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Abstract. We introduce the notion of the g-analog of the k-th order
statistics. We give a distribution and asymptotic distributions of g-analogs
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1. INTRODUCTION

The main results of this paper are asymptotic distributions of the g-analogs of
the k-th minimal order statistics (Theorem 2.1) and the intermediate order statistics
(Theorem 2.2). Theorem 2.2 generalizes the Theorem from [5] and Fact 3 from [6].
This paper is an extension (with full proofs) of the results announced in [7].

Let GF (q) be a Galois field, where ¢ is the power of prime. Let V' (r, q) be
an r-dimensional vector space over GF (q). There exists a one-to-one correspon-
dence between k-dimensional subspaces of projective geometry PG (r — 1, g) and
k-dimensional subspaces of the space V' (r, ¢). “Directions” in V' (7, ¢) are points
of the projective geometry PG (r — 1, ¢) of dimension r — 1. The subspace of di-
mension k£ — 1 has the rank k. For example, a line has a dimension one, but it has a
rank two. Let o (A) denote the subspace spanned by A, i.e. the smallest subspace
including A. Let p (A) denote the rank of o (A). The monograph by Hirschfeld [2]
gives a detailed exposition of this subject; see also [9] or [11]. Let ¢ be fixed and
n be a nonnegative integer. We use the standard notation [n] = (¢" — 1)/(¢ — 1)
(see, for example, [3] or [4]). It is well known (see [2]) that the projective geometry
PG (r — 1, ¢) has [r] elements.

Projective geometries can be defined in an axiomatic way. A projective geom-
etry satisfies the following axioms:

(1) Any two distinct points are on exactly one line.
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(2) Letx,y,w, z be four distinct points such that no three points are collinear.
If xy intersects zw, then xz intersects yw.

(3) Each line contains at least three points.

Every geometry of dimension » — 1 > 2 is isomorphic to PG (r — 1, ¢) de-
fined as above.

In the area of combinatorics and special functions, a g-analog is a theorem or
identity in the variable ¢ that gives back a known result in the limit, as ¢ — 1. The
earliest g-analog studied in detail is the basic hypergeometric series, which was in-
troduced in the 19th century. g-analog, also called g-extension or q-generalization,
is a mathematical expression parameterized by a quantity ¢ and [n] instead of n,
which generalizes a known expression and reduces to a known expression in the
limit ¢ — 1. Since [n] — n, if (formally) ¢ — 1, then [n] is the g-analog of a num-
ber n (see [1] or [10]). In the case when q is the power of prime, the subspaces of
rank k in PG (r — 1,q) are g-analogs of k-element sets. In such a meaning, our
results are the g-analogs of known ones in the theory of extremal order statistics.

Let a sequence of random variables X7, Xo, ..., X, be given. We define the
order statistics Z,i"), k=1,2,...,n, as random variables which are functions of
random vector (X1, Xo, ..., X,,) defined as follows. For any event w, we arrange
a sequence of realizations X (w) = z1, X2 (W) = 22, ..., X;, (W) = z,, in a non-
decreasing sequence z; < 22 < ... < 2. In this sequence, zj is the realization

of the random variable Z,gn), ie. Z,gn) (w) = 2. For a fixed integer k, the ran-

)

dom variables Z Ign are the k-th minimal order statistics and the random variables

ZT(L"Jk 4 are the k-th maximal order statistics.

For the case of the projective geometry PG (r — 1, q) we shall take n = [r].
Let {X.} be independent, identically distributed random variables with distribu-
tion function F' (x) and assigned to elements of PG (r — 1, g). Let us order the ele-

ments ey, ez, . .., e[ of PG (r — 1, ¢) so that e; has weight Z;. Let (Y1, Y2,...,Y;)

be a subsequence of the sequence (Z1, Zo, ..., Zy,) such that Yi(n) = Z,S:) (for
simplicity of the notation we sometimes write Y; or Zj,) and k; is the least in-
dex with ey, ¢ o{eg,,€k,,... €k, Note that ky = 1,ky = 2, ie. Y1 = 7],
Yo = Zs and k; > i for ¢ > 3. The random variables Y7, Y5, ..., Y, will be called
the q-analogs of the order statistics.

For the better clarity of further formulas, we consider (k + 1)-st order statis-
tics, k =0,1,...,instead of k-thone, k = 1,2, ...

PROPOSITION 1.1. Let F (x) be a distribution function of a random vari-
able Xy. Then q-analog of the (k + 1)-st order statistics, k > 0, has distribution
function

P > )= 3 (T =) =S (e a - re))

m=k \\ =k [r]=1)[r]—m =0
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Proof. Note that

(1.1) P

is a probability that a point belongs to the space spanned by [ earlier points, because
[k] denotes the number of elements of rank-k space, [r] is a number of all elements
and [ means the number of earlier chosen elements. Then

m1 (k] — 1

(1.2)

S
I
—

is a probability that successively chosen points belong to a space determined by
earlier chosen points, so we have to choose a next point, and

(1.3) p3 =

is a probability that an m-th point does not belong to a space determined by earlier
points, i.e. it spans a space of higher dimension, and

t

(5 Pag = (”) (F@)" (1 - F()"™"

are probabilities that exactly ¢ points have weights smaller than 2. Combining (1.1),
(1.2), (1.3) and (1.4) we conclude that

pipaps S pay = (mﬁl [[’:]] :5) Ir] = [H] § <;L> (F@) (1 - F()""

t=1 1=k [r] —m t=0

is a probability that m is an index of a point with the smallest weight, which does
not belong to rank-k space, spanned by earlier chosen points. m

2. LIMIT DISTRIBUTIONS

In this section, using known results concerning simple order statistics and limit
distributions of random subsets of finite projective spaces, we will find limit distri-
bution of g-analogs of order statistics.

We standardize random variables Z Ign) as follows:

(n)
~ Z"7 — by,
Z’(C”) _ %k "%

Qn

with constants a,, > 0, b,, appropriately chosen, k fixed, and n increasing infinitely.
N. W. Smirnov (see, for example, [8]) has shown that nondegenerate asymptotic
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)

distributions of the normalized k-th minimal order statistics Z ,gn can be of three

types only:
@2.1) U () = 1= P(k,exp(z)), —o0 <z < o0,
(k) 07 &z < 07
2.2 ] =
(2-2) 2 (@) {I—P(k,xa), x>0,a>0,
1—-P(k,(—x)"“ 0 0
1, xz 20,
where
k—1 bY
(2.4) P (kX)) =) —exp(=A), A>0.
j=0 J*

Now we investigate a limit behaviour of a g-analog of the k-th minimal order
statistics.

THEOREM 2.1. For independent random variables with a distribution F (x)
a distribution of a q-analog of the k-th order statistics when n — oo is given by

(n)
v\ — b,
(2.5) Pr <k+1 < a:) —W(z), i=1,2,3,

Gn

where a function VU is defined by formulas (2.1)—(2.3).

Proof. Replacing x by a,x + b, in Proposition 1.1 we get

-3 () Y
X é <Z”> (F(anz +by))' (1 = Flanz + bn))”_t>
(k]

Using an asymptotic distribution (see formulas (2.1)—(2.3)) and the fact that when
n=[r] - o

mo1 (] — |

—

— 0,
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we get

Y™ b,
Pr <’““ < :c> —Wi(z), i=1,2,3. =

Gn

For fixed k, as n = [r] — oo the asymptotic distribution of the g-analog of
the k-th order statistics coincides with the distribution of the simple k-th order
statistics. This is because the number n = [r| of points of the projective geometry
PG (r —1,q) is exponentially growing in  — oo (g is fixed) so that, for i < 7,
the points eg, ea, ..., e; are such that each e; is, with probability tending to one,
independent of e, ea, ..., e;—1. Thus, for k fixed, the k-th minimal order statistics
Y}, is asymptotically equal to the k-th order statistics Z.

It is also interesting to consider the cases when k = k,, — ooasn = [r] — oo,
which can be called the cases of increasing ranks (see [8]). Two particular rates of
increase are of special interest:

(1) k, — oo and k,,/n — 0, which is called the case of intermediate ranks
(the intermediate order statistics);

(2) kn/n ~ ©(0 <© < 1), which is called the case of central ranks (the
central order statistics).

If {k,} is a non-decreasing intermediate order statistics sequence and there

are constants a,, > 0 and b,, such that Pr (an(Zék") —b,) <z) — L(z) for a
nondegenerate distribution L, then L has one of the three forms:

P(—alog(—x)), x <0,a >0,
2.7) Ly (2) = § 2~ alog(=2))

1, x 20,

0, x<0,a >0,
(2.8) Ly (z) =

®(alogz), x>0,
(2.9) L3 (z) =®(x), —oo<uz<o00,

where @ (7) is a Gaussian distribution function with zero mean and variance one.

Define a discrete random process w; (k) as a Markov chain of subsets of ele-
ments of the PG (r — 1, ¢), which starts with empty set and for k = 1,2,...,n =
[r], wr (k) is obtained by addition to w, (k — 1) a new, randomly chosen element
of PG (r —1,q). In [5] (see also [6]) Kordecki and Luczak have shown that for
n = [r]if k —r — oo, then p(w,(k)) = r almost surely, whereas for r — k — oo
we have p(wr(k:)) = k almost surely. g-analogs of the intermediate order statistics
and the central order statistics (k/r — 0 or k/r — 6,0 < 6 < 1) are expressed by
the intermediate (“normal”) order statistics, because then k/n — 0 for n = [r].

Now we define g-analogs of order statistics when k& — oo. Let Yk(n), where
n — 0o, k — oo, but k/n — 0, be a g-analog of an intermediate order statis-
tics. Let Yk(n), where k — oo, n — 00, k/n ~ © (0 < © < 1), be a g-analog of a
central order statistics.
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THEOREM 2.2. For independent random variables with a distribution F (x),
a distribution of a q-analog of an intermediate order statistics, where r — k — 00
whenn = [r] — oo and k — o0, is expressed as

()

v — b,

(2.10) Pr<kH<$>—+M@% i=1,2,3,
Gn

where the functions L; are defined by formulas (2.7)—(2.9).

Proof. Consider once again the equation (2.6) in the proof of Theorem 2.1.
Because first factors of the products

m-l k] —1
=
are the greatest and
m—1 [k] _
0< l];[k =1 <1,
we have
e L N L
e e
Similarly, because
[r] — [K]
0< = m <1,
we get
W:W](ﬁwm4>m—m
matsl \i=k [r] =1/ [r]=m

ok P () B DG
[r] —k[r] — (k+1) r]—(k+2) [r]—(k+2)[r]—(k+3
poa B DIy )
=) = (R +3) " (-]
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Moreover,
K] m—1
(k] — 1 [r] — [K]
= (L= e

K=k ] [K] L= (K] = R)/(] - [k]))FI=A
r]—k[r]—(k+1)  1— (k] —k)/(r] = [k])

whenr — k — oo, 7 — 00, k — 00, because

— 0

M-k _(@"=D/a=Y =k o _ v
rl—k (¢"-1)/(¢-1) -k ¢ ’
and we obtain
2 e S S 74 L Y
r]—(k+1) 1—(k+1)/[r]
because
B _ (@ -D/a-1 ¢ _ e
r} (¢ =1/(¢-1) ¢ ’
kel _ k4l ko
(@ -1/g—1) ¢t
When n = [r] — oo we have
(A L <1 o S 2
R S A e

Then, using an asymptotic distribution (see formulas (2.7)—-(2.9)), we get

(n)
Y., — by
Pr<k+1<:c>—>Li(a:), 1=1,2,3. =

an
Note that from the assumption that r — k — oo, r — 00, k — oo we infer that

k k k k 0
_ = — = ~ — U.
no Il (@ =1/(e-1) ¢!
By Theorem 2.2 we obtain another proof of Fact 3 from [6].
Theorem 2.2 solves a problem of an asymptotic distribution of a g-analog of an
intermediate order statistics when r — k — oco. Problems of ¢g-analog of asymptotic
distributions for central and maximal order statistics remain unsolved.
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