫
0

∑
j∈L

Hn,j(B, s)ds.

Notice that

Hn,j(B, s) =
t−δ∫
0

nP (Jn,j,1 > t− u)P (L[ns] = j)κn,j(du, s),

where

κn,j(G, s)
df
= P

(
Sn(s) ∈ B, Tn(s) ∈ G|L[ns] = j

)
, G ∈ B(R+).

Condition (C3) and Theorem 27.4 in [12], p. 175, imply that A(s) and D(s) have
continuous distributions for all s > 0. Hence and by condition (C2) we infer that
for all Borel sets B ∈ B(Rd) and G ∈ B(R+) and all j ∈ L the following conver-
gences hold:

(3.8) κn,j(G, s)→ P
(
A(s) ∈ B,D(s) ∈ G

)
≡ κ(G, s) as n→∞.

For any fixed s > 0 define probability measures κ̃ and κ̃n,j by κ̃(G, s) =
κ(G, s)/κ(Iδ, s) and κ̃n,j(G, s) = κn,j(G, s)/κn,j(Iδ, s), where Iδ = [0, t − δ]
and G ∈ B(Iδ). Let η and ηn,j , n ­ 1, j ∈ L, be nonnegative random variables
with distributions κ̃ and κ̃n,j , respectively. Since for all j ∈ L, κ̃n,j ⇒ κ̃ as n→
∞, we have ηn,j ⇒ η as n→∞ for all j ∈ L. On the interval Iδ define functions

hn,j(u) = nP (Jn,j,1 > t− u) and hj(u) = νDj (t− u,∞).

Then

κn,j(Iδ, s)Ehn,j(ηn,j) =
t−δ∫
0

nP (Jn,j,1 > t− u)κn,j(du, s)

and
Hn,j(B, s) = P (L[ns] = j)κn,j(Iδ, s)Ehn,j(ηn,j).

Moreover,

κ(Iδ, s)Ehj(η) =
t−δ∫
0

νDj (t− u,∞)κ(du, s).

Define the sets

Fj
df
= {x ∈ Iδ : there exist xn → x such that hn,j(xn) 9 hj(x)}.

All functions hn,j are nondecreasing and hn,j(u) → hj(u) as n → ∞ for all
j ∈ L and all points u ∈ [0, t− δ] such that νDj ({t− u}) = 0. Therefore, Fj con-
tains only the points u for which points t − u are the atoms of measure νDj . Note
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that the distributions of A(s) and D(s) do not have atoms, so neither has κ̃. Thus
κ̃(Fj) = 0. From Theorem 5.5 in [2] we get the convergences hn,j(ηn,j)⇒ hj(η)
as n → ∞ for all j ∈ L. Condition (C4) implies the uniform integrability of the
sequences {hn,j(ηn,j), n ­ 1}. Then, by Theorem 5.4 in [2], we get the conver-
gence

(3.9) Ehn,j(ηn,j)→ Ehj(η) as n→∞ for all j ∈ L.

Thus, (3.9) together with the convergence P (L[ns] = j)→ πj as n→∞ imply

(3.10) Hn,j(B, s)→ πjκ(Iδ, s)Ehj(η)

= πj
t−δ∫
0

νDj (t− u,∞)P
(
A(s) ∈ B,D(s) ∈ du

)
≡ Hj(B, s).

Now notice that

(3.11)
∑
j∈L
|Hn,j(B, s)−Hj(B, s)|

¬
∑
j∈L

cn,j |P (L[ns] = j)− πj |+
∑
j∈L

πj |cn,j − cj |,

where
cn,j = κn,j(Iδ, s)Ehn,j(ηn,j), cj = κ(Iδ, s)Ehj(η).

By (3.8) and (3.9) we get cn,j → cj and also supn,j cn,j <∞. Hence and by the
convergence

∑
j∈L |P (L[ns] = j) − πj | → 0 as n → ∞, we can take limit in n

under the sum in (3.11). Consequently, we obtain∑
j∈L

Hn,j(B, s)→
∑
j∈L

Hj(B, s)

which, in turn, implies the convergence

b∫
0

∑
j∈L

Hn,j(B, s)ds→
b∫
0

∑
j∈L

Hj(B, s)ds

=
b∫
0

∑
j∈L

πj
t−δ∫
0

νDj (t− u,∞)P
(
A(s) ∈ B,D(s) ∈ du

)
ds

=
b∫
0

t−δ∫
0

νD(t− u,∞)P
(
A(s) ∈ B,D(s) ∈ du

)
ds.

Hence and by (3.4) we get∣∣P (Xn(t) ∈ B
)
−
∞∫
0

t∫
0

νD(t− u,∞)P
(
A(s) ∈ B,D(s) ∈ du

)
ds
∣∣ ¬ 3ε.

Since ε was arbitrary small, we get Xn(t)⇒M(t) and equality (3.2).
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The proof of the convergence X̃n(t)⇒ M̃(t) and formula (3.3) proceeds in a
similar way to the proof of Xn(t)⇒M(t). Here we point out only its main steps.
We use the same constants ε, b, δ and the set Rn. Notice that for any Borel set B
in B(Rd) we have

(3.12) P
(
X̃n(t) ∈ B

)
= P

(
X̃n(t) ∈ B,

Nn(t)∑
k=1

Jn,k ¬ t
)

= P
(
Sn
(
Nn(t)/n+ 1/n

)
∈ B,

{Nn(t)∑
k=1

Jn,k > t− δ or Nn(t)/n > b
})

+ P
(
Sn
(
Nn(t)/n+ 1/n

)
∈ B,

Nn(t)∑
k=1

Jn,k ¬ t− δ, Nn(t) ¬ nb
)

¬ 2ε+
∑

r∈Rn

P
(
Sn(r

′
)∈B, Tn(r) ¬ t− δ, Nn(t)=nr

)
, where r

′
=r + 1/n.

But

(3.13) P
(
Sn(r

′
) ∈ B, Tn(r) ¬ t− δ, Nn(t) = nr

)
= P

(
Sn(r

′
) ∈ B, Tn(r) ¬ t− δ, Nn(t) ­ nr

)
− P

(
Sn(r

′
) ∈ B, Tn(r) ¬ t− δ, Nn(t) ­ nr + 1

)
= P

(
Sn(r

′
) ∈ B, Tn(r) ¬ t− δ, Tn(r) ¬ t

)
− P

(
Sn(r

′
) ∈ B, Tn(r) ¬ t− δ, Tn(r) + Jn,Lnr,nr+1 ¬ t

)
.

Since {ζn,k} is chain dependent with respect to the Markov chain {Lk}, we have

P
(
Sn(r

′
) ∈ B, Tn(r) ¬ t− δ, Tn(r) + Jn,Lnr,nr+1 ¬ t

)
=

∑
j∈L

P
(
Sn(r) + Yn,j,nr+1∈B, Tn(r)¬ t− δ, Tn(r)+Jn,j,nr+1¬ t|Lnr=j

)
× P (Lnr = j)

=
∑
j∈L

t−δ∫
0

∫
Rm

P (Yn,j,nr+1 ∈ B − v, Jn,j,nr+1 ¬ t− u, |Lnr = j)

× P
(
Sn(r) ∈ dv, Tn(r) ∈ du|Lnr = j

)
P (Lnr = j)

=
∑
j∈L

t−δ∫
0

∫
Rm

P (Yn,j,1∈B − v, Jn,j,1¬ t− u)P
(
Sn(r)∈dv, Tn(r)∈du|Lnr=j

)
× P (Lnr = j).



Probability and Mathematical Statistics 31, 2011, z. 2
© for this edition by CNS

Chain dependent continuous time random walk 253

Notice also that

P
(
Sn(r

′
) ∈ B, Tn(r) ¬ t− δ

)
=

∑
j∈L

t−δ∫
0

∫
Rm

P (Yn,j,1 ∈ B− v)P
(
Sn(r) ∈ dv, Tn(r) ∈ du|Lnr= j

)
P (Lnr= j).

Consequently,

(3.14)
∑

r∈Rn

P
(
Sn(r

′
) ∈ B, Tn(r) ¬ t− δ,Nn(t) = nr

)
=

b∫
0

∑
j∈L

H̃n,j(B, s)ds,

where

H̃n,j(B, s)
df
=

t−δ∫
0

∫
Rm

n
(
P (Yn,j,1 ∈ B − v)− P (Yn,j,1 ∈ B − v, Jn,j,1 ¬ t− u)

)
× P

(
Sn(s) ∈ dv, Tn(s) ∈ du|L[ns] = j

)
P (L[ns] = j)

=
t−δ∫
0

∫
Rm

nP (Yn,j,1 ∈ B − v, Jn,j,1 > t− u)κ̂n,j(du, s)

with

κ̂n,j(G, s)
df
= P

(
Sn(s) ∈ B, Tn(s) ∈ G|L[ns] = j

)
, G ∈ B(R+).

Hence, arguing as before, we get the convergences

H̃n,j(B, s)→ πj
t−δ∫
0

∫
Rm

ν
(Aj ,Dj)
j

(
(B − v)×(t− u,∞)

)
P
(
A(s)∈dv,D(s)∈du

)
≡ H̃j(B, s),∑

j∈L
H̃n,j(B, s)→

∑
j∈L

H̃j(B, s),

b∫
0

∑
j∈L

H̃n,j(B, s)ds→
b∫
0

∑
j∈L

H̃j(B, s)ds.

Finally, by reasoning as in the proof of the first convergence of the theorem we
get the second convergence of the theorem and equality (3.3). This completes the
proof of the theorem. �

Meerschaert et al. obtained formula (3.2) in Theorem 3.6 of [10] under the
assumptions that rows of the array {ζn,k} form iid sequences of random vectors
and that the Lévy measure νD of D satisfies the additional condition

1∫
0

u| lnu|νD(du) <∞.
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4. DISCUSSION ON CONDITIONS FOR M(T )
D
= M̃(T )

Formulas (3.2) and (3.3) reveal that, in general, the distributions of M(t) and

M̃(t) are different. One may ask under which conditions the equality M(t)
D
=

M̃(t) holds true. An answer to this question is given by the following corollary.

COROLLARY 4.1. Let the conditions of Theorem 3.1 be satisfied. Assume,
additionally, that for all sets B1 ∈ B(Rd) and B2 ∈ B(R+)

(4.1) νj(B1 ×B2) = νAj (B1)δ
(2)
0 (B2) + δ

(1)
0 (B1)ν

D
j (B2), j ∈ L,

where δ(1)0 , δ
(2)
0 denote the probability measures concentrated on 0 ∈ Rd and on

0 ∈ R+, respectively. Then M̃(t) has the same distribution as M(t).

P r o o f. By (4.1) it follows that

ν(A,D)(B1 ×B2) =
∑
j∈L

πjν
A
j (B1)δ

(2)
0 (B2) + δ

(1)
0 (B1)

∑
j∈L

νDj (B2)

= νA(B1)δ
(2)
0 (B2) + δ

(1)
0 (B1)ν

D(B2).

Then the most internal integral in formula (3.3) has the form∫
Rd

δ
(1)
0 (B − v)νD(t− u,∞)P

(
A(s) ∈ dv,D(s) ∈ du

)
= νD(t− u,∞)P

(
A(s) ∈ B,D(s) ∈ du

)
.

Hence

P
(
M̃(t)∈B

)
=
∞∫
0

t∫
0

νD(t− u,∞)P
(
A(s)∈B,D(s) ∈ du

)
ds=P

(
M(t)∈B

)
,

which completes the proof of the corollary. �

Condition (4.1) is sufficient for the equality M(t)
D
= M̃(t) to hold. Moreover,

it means an asymptotic independence of Sn(t) and Tn(t), i.e.(
Sn(t), Tn(t)

)
⇒
(
A(t), D(t)

)
,

where A(t) and D(t) are independent. Below we give two examples of chain de-
pendent arrays {(Yn,k, Jn,k)} for which Sn(t) and Tn(t) are asymptotically inde-
pendent.
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EXAMPLE 4.1. Let an array {(Yn,k, Jn,k), n, k ­ 1} satisfy condition (C1)
and let the array {(Yn,k,i, Jn,k,i), n, k, i ­ 1} from the canonical representation of
{(Yn,k, Jn,k), n, k ­ 1} defined in (3.1) satisfy conditions (C6), (C4) and (C3).
Furthermore, let Yn,k,i and Jn,k,i be mutually independent with distributions µ(1)n,k

and µ(2)n,k, respectively, and let condition (3.1) hold true. Then for any B1 ∈ B(Rd)

and B2 ∈ B(R+) we have

P (Yn,k ∈ B1, Jn,k ∈ B2)

=
∑
j∈L

P (Yn,j,k ∈ B1, Jn,j,k ∈ B2|Lk−1 = j)P (Lk−1 = j)

=
∑
j∈L

µ
(1)
n,j(B1)µ

(2)
n,j(B2)P (Lk−1 = j).

This means that sequences {Yn,k, k ­ 1} and {Jn,k, k ­ 1} are not independent,
because they are driven by the same Markov chain {Lk}. Nevertheless, Sn(t) and
Tn(t) are asymptotically independent. This follows from the fact that processes
{Sn,j , j ­ 1} and {Tn,j , j ­ 1} are mutually independent. Hence, by Remark 3.1
and Proposition 2.2 we get the convergence

(
Sn(t), Tn(t)

)
⇒
(
A(t), D(t)

)
,where

the Lévy process (A,D) has Lévy measure of the form

ν(A,D) =
∑
j∈L

πjνj =
∑
j∈L

πj(ν
A
j δ

(2)
0 + δ

(1)
0 νDj )

=
( ∑
j∈L

πjν
A
j

)
δ
(2)
0 + δ

(1)
0

( ∑
j∈L

πjν
D
j

)
= νAδ

(2)
0 + δ

(1)
0 νD.

Hence Sn(t) and Tn(t) are asymptotically independent and (4.1) holds. �

Note that conclusions of the example above remain true if for all j ∈ L we
replace independence of processes Sn,j(t) and Tn,j(t) by their asymptotic inde-
pendence. Below we present an example of this case.

EXAMPLE 4.2. Let us assume that the arrays {(Yn,k, Jn,k), n, k ­ 1} and
{(Yn,k,i, Jn,k,i), n, k, i ­ 1} be as in the previous example. Let {Mi, i ­ 1} be
an iid sequence of random variables taking values in {1, 2, 3, . . .} and with finite
mean µ and defined on the same probability space as {(Yn,k,i, Jn,k,i), n, k, i ­ 1}.
Let K(n) =

∑n
i=1Mi. Define an array {(Ȳn,k,i, J̄n,k,i), n, k, i ­ 1} as follows:

(Ȳn,k,i, J̄n,k,i) =
( K(i)∑
l=K(i−1)+1

Yn,k,l,
K(i)∑

l=K(i−1)+1

Jn,k,l
)
.

It is easy to see that Ȳn,k,i and J̄n,k,i are not independent. Notice that(
S̄n,k(t), T̄n,k(t)

)
=
( [nt]∑
i=1

Ȳn,k,i,
[nt]∑
i=1

J̄n,k,i
)
=
(K([nt])∑

l=1

Yn,k,l,
K([nt])∑
l=1

Jn,k,l
)

=
(
Sn,k

(
K([nt])/n

)
, Tn,k

(
K([nt])/n

))
.
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Since K([nt])/n
a.s.−→ µt, we have(

S̄n,k(t), T̄n,k(t)
)
⇒
(
Ak(µt), Dk(µt)

)
.

Since processes Ak and Dk are independent, we infer that processes S̄n,k(t) and
T̄n,k(t) are asymptotically independent. Arguing as in the previous example one
can show that S̄n and T̄n, defined as

S̄n(t) =
[nt]∑
k=1

Ȳn,k and T̄n(t) =
[nt]∑
k=1

J̄n,k,

are asymptotically independent processes and assumption (4.1) is satisfied for the
array {(Ȳn,k, J̄n,k), n, k ­ 1}. �

Sequences of CTRWs generated by the array {(Ȳn,k, J̄n,k), n, k ­ 1} defined
above are called cluster CTRWs or randomly coarse grained CTRWs. An extensive
survey of such processes was given by Jurlewicz in [4]; see also [6].

We conclude this section with the following remark:

REMARK 4.1. Assume that an array {(Yn,k, Jn,k), n, k ­ 1} satisfies the con-
ditions (C1), (C6), (C3), (C4) and (2.7). Then

(4.2) (Sn, Tn)⇒ (A,D) in D
(
[0,∞),Rd × R+

)
with J1 topology.

If, additionally, (4.1) holds, then processes A and D are mutually independent.

Mutual independence of A and D implies that

(4.3) P
(
Disc(A) ∩Disc(D) = ∅

)
= 1,

where Disc(x) denotes the set of discontinuity points of x ∈ D
(
[0,∞),Rd×R+

)
.

Convergence (4.2) and condition (4.3) imply, by Theorem 3.2.4 in [16] and The-
orems 5.1 and 5.5 in [2] (see also Theorem 2.1 in [10]), the following functional
convergences:

Xn ⇒M and X̃n ⇒ M̃,

and M = M̃ = A ◦D−1, where D−1(t) = inf{s : D(s) > t}.
Observe also that when the conditions of Remark 4.1 are satisfied, then(

Sn(·), Tn(·)
)
⇒

∑
j∈L

(
Aj(πj ·), Dj(πj ·)

)
.

5. DISCUSSION ON CONDITIONS FOR M(T )
D

̸= M̃(T )

The recent papers [5] and [13] reveal that distributions ofM(t) and M̃(t) may
be different if Yn,k and Jn,k are dependent. In this section we discuss two exem-
plary situations in which distributions of M(t) and M̃(t) are essentially different.
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The fact that distribution of M(t) may be different from that of M̃(t) is especially
clear when we take Yn,k = Jn,k. In Theorem 2 in [13] we give limit distributions
of sequences Xn(t) and X̃n(t) generated by an array {Jn,k} such that its rows are
iid sequences of positive random variables with infinite means. The corollary given
below extends this result to the chain dependent case.

COROLLARY 5.1. Let an array {(Yn,k, Jn,k), n, k ­ 1} with Yn,k = Jn,k sat-
isfy the conditions of Theorem 3.1. Then for any fixed t > 0

Xn(t) =
Nn(t)∑
k=1

Jn,k ⇒M(t) and X̃n(t) =
Nn(t)+1∑

k=1

Jn,k ⇒ M̃(t),

where

(5.1) P
(
M(t) ¬ x

)
=
∞∫
0

x∫
0

νD(t− u,∞)P
(
D(s) ∈ du

)
ds, x ¬ t,

and

(5.2) P
(
M̃(t)− t ­ x

)
=
∞∫
0

t∫
0

νD(x+ t− u,∞)P
(
D(s) ∈ du

)
ds, x ­ 0.

P r o o f. Since Yn,k = Jn,k, we have A = D in the condition (C5). The as-
sertions of Theorem 3.1 imply the convergences Xn(t)⇒M(t), X̃n(t)⇒ M̃(t)
and equality (5.1). To see that equality (5.2) also holds true, put B = (x + t,∞)
in (3.3). Then the most inner integral in (3.3) has the form∫

R+

νD
(
(x+ t− v,∞) ∩ (t− u,∞)

)
P
(
D(s) ∈ dv,D(s) ∈ du

)
= νD(x+ t− u,∞)P

(
D(s) ∈ du

)
.

This completes the proof of the corollary. �

EXAMPLE 5.1. Let an array {(Yn,k, Jn,k), n, k ­ 1} with Yn,k = Jn,k be
such as in Corollary 5.1, i.e. it satisfies the conditions of Theorem 3.1. Assume that
it satisfies condition (C6) and limiting processes Dj , j ∈ L, are strictly increasing
stable subordinators such that distributions of Dj(1) are stable with parameters
Sα(1, σj , 0), σj > 0 and some α ∈ (0, 1). Then formulas (5.1) and (5.2) together
with the well-known properties of stable processes yield

P
(
Xn(t) ¬ x

)
→ sin(πα)

π

x/t∫
0

(1− u)−αuα−1du for all x ¬ t,(5.3)

P
(
X̃n(t)− t ¬ x

)
→ sin(πα)

π

1+x/t∫
1

(v − 1)−αv−1dv for all x > 0.(5.4)

Detailed computations are given in Corollary 1 in [13]. �



Probability and Mathematical Statistics 31, 2011, z. 2
© for this edition by CNS

258 W. Szczotka and P. Żebrowski

In the above example, the Lévy measure ν(A,D) of the process (A,D) is con-
centrated on the set {(x, y) ∈ R+ × R+ : x = y}, so it was not full on R+ × R+.
One may ask if in the case when the Lévy measure ν(A,D) is full on Rd × R+ (i.e.
not concentrated on any curve or hyperplane in Rd×R+) the distributions ofM(t)
and M̃(t) are the same. The following example shows that it is not true.

EXAMPLE 5.2. Let {(Ŷn,k, Jn,k), n, k ­ 1} be an array of pairs of random
variables Ŷn,k and Jn,k such that Jn,k>0, EJn,k=∞, sequences {Ŷn,k, k­1}
and {Jn,k, k ­ 1} are mutually independent for each n ­ 1 and each of them
is a sequence of iid random variables. Let γn, n ­ 1, be random variables such
that P (γn = 1) = p, P (γn = 0) = 1 − p, 0 < p < 1, and γn is independent of
{(Ŷn,k, Jn,k), k ­ 1}. Let Yn,k = γnŶn,k + (1 − γn)Jn,k. Let us notice that, for
each n ­ 1, {(Yn,k, Jn,k), k ­ 1} is a sequence of iid distributed random vectors.
Consider processes

Ŝn(t) =
[nt]∑
k=1

Ŷn,k, Tn(t) =
[nt]∑
k=1

Jn,k, Sn(t) =
[nt]∑
k=1

Yn,k.

Then Sn = γnŜn + (1− γn)Tn. Let

(5.5) (Ŝn, Tn)⇒ (Â,D),

where Â and D are independent Lévy processes and D is a subordinator. Then

(5.6) (Sn, Tn)⇒ (A,D) =
(
γÂ+ (1− γ)D,D

)
,

where γ is a random variable independent of (Â,D) and P (γ = 1) = p,
P (γ = 0) = 1 − p. Notice that for sets B1 ∈ B(R) and B2 ∈ B(R+) it follows
that

(5.7)
nP (Yn,1 ∈ B1, Jn,1 ∈ B2) = nP

(
γnŶn,1 + (1− γn)Jn,1 ∈ B1, Jn,1 ∈ B2

)
= pnP (Ŷn,1 ∈ B1, Jn,1 ∈ B2) + (1− p)nP (Jn,1 ∈ B1 ∩B2)

= pnP (Ŷn,1 ∈ B1)P (Jn,1 ∈ B2) + (1− p)nP (Jn,1 ∈ B1 ∩B2).

Since for each n ­ 1, {(Yn,k, Jn,k), k ­ 1} is a sequence of iid random vectors,
we infer by (5.5) and (5.6) that the Lévy measure of (A,D) has the form

ν(A,D)(B1 ×B2) = p
(
δ
(1)
0 (B1)ν

D(B2) + νÂ(B1)δ
(2)
0 (B2)

)
(5.8)

+ (1− p)νD(B1 ∩B2).

This measure is full on R × R+. Notice that the array {(Yn,k, Jn,k), n, k ­ 1}
satisfies the conditions of Theorem 3.1, so the convergences Xn(t)⇒ M(t) and
X̃(t)⇒ M̃(t) as well as equalities (3.2) and (3.3) hold true. Now we show that

P
(
M(t) ∈ B

)
̸= P

(
M̃(t) ∈ B

)
for any set B ∈ B(R).
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Let

I
df
=

t∫
0

∫
R+

ν(A,D)
(
(B − v)× (t− u,∞)

)
P
(
A(s) ∈ dv,D(s) ∈ du

)
.

By (5.6) we have

I =

=
t∫
0

∫
R+

ν(A,D)
(
(B − v)×(t− u,∞)

)
P
(
γÂ(s) + (1− γ)D(s)∈dv,D(s)∈du

)
= p

t∫
0

∫
R+

ν(A,D)
(
(B − v)× (t− u,∞)

)
P
(
Â(s) ∈ dv,D(s) ∈ du

)
+ (1− p)

t∫
0

∫
R+

ν(A,D)
(
(B − v)× (t− u,∞)

)
P
(
D(s) ∈ dv,D(s) ∈ du

)
= p

t∫
0

∫
R+

ν(A,D)
(
(B − v)× (t− u,∞)

)
P
(
Â(s) ∈ dv

)
P
(
D(s) ∈ du

)
+ (1− p)

t∫
0

∫
R+

ν(A,D)
(
(B − v)× (t− u,∞)

)
P
(
D(s) ∈ dv,D(s) ∈ du

)
≡ pI1 + (1− p)I2.

Using (5.8), we get

I1 = p
t∫
0

νD(t− u,∞)P
(
Â(s) ∈ B

)
P
(
D(s) ∈ du

)
+ (1− p)

t∫
0

∫
R+

νD
(
(B − v) ∩ (t− u,∞)

)
P
(
Â(s) ∈ dv

)
P
(
D(s) ∈ du

)
,

and

I2 =
t∫
0

∫
R+

ν(A,D)
(
(B − v)× (t− u,∞)

)
P
(
D(s) ∈ dv,D(s) ∈ du

)
=

t∫
0

ν(A,D)
(
(B − u)× (t− u,∞)

)
P
(
D(s) ∈ du

)
= p

∫
[0,t]∩B

νD(t− u,∞)P
(
D(s) ∈ du

)
+ (1− p)

t∫
0

νD
(
(B − u) ∩ (t− u,∞)

)
P
(
D(s) ∈ du

)
.
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Put

Ī =
t∫
0

νD(t− u,∞)P
(
A(s) ∈ B,D(s) ∈ du

)
= p

t∫
0

νD(t− u,∞)P
(
Â(s) ∈ B

)
P
(
D(s) ∈ du

)
+ (1− p)

∫
[0,t]∩B

νD(t− u,∞)P
(
D(s) ∈ du

)
.

Then

I = pĪ + p(1− p)
t∫
0

∫
R+

νD
(
(B − v) ∩ (t− u,∞)

)
P
(
Â(s) ∈ dv

)
P
(
D(s) ∈ du

)
+ (1− p)2

∫
[0,t]

νD
(
(B − u) ∩ (t− u,∞)

)
P
(
D(s) ∈ du

)
.

Observe that the conditions of Theorem 3.1 are satisfied. Then I is equal to
inner integrals in formula (3.3) and Ī is the inner integral in (3.2). Hence we have
P
(
M(t) ∈ B

)
̸= P

(
M̃(t) ∈ B

)
. �
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