PROBABILITY
 AND
 MATHEMATICAL STATISTICS
 Vol. 30, Fasc. 2 (2010), pp. 207-214

q-ANALOGS OF ORDER STATISTICS
 BY

 WOJCIECH KORDECKI (WROCŁAW)

 WOJCIECH KORDECKI (WROCŁAW)
 and ANNA ŁYCZKOWSKA-HANĆCKOWIAK (PoznAŃ)

Abstract

We introduce the notion of the q-analog of the k-th order statistics. We give a distribution and asymptotic distributions of q-analogs of the k-th order statistics and the intermediate order statistics with $r \rightarrow \infty$ and $r-k \rightarrow \infty$ in the projective geometry $P G(r-1, q)$.

2000 AMS Mathematics Subject Classification: Primary: 60G70; Secondary: 51E20.

Key words and phrases: Order statistics, limit theorems, q-analog, finite projective geometry.

1. INTRODUCTION

The main results of this paper are asymptotic distributions of the q-analogs of the k-th minimal order statistics (Theorem 2.1) and the intermediate order statistics (Theorem 2.2). Theorem 2.2 generalizes the Theorem from [5] and Fact 3 from [6]. This paper is an extension (with full proofs) of the results announced in [7].

Let $G F(q)$ be a Galois field, where q is the power of prime. Let $V(r, q)$ be an r-dimensional vector space over $G F(q)$. There exists a one-to-one correspondence between k-dimensional subspaces of projective geometry $P G(r-1, q)$ and k-dimensional subspaces of the space $V(r, q)$. "Directions" in $V(r, q)$ are points of the projective geometry $P G(r-1, q)$ of dimension $r-1$. The subspace of dimension $k-1$ has the rank k. For example, a line has a dimension one, but it has a rank two. Let $\sigma(A)$ denote the subspace spanned by A, i.e. the smallest subspace including A. Let $\rho(A)$ denote the rank of $\sigma(A)$. The monograph by Hirschfeld [2] gives a detailed exposition of this subject; see also [9] or [11]. Let q be fixed and n be a nonnegative integer. We use the standard notation $[n]=\left(q^{n}-1\right) /(q-1)$ (see, for example, [3] or [4]). It is well known (see [2]) that the projective geometry $P G(r-1, q)$ has $[r]$ elements.

Projective geometries can be defined in an axiomatic way. A projective geometry satisfies the following axioms:
(1) Any two distinct points are on exactly one line.
(2) Let x, y, w, z be four distinct points such that no three points are collinear. If $x y$ intersects $z w$, then $x z$ intersects $y w$.
(3) Each line contains at least three points.

Every geometry of dimension $r-1>2$ is isomorphic to $P G(r-1, q)$ defined as above.

In the area of combinatorics and special functions, a q-analog is a theorem or identity in the variable q that gives back a known result in the limit, as $q \rightarrow 1$. The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. q-analog, also called q-extension or q-generalization, is a mathematical expression parameterized by a quantity q and $[n]$ instead of n, which generalizes a known expression and reduces to a known expression in the limit $q \rightarrow 1$. Since $[n] \rightarrow n$, if (formally) $q \rightarrow 1$, then $[n]$ is the q-analog of a number n (see [1] or [10]). In the case when q is the power of prime, the subspaces of rank k in $P G(r-1, q)$ are q-analogs of k-element sets. In such a meaning, our results are the q-analogs of known ones in the theory of extremal order statistics.

Let a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$ be given. We define the order statistics $Z_{k}^{(n)}, k=1,2, \ldots, n$, as random variables which are functions of random vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ defined as follows. For any event ω, we arrange a sequence of realizations $X_{1}(\omega)=x_{1}, X_{2}(\omega)=x_{2}, \ldots, X_{n}(\omega)=x_{n}$ in a nondecreasing sequence $z_{1} \leqslant z_{2} \leqslant \ldots \leqslant z_{n}$. In this sequence, z_{k} is the realization of the random variable $Z_{k}^{(n)}$, i.e. $Z_{k}^{(n)}(\omega)=z_{k}$. For a fixed integer k, the random variables $Z_{k}^{(n)}$ are the k-th minimal order statistics and the random variables $Z_{n-k+1}^{(n)}$ are the k-th maximal order statistics.

For the case of the projective geometry $P G(r-1, q)$ we shall take $n=[r]$. Let $\left\{X_{e}\right\}$ be independent, identically distributed random variables with distribution function $F(x)$ and assigned to elements of $P G(r-1, q)$. Let us order the elements $e_{1}, e_{2}, \ldots, e_{[r]}$ of $P G(r-1, q)$ so that e_{i} has weight Z_{i}. Let $\left(Y_{1}, Y_{2}, \ldots, Y_{r}\right)$ be a subsequence of the sequence $\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$ such that $Y_{i}^{(n)}=Z_{k_{i}}^{(n)}$ (for simplicity of the notation we sometimes write Y_{i} or $Z_{k_{i}}$) and k_{i} is the least index with $e_{k_{i}} \notin \sigma\left\{e_{k_{1}}, e_{k_{2}}, \ldots, e_{k_{i-1}}\right\}$. Note that $k_{1}=1, k_{2}=2$, i.e. $Y_{1}=Z_{1}$, $Y_{2}=Z_{2}$ and $k_{i} \geqslant i$ for $i \geqslant 3$. The random variables $Y_{1}, Y_{2}, \ldots, Y_{r}$ will be called the q-analogs of the order statistics.

For the better clarity of further formulas, we consider $(k+1)$-st order statistics, $k=0,1, \ldots$, instead of k-th one, $k=1,2, \ldots$

Proposition 1.1. Let $F(x)$ be a distribution function of a random variable X_{k}. Then q-analog of the $(k+1)$-st order statistics, $k \geqslant 0$, has distribution function
$\operatorname{Pr}\left(Y_{k+1}^{(n)}>x\right)=\sum_{m=k}^{[k]}\left(\left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-m} \sum_{t=0}^{m}\binom{n}{t}(F(x))^{t}(1-F(x))^{n-t}\right)$.

Proof. Note that

$$
\begin{equation*}
p_{1}=\frac{[k]-l}{[r]-l} \tag{1.1}
\end{equation*}
$$

is a probability that a point belongs to the space spanned by l earlier points, because $[k]$ denotes the number of elements of rank $-k$ space, $[r]$ is a number of all elements and l means the number of earlier chosen elements. Then

$$
\begin{equation*}
p_{2}=\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l} \tag{1.2}
\end{equation*}
$$

is a probability that successively chosen points belong to a space determined by earlier chosen points, so we have to choose a next point, and

$$
\begin{equation*}
p_{3}=\frac{[r]-[k]}{[r]-m} \tag{1.3}
\end{equation*}
$$

is a probability that an m-th point does not belong to a space determined by earlier points, i.e. it spans a space of higher dimension, and

$$
\begin{equation*}
p_{4, t}=\binom{n}{t}(F(x))^{t}(1-F(x))^{n-t} \tag{1.4}
\end{equation*}
$$

are probabilities that exactly t points have weights smaller than x. Combining (1.1), (1.2), (1.3) and (1.4) we conclude that

$$
p_{1} p_{2} p_{3} \sum_{t=1}^{m} p_{4, t}=\left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-m} \sum_{t=0}^{m}\binom{n}{t}(F(x))^{t}(1-F(x))^{n-t}
$$

is a probability that m is an index of a point with the smallest weight, which does not belong to rank- k space, spanned by earlier chosen points.

2. LIMIT DISTRIBUTIONS

In this section, using known results concerning simple order statistics and limit distributions of random subsets of finite projective spaces, we will find limit distribution of q-analogs of order statistics.

We standardize random variables $Z_{k}^{(n)}$ as follows:

$$
\widetilde{Z}_{k}^{(n)}=\frac{Z_{k}^{(n)}-b_{n}}{a_{n}}
$$

with constants $a_{n}>0, b_{n}$ appropriately chosen, k fixed, and n increasing infinitely. N. W. Smirnov (see, for example, [8]) has shown that nondegenerate asymptotic
distributions of the normalized k-th minimal order statistics $\widetilde{Z}_{k}^{(n)}$ can be of three types only:

$$
\begin{align*}
& \Psi_{1}^{(k)}(x)=1-P(k, \exp (x)), \quad-\infty<x<\infty \tag{2.1}\\
& \Psi_{2}^{(k)}(x)= \begin{cases}0, & x \leqslant 0 \\
1-P\left(k, x^{\alpha}\right), & x \geqslant 0, \alpha>0\end{cases} \tag{2.2}\\
& \Psi_{3}^{(k)}(x)= \begin{cases}1-P\left(k,(-x)^{-\alpha}\right), & x<0, \alpha>0 \\
1, & x \geqslant 0\end{cases} \tag{2.3}
\end{align*}
$$

where

$$
\begin{equation*}
P(k, \lambda)=\sum_{j=0}^{k-1} \frac{\lambda^{j}}{j!} \exp (-\lambda), \quad \lambda>0 \tag{2.4}
\end{equation*}
$$

Now we investigate a limit behaviour of a q-analog of the k-th minimal order statistics.

THEOREM 2.1. For independent random variables with a distribution $F(x)$ a distribution of a q-analog of the k-th order statistics when $n \rightarrow \infty$ is given by

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{Y_{k+1}^{(n)}-b_{n}}{a_{n}}<x\right) \rightarrow \Psi_{i}(x), \quad i=1,2,3 \tag{2.5}
\end{equation*}
$$

where a function Ψ is defined by formulas (2.1)-(2.3).
Proof. Replacing x by $a_{n} x+b_{n}$ in Proposition 1.1 we get

$$
\begin{align*}
& \operatorname{Pr}\left(\frac{Y_{k+1}^{(n)}-b_{n}}{a_{n}}>x\right) \tag{2.6}\\
& =\sum_{m=k}^{[k]}\left(\left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-m}\right. \\
& \left.\quad \times \sum_{t=0}^{m}\binom{n}{t}\left(F\left(a_{n} x+b_{n}\right)\right)^{t}\left(1-F\left(a_{n} x+b_{n}\right)\right)^{n-t}\right) \\
& =\sum_{m=k+1}^{[k]}\left(\left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-m}+\left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-k}\right) \\
& \quad \times \sum_{t=0}^{m}\binom{n}{t}\left(F\left(a_{n} x+b_{n}\right)\right)^{t}\left(1-F\left(a_{n} x+b_{n}\right)\right)^{n-t} .
\end{align*}
$$

Using an asymptotic distribution (see formulas (2.1)-(2.3)) and the fact that when $n=[r] \rightarrow \infty$

$$
\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l} \rightarrow 0, \quad \frac{[r]-[k]}{[r]-m} \rightarrow 1, \quad \prod_{l=k}^{k-1} \frac{[k]-l}{[r]-l} \rightarrow 1, \quad \frac{[r]-[k]}{[r]-k} \rightarrow 1
$$

we get

$$
\operatorname{Pr}\left(\frac{Y_{k+1}^{(n)}-b_{n}}{a_{n}}<x\right) \rightarrow \Psi_{i}(x), \quad i=1,2,3
$$

For fixed k, as $n=[r] \rightarrow \infty$ the asymptotic distribution of the q-analog of the k-th order statistics coincides with the distribution of the simple k-th order statistics. This is because the number $n=[r]$ of points of the projective geometry $P G(r-1, q)$ is exponentially growing in $r \rightarrow \infty$ (q is fixed) so that, for $i \ll r$, the points $e_{1}, e_{2}, \ldots, e_{i}$ are such that each e_{i} is, with probability tending to one, independent of $e_{1}, e_{2}, \ldots, e_{i-1}$. Thus, for k fixed, the k-th minimal order statistics Y_{k} is asymptotically equal to the k-th order statistics Z_{k}.

It is also interesting to consider the cases when $k=k_{n} \rightarrow \infty$ as $n=[r] \rightarrow \infty$, which can be called the cases of increasing ranks (see [8]). Two particular rates of increase are of special interest:
(1) $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$, which is called the case of intermediate ranks (the intermediate order statistics);
(2) $k_{n} / n \sim \Theta(0<\Theta<1)$, which is called the case of central ranks (the central order statistics).

If $\left\{k_{n}\right\}$ is a non-decreasing intermediate order statistics sequence and there are constants $a_{n}>0$ and b_{n} such that $\operatorname{Pr}\left(a_{n}\left(Z_{n}^{\left(k_{n}\right)}-b_{n}\right) \leqslant x\right) \rightarrow L(x)$ for a nondegenerate distribution L, then L has one of the three forms:

$$
\begin{align*}
& L_{1}(x)= \begin{cases}\Phi(-a \log (-x)), & x<0, a>0 \\
1, & x \geqslant 0\end{cases} \tag{2.7}\\
& L_{2}(x)= \begin{cases}0, & x \leqslant 0, a>0 \\
\Phi(a \log x), & x>0\end{cases} \tag{2.8}\\
& L_{3}(x)=\Phi(x), \quad-\infty<x<\infty \tag{2.9}
\end{align*}
$$

where $\Phi(\tau)$ is a Gaussian distribution function with zero mean and variance one.
Define a discrete random process $\omega_{r}(k)$ as a Markov chain of subsets of elements of the $P G(r-1, q)$, which starts with empty set and for $k=1,2, \ldots, n=$ $[r], \omega_{r}(k)$ is obtained by addition to $\omega_{r}(k-1)$ a new, randomly chosen element of $P G(r-1, q)$. In [5] (see also [6]) Kordecki and Łuczak have shown that for $n=[r]$ if $k-r \rightarrow \infty$, then $\rho\left(\omega_{r}(k)\right)=r$ almost surely, whereas for $r-k \rightarrow \infty$ we have $\rho\left(\omega_{r}(k)\right)=k$ almost surely. q-analogs of the intermediate order statistics and the central order statistics $(k / r \rightarrow 0$ or $k / r \rightarrow \theta, 0<\theta<1)$ are expressed by the intermediate ("normal") order statistics, because then $k / n \rightarrow 0$ for $n=[r]$.

Now we define q-analogs of order statistics when $k \rightarrow \infty$. Let $Y_{k}^{(n)}$, where $n \rightarrow \infty, k \rightarrow \infty$, but $k / n \rightarrow 0$, be a q-analog of an intermediate order statistics. Let $Y_{k}^{(n)}$, where $k \rightarrow \infty, n \rightarrow \infty, k / n \sim \Theta(0<\Theta<1)$, be a q-analog of a central order statistics.

THEOREM 2.2. For independent random variables with a distribution $F(x)$, a distribution of a q-analog of an intermediate order statistics, where $r-k \rightarrow \infty$ when $n=[r] \rightarrow \infty$ and $k \rightarrow \infty$, is expressed as

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{Y_{k+1}^{(n)}-b_{n}}{a_{n}}<x\right) \rightarrow L_{i}(x), \quad i=1,2,3 \tag{2.10}
\end{equation*}
$$

where the functions L_{i} are defined by formulas (2.7)-(2.9).
Proof. Consider once again the equation (2.6) in the proof of Theorem 2.1. Because first factors of the products

$$
\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}
$$

are the greatest and

$$
0<\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}<1
$$

we have

$$
\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}<\frac{[k]-k}{[r]-k}
$$

Similarly, because

$$
0<\frac{[r]-[k]}{[r]-m}<1
$$

we get

$$
\begin{aligned}
0< & \sum_{m=k+1}^{[k]}\left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-m} \\
= & \left(\prod_{l=k}^{k} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-(k+1)}+\left(\prod_{l=k}^{k+1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-(k+2)} \\
& +\left(\prod_{l=k}^{k+2} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-(k+3)}+\ldots+\left(\prod_{l=k}^{[k]-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-[k]} \\
= & \frac{[k]-k}{[r]-k} \frac{[r]-[k]}{[r]-(k+1)}\left(1+\frac{[k]-(k+1)}{[r]-(k+2)}+\frac{[k]-(k+1)}{[r]-(k+2)} \frac{[k]-(k+2)}{[r]-(k+3)}\right. \\
& \left.+\ldots+\frac{[k]-(k+1)}{[r]-(k+2)} \frac{[k]-(k+2)}{[r]-(k+3)} \ldots \frac{[k]-([k]-1)}{[r]-[k]}\right)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\sum_{m=k+1}^{[k]}(& \left(\prod_{l=k}^{m-1} \frac{[k]-l}{[r]-l}\right) \frac{[r]-[k]}{[r]-m} \\
& <\frac{[k]-k}{[r]-k} \frac{[r]-[k]}{[r]-(k+1)}\left(1+\frac{[k]-k}{[r]-[k]}+\left(\frac{[k]-k}{[r]-[k]}\right)^{2}+\ldots\right. \\
& \left.+\left(\frac{[k]-k}{[r]-[k]}\right)^{[k]-k-1}\right) \\
& =\frac{[k]-k}{[r]-k} \frac{[r]-[k]}{[r]-(k+1)} \frac{1-(([k]-k) /([r]-[k]))^{[k]-k-1}}{1-([k]-k) /([r]-[k])} \rightarrow 0
\end{aligned}
$$

when $r-k \rightarrow \infty, r \rightarrow \infty, k \rightarrow \infty$, because

$$
\frac{[k]-k}{[r]-k}=\frac{\left(q^{k}-1\right) /(q-1)-k}{\left(q^{r}-1\right) /(q-1)-k} \approx \frac{q^{k}}{q^{r}}=q^{k-r} \rightarrow 0
$$

and we obtain

$$
\frac{[r]-[k]}{[r]-(k+1)}=\frac{1-[k] /[r]}{1-(k+1) /[r]} \rightarrow 1
$$

because

$$
\begin{gathered}
\frac{[k]}{[r]}=\frac{\left(q^{k}-1\right) /(q-1)}{\left(q^{r}-1\right) /(q-1)} \approx \frac{q^{k}}{q^{r}}=q^{k-r} \rightarrow 0, \\
\frac{k+1}{[r]}=\frac{k+1}{\left(q^{r}-1\right) /(q-1)} \approx \frac{k}{q^{r-1}} \rightarrow 0 .
\end{gathered}
$$

When $n=[r] \rightarrow \infty$ we have

$$
\frac{[r]-[k]}{[r]-m} \rightarrow 1, \quad \prod_{l=k}^{[k]-1} \frac{[k]-l}{[r]-l} \rightarrow 1, \quad \frac{[r]-[k]}{[r]-k} \rightarrow 1
$$

Then, using an asymptotic distribution (see formulas (2.7)-(2.9)), we get

$$
\operatorname{Pr}\left(\frac{Y_{k+1}^{(n)}-b_{n}}{a_{n}}<x\right) \rightarrow L_{i}(x), \quad i=1,2,3
$$

Note that from the assumption that $r-k \rightarrow \infty, r \rightarrow \infty, k \rightarrow \infty$ we infer that

$$
\frac{k}{n}=\frac{k}{[r]}=\frac{k}{\left(q^{r}-1\right) /(q-1)} \approx \frac{k}{q^{r-1}} \rightarrow 0 .
$$

By Theorem 2.2 we obtain another proof of Fact 3 from [6].
Theorem 2.2 solves a problem of an asymptotic distribution of a q-analog of an intermediate order statistics when $r-k \rightarrow \infty$. Problems of q-analog of asymptotic distributions for central and maximal order statistics remain unsolved.

REFERENCES

[1] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, 1983.
[2] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Clarendon Press, Oxford 1979.
[3] A. G. Kelly and J. G. Oxley, Asymptotic properties of random subsets of projective spaces, Math. Proc. Cambridge Philos. Soc. 91 (1982), pp. 119-130.
[4] W. Kordecki, Random matroids, Dissertationes Math. 367 (1997).
[5] W. Kordecki and T. Łuczak, On random subsets of projective spaces, Colloq. Math. 62 (1991), pp. 353-356.
[6] W. Kordecki and T. Łuczak, On the connectivity of random subsets of projective spaces, Discrete Math. 196 (1999), pp. 207-217.
[7] W. Kordecki and A. Łyczkowska-Hanćkowiak, Expected value of the minimal basis of random matroid and distributions of q-analogs of order statistics, Electron. Notes Discrete Math. 24 (2006), pp. 117-123.
[8] M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York 1983.
[9] J. G. Oxley, Matroid Theory, Oxford University Press, Oxford 1992.
[10] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, 1999.
[11] D. J. A. Welsh, Matroid Theory, Academic Press, London 1976.

University of Business in Wrocław
Wrocław, Poland
E-mail: wojciech.kordecki@handlowa.eu

Department of Operations Research The Poznań University of Economics Poznań, Poland

E-mail: anna.lyczkowska-hanckowiak@ae.poznan.pl

Received on 24.5.2009;
revised version on 27.11.2009

