PROBABILITY AND MATHEMATICAL STATISTICS Vol. 30, Fasc. 2 (2010), pp. 207–214

q-ANALOGS OF ORDER STATISTICS

BY

WOJCIECH KORDECKI (WROCŁAW) AND ANNA ŁYCZKOWSKA-HANĆKOWIAK (POZNAŃ)

Abstract. We introduce the notion of the q-analog of the k-th order statistics. We give a distribution and asymptotic distributions of q-analogs of the k-th order statistics and the intermediate order statistics with $r \to \infty$ and $r - k \to \infty$ in the projective geometry PG(r - 1, q).

2000 AMS Mathematics Subject Classification: Primary: 60G70; Secondary: 51E20.

Key words and phrases: Order statistics, limit theorems, *q*-analog, finite projective geometry.

1. INTRODUCTION

The main results of this paper are asymptotic distributions of the q-analogs of the k-th minimal order statistics (Theorem 2.1) and the intermediate order statistics (Theorem 2.2). Theorem 2.2 generalizes the Theorem from [5] and Fact 3 from [6]. This paper is an extension (with full proofs) of the results announced in [7].

Let GF(q) be a Galois field, where q is the power of prime. Let V(r,q) be an r-dimensional vector space over GF(q). There exists a one-to-one correspondence between k-dimensional subspaces of projective geometry PG(r-1,q) and k-dimensional subspaces of the space V(r,q). "Directions" in V(r,q) are points of the projective geometry PG(r-1,q) of dimension r-1. The subspace of dimension k-1 has the rank k. For example, a line has a dimension one, but it has a rank two. Let $\sigma(A)$ denote the subspace spanned by A, i.e. the smallest subspace including A. Let $\rho(A)$ denote the rank of $\sigma(A)$. The monograph by Hirschfeld [2] gives a detailed exposition of this subject; see also [9] or [11]. Let q be fixed and n be a nonnegative integer. We use the standard notation $[n] = (q^n - 1)/(q - 1)$ (see, for example, [3] or [4]). It is well known (see [2]) that the projective geometry PG(r-1,q) has [r] elements.

Projective geometries can be defined in an axiomatic way. A *projective geometry* satisfies the following axioms:

(1) Any two distinct points are on exactly one line.

(2) Let x, y, w, z be four distinct points such that no three points are collinear. If xy intersects zw, then xz intersects yw.

(3) Each line contains at least three points.

Every geometry of dimension r - 1 > 2 is isomorphic to PG(r - 1, q) defined as above.

In the area of combinatorics and special functions, a q-analog is a theorem or identity in the variable q that gives back a known result in the limit, as $q \rightarrow 1$. The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. q-analog, also called q-extension or q-generalization, is a mathematical expression parameterized by a quantity q and [n] instead of n, which generalizes a known expression and reduces to a known expression in the limit $q \rightarrow 1$. Since $[n] \rightarrow n$, if (formally) $q \rightarrow 1$, then [n] is the q-analog of a number n (see [1] or [10]). In the case when q is the power of prime, the subspaces of rank k in PG(r-1,q) are q-analogs of k-element sets. In such a meaning, our results are the q-analogs of known ones in the theory of extremal order statistics.

Let a sequence of random variables X_1, X_2, \ldots, X_n be given. We define the order statistics $Z_k^{(n)}$, $k = 1, 2, \ldots, n$, as random variables which are functions of random vector (X_1, X_2, \ldots, X_n) defined as follows. For any event ω , we arrange a sequence of realizations $X_1(\omega) = x_1, X_2(\omega) = x_2, \ldots, X_n(\omega) = x_n$ in a non-decreasing sequence $z_1 \leq z_2 \leq \ldots \leq z_n$. In this sequence, z_k is the realization of the random variables $Z_k^{(n)}$, i.e. $Z_k^{(n)}(\omega) = z_k$. For a fixed integer k, the random variables $Z_k^{(n)}$ are the k-th minimal order statistics and the random variables $Z_{n-k+1}^{(n)}$ are the k-th maximal order statistics.

For the case of the projective geometry PG(r-1,q) we shall take n = [r]. Let $\{X_e\}$ be independent, identically distributed random variables with distribution function F(x) and assigned to elements of PG(r-1,q). Let us order the elements $e_1, e_2, \ldots, e_{[r]}$ of PG(r-1,q) so that e_i has weight Z_i . Let (Y_1, Y_2, \ldots, Y_r) be a subsequence of the sequence (Z_1, Z_2, \ldots, Z_n) such that $Y_i^{(n)} = Z_{k_i}^{(n)}$ (for simplicity of the notation we sometimes write Y_i or Z_{k_i}) and k_i is the least index with $e_{k_i} \notin \sigma\{e_{k_1}, e_{k_2}, \ldots, e_{k_{i-1}}\}$. Note that $k_1 = 1, k_2 = 2$, i.e. $Y_1 = Z_1$, $Y_2 = Z_2$ and $k_i \ge i$ for $i \ge 3$. The random variables Y_1, Y_2, \ldots, Y_r will be called the q-analogs of the order statistics.

For the better clarity of further formulas, we consider (k + 1)-st order statistics, $k = 0, 1, \ldots$, instead of k-th one, $k = 1, 2, \ldots$

PROPOSITION 1.1. Let F(x) be a distribution function of a random variable X_k . Then q-analog of the (k + 1)-st order statistics, $k \ge 0$, has distribution function

$$\Pr(Y_{k+1}^{(n)} > x) = \sum_{m=k}^{[k]} \left(\left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-m} \sum_{t=0}^{m} \binom{n}{t} (F(x))^t (1-F(x))^{n-t} \right).$$

Proof. Note that

(1.1)
$$p_1 = \frac{\lfloor k \rfloor - l}{\lceil r \rceil - l}$$

is a probability that a point belongs to the space spanned by l earlier points, because [k] denotes the number of elements of rank-k space, [r] is a number of all elements and l means the number of earlier chosen elements. Then

(1.2)
$$p_2 = \prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}$$

is a probability that successively chosen points belong to a space determined by earlier chosen points, so we have to choose a next point, and

(1.3)
$$p_3 = \frac{[r] - [k]}{[r] - m}$$

is a probability that an *m*-th point does not belong to a space determined by earlier points, i.e. it spans a space of higher dimension, and

(1.4)
$$p_{4,t} = \binom{n}{t} (F(x))^t (1 - F(x))^{n-t}$$

are probabilities that exactly t points have weights smaller than x. Combining (1.1), (1.2), (1.3) and (1.4) we conclude that

$$p_1 p_2 p_3 \sum_{t=1}^m p_{4,t} = \left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-m} \sum_{t=0}^m \binom{n}{t} (F(x))^t (1-F(x))^{n-t}$$

is a probability that m is an index of a point with the smallest weight, which does not belong to rank-k space, spanned by earlier chosen points.

2. LIMIT DISTRIBUTIONS

In this section, using known results concerning simple order statistics and limit distributions of random subsets of finite projective spaces, we will find limit distribution of *q*-analogs of order statistics.

We standardize random variables $Z_k^{(n)}$ as follows:

$$\widetilde{Z}_k^{(n)} = \frac{Z_k^{(n)} - b_n}{a_n}$$

with constants $a_n > 0$, b_n appropriately chosen, k fixed, and n increasing infinitely. N. W. Smirnov (see, for example, [8]) has shown that nondegenerate asymptotic distributions of the normalized k-th minimal order statistics $\widetilde{Z}_k^{(n)}$ can be of three types only:

(2.1)
$$\Psi_{1}^{(k)}(x) = 1 - P(k, \exp(x)), \quad -\infty < x < \infty,$$

(2.2)
$$\Psi_2^{(k)}(x) = \begin{cases} 0, & x \le 0, \\ 1 - P(k, x^{\alpha}), & x \ge 0, \alpha > 0, \end{cases}$$

(2.3)
$$\Psi_3^{(k)}(x) = \begin{cases} 1 - P(k, (-x)^{-\alpha}), & x < 0, \alpha > 0, \\ 1, & x \ge 0, \end{cases}$$

where

(2.4)
$$P(k,\lambda) = \sum_{j=0}^{k-1} \frac{\lambda^j}{j!} \exp\left(-\lambda\right), \quad \lambda > 0.$$

Now we investigate a limit behaviour of a q-analog of the k-th minimal order statistics.

THEOREM 2.1. For independent random variables with a distribution F(x) a distribution of a q-analog of the k-th order statistics when $n \to \infty$ is given by

(2.5)
$$\Pr\left(\frac{Y_{k+1}^{(n)} - b_n}{a_n} < x\right) \to \Psi_i(x), \quad i = 1, 2, 3,$$

where a function Ψ is defined by formulas (2.1)–(2.3).

Proof. Replacing x by $a_n x + b_n$ in Proposition 1.1 we get

$$(2.6) \quad \Pr\left(\frac{Y_{k+1}^{(n)} - b_n}{a_n} > x\right) \\ = \sum_{m=k}^{[k]} \left(\left(\prod_{l=k}^{m-1} \frac{[k] - l}{[r] - l}\right) \frac{[r] - [k]}{[r] - m} \right) \\ \times \sum_{t=0}^{m} \binom{n}{t} \left(F(a_n x + b_n)\right)^t \left(1 - F(a_n x + b_n)\right)^{n-t} \right) \\ = \sum_{m=k+1}^{[k]} \left(\left(\prod_{l=k}^{m-1} \frac{[k] - l}{[r] - l}\right) \frac{[r] - [k]}{[r] - m} + \left(\prod_{l=k}^{m-1} \frac{[k] - l}{[r] - l}\right) \frac{[r] - [k]}{[r] - k} \right) \\ \times \sum_{t=0}^{m} \binom{n}{t} \left(F(a_n x + b_n)\right)^t \left(1 - F(a_n x + b_n)\right)^{n-t}.$$

Using an asymptotic distribution (see formulas (2.1)–(2.3)) and the fact that when $n=[r]\rightarrow\infty$

$$\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l} \to 0, \quad \frac{[r]-[k]}{[r]-m} \to 1, \quad \prod_{l=k}^{k-1} \frac{[k]-l}{[r]-l} \to 1, \quad \frac{[r]-[k]}{[r]-k} \to 1,$$

we get

$$\Pr\left(\frac{Y_{k+1}^{(n)} - b_n}{a_n} < x\right) \to \Psi_i(x), \quad i = 1, 2, 3. \quad \bullet$$

For fixed k, as $n = [r] \to \infty$ the asymptotic distribution of the q-analog of the k-th order statistics coincides with the distribution of the simple k-th order statistics. This is because the number n = [r] of points of the projective geometry PG(r-1,q) is exponentially growing in $r \to \infty$ (q is fixed) so that, for $i \ll r$, the points e_1, e_2, \ldots, e_i are such that each e_i is, with probability tending to one, independent of $e_1, e_2, \ldots, e_{i-1}$. Thus, for k fixed, the k-th minimal order statistics Y_k is asymptotically equal to the k-th order statistics Z_k .

It is also interesting to consider the cases when $k = k_n \to \infty$ as $n = [r] \to \infty$, which can be called the cases of *increasing ranks* (see [8]). Two particular rates of increase are of special interest:

(1) $k_n \to \infty$ and $k_n/n \to 0$, which is called the case of *intermediate ranks* (the *intermediate order statistics*);

(2) $k_n/n \sim \Theta (0 < \Theta < 1)$, which is called the case of *central ranks* (the *central order statistics*).

If $\{k_n\}$ is a non-decreasing intermediate order statistics sequence and there are constants $a_n > 0$ and b_n such that $\Pr(a_n(Z_n^{(k_n)} - b_n) \leq x) \to L(x)$ for a nondegenerate distribution L, then L has one of the three forms:

(2.7)
$$L_1(x) = \begin{cases} \Phi(-a\log(-x)), & x < 0, a > 0, \\ 1, & x \ge 0, \end{cases}$$

(2.8)
$$L_2(x) = \begin{cases} 0, & x \le 0, a > 0, \\ \Phi(a \log x), & x > 0. \end{cases}$$

(2.9)
$$L_3(x) = \Phi(x), \quad -\infty < x < \infty,$$

where $\Phi(\tau)$ is a Gaussian distribution function with zero mean and variance one.

Define a discrete random process $\omega_r(k)$ as a Markov chain of subsets of elements of the PG(r-1,q), which starts with empty set and for k = 1, 2, ..., n = [r], $\omega_r(k)$ is obtained by addition to $\omega_r(k-1)$ a new, randomly chosen element of PG(r-1,q). In [5] (see also [6]) Kordecki and Łuczak have shown that for n = [r] if $k - r \to \infty$, then $\rho(\omega_r(k)) = r$ almost surely, whereas for $r - k \to \infty$ we have $\rho(\omega_r(k)) = k$ almost surely. q-analogs of the intermediate order statistics and the central order statistics $(k/r \to 0 \text{ or } k/r \to \theta, 0 < \theta < 1)$ are expressed by the intermediate ("normal") order statistics, because then $k/n \to 0$ for n = [r].

Now we define q-analogs of order statistics when $k \to \infty$. Let $Y_k^{(n)}$, where $n \to \infty$, $k \to \infty$, but $k/n \to 0$, be a q-analog of an intermediate order statistics. Let $Y_k^{(n)}$, where $k \to \infty$, $n \to \infty$, $k/n \sim \Theta$ ($0 < \Theta < 1$), be a q-analog of a central order statistics.

THEOREM 2.2. For independent random variables with a distribution F(x), a distribution of a q-analog of an intermediate order statistics, where $r - k \to \infty$ when $n = [r] \to \infty$ and $k \to \infty$, is expressed as

(2.10)
$$\Pr\left(\frac{Y_{k+1}^{(n)} - b_n}{a_n} < x\right) \to L_i(x), \quad i = 1, 2, 3,$$

where the functions L_i are defined by formulas (2.7)–(2.9).

Proof. Consider once again the equation (2.6) in the proof of Theorem 2.1. Because first factors of the products

$$\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}$$

are the greatest and

$$0 < \prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l} < 1,$$

we have

$$\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l} < \frac{[k]-k}{[r]-k}.$$

Similarly, because

$$0 < \frac{[r] - [k]}{[r] - m} < 1,$$

we get

$$\begin{aligned} 0 &< \sum_{m=k+1}^{[k]} \left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-m} \\ &= \left(\prod_{l=k}^{k} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-(k+1)} + \left(\prod_{l=k}^{k+1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-(k+2)} \\ &+ \left(\prod_{l=k}^{k+2} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-(k+3)} + \dots + \left(\prod_{l=k}^{[k]-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-[k]} \\ &= \frac{[k]-k}{[r]-k} \frac{[r]-[k]}{[r]-(k+1)} \left(1 + \frac{[k]-(k+1)}{[r]-(k+2)} + \frac{[k]-(k+1)}{[r]-(k+2)} \frac{[k]-(k+2)}{[r]-(k+3)} \\ &+ \dots + \frac{[k]-(k+1)}{[r]-(k+2)} \frac{[k]-(k+2)}{[r]-(k+3)} \dots \frac{[k]-([k]-1)}{[r]-[k]} \right). \end{aligned}$$

Moreover,

$$\sum_{m=k+1}^{[k]} \left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l} \right) \frac{[r]-[k]}{[r]-m} \\ < \frac{[k]-k}{[r]-k} \frac{[r]-[k]}{[r]-(k+1)} \left(1 + \frac{[k]-k}{[r]-[k]} + \left(\frac{[k]-k}{[r]-[k]}\right)^2 + \dots + \left(\frac{[k]-k}{[r]-[k]}\right)^{[k]-k-1} \right) \\ = \frac{[k]-k}{[r]-k} \frac{[r]-[k]}{[r]-(k+1)} \frac{1 - \left(([k]-k)/([r]-[k])\right)^{[k]-k-1}}{1 - ([k]-k)/([r]-[k])} \to 0$$

when $r - k \to \infty$, $r \to \infty$, $k \to \infty$, because

$$\frac{[k]-k}{[r]-k} = \frac{(q^k-1)/(q-1)-k}{(q^r-1)/(q-1)-k} \approx \frac{q^k}{q^r} = q^{k-r} \to 0,$$

and we obtain

$$\frac{[r] - [k]}{[r] - (k+1)} = \frac{1 - [k]/[r]}{1 - (k+1)/[r]} \to 1$$

because

$$\frac{[k]}{[r]} = \frac{(q^k - 1)/(q - 1)}{(q^r - 1)/(q - 1)} \approx \frac{q^k}{q^r} = q^{k-r} \to 0.$$
$$\frac{k+1}{[r]} = \frac{k+1}{(q^r - 1)/(q - 1)} \approx \frac{k}{q^{r-1}} \to 0.$$

When $n = [r] \rightarrow \infty$ we have

$$\frac{[r] - [k]}{[r] - m} \to 1, \quad \prod_{l=k}^{[k]-1} \frac{[k] - l}{[r] - l} \to 1, \quad \frac{[r] - [k]}{[r] - k} \to 1.$$

Then, using an asymptotic distribution (see formulas (2.7)–(2.9)), we get

$$\Pr\left(\frac{Y_{k+1}^{(n)} - b_n}{a_n} < x\right) \to L_i(x), \quad i = 1, 2, 3. \quad \bullet$$

Note that from the assumption that $r - k \rightarrow \infty, r \rightarrow \infty, k \rightarrow \infty$ we infer that

$$\frac{k}{n} = \frac{k}{[r]} = \frac{k}{(q^r - 1)/(q - 1)} \approx \frac{k}{q^{r-1}} \to 0.$$

By Theorem 2.2 we obtain another proof of Fact 3 from [6].

Theorem 2.2 solves a problem of an asymptotic distribution of a q-analog of an intermediate order statistics when $r - k \rightarrow \infty$. Problems of q-analog of asymptotic distributions for central and maximal order statistics remain unsolved.

REFERENCES

- [1] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, 1983.
- [2] J. W. P. Hirschfeld, *Projective Geometries over Finite Fields*, Clarendon Press, Oxford 1979.
- [3] A. G. Kelly and J. G. Oxley, Asymptotic properties of random subsets of projective spaces, Math. Proc. Cambridge Philos. Soc. 91 (1982), pp. 119–130.
- [4] W. Kordecki, *Random matroids*, Dissertationes Math. 367 (1997).
- [5] W. Kordecki and T. Łuczak, On random subsets of projective spaces, Colloq. Math. 62 (1991), pp. 353–356.
- [6] W. Kordecki and T. Łuczak, On the connectivity of random subsets of projective spaces, Discrete Math. 196 (1999), pp. 207–217.
- [7] W. Kordecki and A. Łyczkowska-Hanćkowiak, Expected value of the minimal basis of random matroid and distributions of q-analogs of order statistics, Electron. Notes Discrete Math. 24 (2006), pp. 117–123.
- [8] M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York 1983.
- [9] J. G. Oxley, Matroid Theory, Oxford University Press, Oxford 1992.
- [10] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, 1999.
- [11] D. J. A. Welsh, Matroid Theory, Academic Press, London 1976.

University of Business in Wrocław Wrocław, Poland *E-mail:* wojciech.kordecki@handlowa.eu Department of Operations Research The Poznań University of Economics Poznań, Poland *E-mail*: anna.lyczkowska-hanckowiak@ae.poznan.pl

Received on 24.5.2009; revised version on 27.11.2009