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Abstract. In this paper we consider the problem of the quantile hedg-
ing from the point of view of a better informed agent acting on the mar-
ket. The additional knowledge of the agent is modelled by a filtration ini-
tially enlarged by some random variable. By using equivalent martingale
measures introduced in [1] and [2] we solve the problem for the complete
case, by extending the results obtained in [4] to the insider context. Finally,
we consider the examples with the explicit calculations within the standard
Black–Scholes model.
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1. INTRODUCTION

A trader on the stock market is usually assumed to make his decisions relying
on all the information which is generated by the market events. However, it is reg-
istered that some people have more detailed information than others, in the sense
that they act with the present time knowledge of some future event. This is the so-
called insider information and those dealers taking advantage of it are the insiders.
The financial markets with economic agents possessing additional knowledge have
been studied in a number of papers (see, e.g., [1], [2], [6], [10]). We take approach
originated in [3] and [9] assuming that the insider possesses some extra informa-
tion stored in the random variable G known at the beginning of the trading interval
and not available to the regular trader. The typical examples of G are G = ST+δ,
G = 1[a,b](ST+δ) or G = supt∈[0,T+δ] St (δ > 0), where S is a semimartingale
representing the discounted stock price process and T is a fixed time horizon till
which the insider is allowed to trade.

In this paper we show how much better and with which strategies an insider
can perform on the market if he uses optimally the extra information he has at
his disposal. The problem of pricing and perfect hedging of contingent claims is
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well understood in the context of arbitrage-free models which are complete. In
such models every contingent claim can be replicated by a self-financing trading
strategy. The cost of replication equals the discounted expectation of the claim
under the unique equivalent martingale measure. Moreover, this cost is the same
for the insider and the regular trader. Therefore, instead of this strategy we will
employ the quantile hedging strategy of an insider for the replication, following an
idea of Föllmer and Leukert [4], [5]. That is, we will seek for the self-financing
strategies of two types:

1. maximizing the probability ofsuccess of hedge under a given initial capital;
2. minimizing the initial capital under a given lower bound of the probability

of the successful hedge.
This is the case when the insider is unwilling to put up the initial amount

of capital required by a perfect hedging. This approach might be also seen as a
dynamic version of the VaR.

We use powerful technique of grossissement de filtrations developed by Jeulin
and Yor [7], [8] and utilize the results of Amendinger [1] and Amendinger et al. [2].

The paper is organized as follows. In Section 2 we present the main results.
In Section 3 we analyze in detail some examples. Finally, in Section 4 we give the
proofs of the main results.

2. MAIN RESULTS

Let (Ω,F ,F,P) be a complete probability space and S = (St)t0 be an (F,P)-
semimartingale representing the discounted stock price process. Assume that the
filtration F = (Ft)t0 is the natural filtration of S satisfying usual conditions with
the trivial σ-algebra F0. Thus, the regular trader makes his portfolio decisions ac-
cording to the information flow F. In addition to the regular trader we will consider
the insider, whose knowledge will be modelled by the initial enlargement of F, that
is filtration G = (Gt)t0 given by

Gt = Ft ∨ σ(G),

where G is an F-measurable random variable. In particular, G can be an FT+δ-
measurable random variable (δ > 0) for T being a fixed time horizon representing
the expiry date of the hedged contingent claim.

We will assume that the market is complete and arbitrage-free for the regular
trader, hence there exists a unique equivalent martingale measure QF such that S is
an (F,QF)-martingale on [0, T ]. Denote by (ZF

t )t∈[0,T ] the density process of QF
with respect to P, i.e.

ZF
t =

dQF
dP

∣∣∣∣
Ft

.
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We will consider the contingent claim H being an FT -measurable, nonneg-
ative random variable and the replicating investment strategies for insider, which
are expressed in terms of the integrals with respect to S. To define them properly
we assume that S is a (G,P)-semimartingale, which follows from the requirement:

(2.1) P(G ∈ ·|Ft)≪ P(G ∈ ·) P-a.s.

for all t ∈ [0, T ] (see, e.g., [1] and [8]). In fact, we assume from now on more, that
is, that the measure P(G ∈ ·|Ft) and the law of G are equivalent for all t ∈ [0, T ]:

(2.2) P(G ∈ ·|Ft) ∼ P(G ∈ ·) P-a.s.

Under the condition (2.2) there exists an equivalent G-martinagle measure QG
defined by:

(2.3) QG(A) =
∫
A

ZF
T

pGT
(ω)dP(ω), A ∈ GT ,

where pxt P(G ∈ dx) is a version of P(G ∈ dx|Ft); see [1] and [2] (and also The-
orems 4.1 and 4.2).

For H ∈ {F,G}we will consider only self-financing admissible trading strate-
gies (V0, ξ) on [0, T ] for which the value process

Vt = V0 +
t∫
0

ξu dSu, t ∈ [0, T ],

is well defined, where an initial capital V0  0 is H0-measurable, a process ξ is
H-predictable and

Vt  0 P-a.s.

for all t ∈ [0, T ]. Denote all admissible strategies associated with the filtration H ∈
{F,G} by AH.

Under the assumption (2.2) the insider can perfectly replicate the contingent
claim H ∈ L1(QF) ∩ L1(QG):

EQG(H|Gt) = H0 +
t∫
0

ξu dSu P-a.s.,

where H0 = EQG(H|G0). Moreover, from [1] and [2] it follows that H0 = EQGH
(see Theorem 4.1). In this paper we will analyze the case when the insider is un-
willing to pay the initial capital H0 required by a perfect hedge. We will consider
the following pair of dual problems.
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PROBLEM 2.1. Let α be a given G0-measurable random variable taking values
in [0, 1]. We are looking for a strategy (αEQGH, ξ) ∈ AG which maximizes for any
realization of G the insider’s probability of a successful hedge:

P
(
αEQGH +

T∫
0

ξt dSt  H
∣∣G0) P-a.s.

PROBLEM 2.2. Let ϵ be a given G0-measurable random variable taking values
in [0, 1]. We are looking for a minimal G0-measurable random variable α for which
there exists ξ such that (αEQGH, ξ) ∈ AG and

(2.4) P
(
αEQGH +

T∫
0

ξt dSt  H
∣∣G0)  1− ϵ P-a.s.

REMARK 2.1. Recall that in the quantile hedging problem for the usual trader
we maximize the objective probability P

(
αEQFH +

∫ T

0
ξt dSt  H

)
, where α is

a number from [0, 1]. In Problems 2.1 and 2.2 we use conditional probability, since
now the insider’s perception of the market at time t = 0 depends on the knowledge
described by G0.

The set

(2.5)
{
αEQGH +

T∫
0

ξt dSt  H
}

will be called a success set. Let us put

Q∗(A) =
EQG(H1A)

EQG(H)
, A ∈ GT .

The following theorems solve Problems 2.1 and 2.2.

THEOREM 2.1. Suppose that there exists a G0-measurable random variable
k such that

(2.6) Q∗
(

dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0) = α.

Then the maximal probability of a success set solving Problem 2.1 equals:

P
(

dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0)
and it is realized by the strategy

(EQG [H1{(dQ∗/dP)|GT¬k}
|G0], ξ̃),

which replicates the payoff H1{(dQ∗/dP)|GT¬k}
.
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THEOREM 2.2. Suppose that there exists a G0-measurable random variable
k such that

(2.7) P
(

dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0) = 1− ϵ.

Then the minimal G0-measurable random variable α solving Problem 2.2 equals:

Q∗
(

dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0)
and it is realized by the strategy

(EQG [H1{(dQ∗/dP)|GT¬k}
|G0], ξ̃)

being the perfect hedge of H1{(dQ∗/dP)|GT¬k}
.

REMARK 2.2. The assumptions that there exists k satisfying (2.6) and (2.7)
are satisfied if P(ZF

TH = 0|G0) < α and P(ZF
TH = 0|G0) < 1 − ϵ, respectively,

and ZF
TH has the conditional density on R+ given G = g; see Section 3 for the

examples.

The proofs of Theorems 2.1 and 2.2 are given in Section 4.

3. NUMERICAL EXAMPLES

In this section we consider the standard Black–Scholes model in which the
price evolution is described by the equation

dSt = σStdWt + µStdt,

where W is a Brownian motion, σ, µ > 0. For simplicity we assume that interest
rate is zero. We analyze Problem 2.2 for two examples of the insider information
and provide numerical results for pricing the vanilla call option, where

H = (ST −K)+

and K is a strike price.

3.1. The case of G = WT+δ. It means that insider knows the stock price G =
ST+δ after the expiry date T . In this case we have

P(WT+δ ∈ dz|Ft) = P(WT+δ −Wt +Wt ∈ dz|Ft)

=
1√

2π(T + δ − t)
exp

(
− (z −Wt)

2

2(T + δ − t)

)
dz

= pztP(WT+δ ∈ dz),

Probability and Mathematical Statistics 30/2010, z. 2
© for this edition by CNS



252 P. Klusik et al.

where

pzt =

√
T + δ

T + δ − t
exp

(
− (z −Wt)

2

2(T + δ − t)
+

z2

2(T + δ)

)
.

Therefore

dQG
dP

∣∣∣∣
GT

=
ZF
T

pGT
=

(dQF/dP)|FT

pGT

=
exp

(
− (µ/σ)WT − 1

2(µ/σ)
2T

)√
(T + δ)/δ exp

(
− (WT+δ −WT )2/(2δ) +W 2

T+δ/[2(T + δ)]
)

=

√
δ

T + δ
exp

(
− µ

σ
WT −

1

2

(
µ

σ

)2

T +
(WT+δ −WT )

2

2δ
−

W 2
T+δ

2(T + δ)

)
and

(3.1)
dQ∗

dP

∣∣∣∣
GT

=
H

EQGH

dQG
dP

∣∣∣∣
GT
.

Note that (dQ∗/dP)|GT is a random variable with the conditional density on R+

given G = g and for given ϵ ∈ [0, 1] we can find a G0-measurable random variable
k such that

P
(
dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0) = 1− ϵ if P(H = 0|G0) < 1− ϵ.

Therefore, by Theorem 2.2 the cost of the quantile hedging for the insider can be
reduced in this case by the factor

(3.2) α = Q∗
(

dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0).
In Table 1 we provide the values of α for µ=0.08, σ=0.25, S0=100, K=110,
T = 0.25, δ = 0.02, and different values of G and ϵ. In the programme we use the
simple fact that E[f(WT )|G = g] = f

(
g −W (δ)

)
for a measurable function f .

Table 1

G

105 106 107 108 109 110 111 112

ϵ

0.01 0.05 0.09 0.13 0.17 0.22 0.27 0.32 0.37
0.05 < 0.01 0.01 0.04 0.07 0.10 0.14 0.18 0.23
0.10 < 0.01 < 0.01 0.01 0.03 0.05 0.08 0.12 0.16
0.15 < 0.01 < 0.01 < 0.01 0.01 0.03 0.05 0.08 0.12
0.20 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.03 0.06 0.09
0.25 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 0.04 0.07
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3.2. The case of G = 1{WT+δ∈[a,b]}. In this example the insider knows the
range of the stock price ST+δ after the expiry date T . The straightforward calcula-
tion yields

P(G = 1|Ft) =
1√

2π(T + δ − t)

b−Wt∫
a−Wt

exp

(
− u2

2(T + δ − t)

)
du

= Φ

(
b−Wt√
T + δ − t

)
− Φ

(
a−Wt√
T + δ − t

)
,

where Φ is c.d.f. of the standard normal distribution. Thus,

p1t =
P(G = 1|Ft)
P(G = 1)

=
Φ
(
(b−Wt)/

√
T + δ − t

)
− Φ

(
(a−Wt)/

√
T + δ − t

)
Φ(b/
√
T + δ)− Φ(a/

√
T + δ)

,

and similarly

p0t =
1 + Φ

(
(a−Wt)/

√
T + δ − t

)
− Φ

(
(b−Wt)/

√
T + δ − t

)
1 + Φ(a/

√
T + δ)− Φ(b/

√
T + δ)

.

Hence

dQG
dP

∣∣∣∣
GT

=
exp

(
− (µ/σ)WT − (1/2)(µ/σ)2T

)
p0T1{G=0} + p1T1{G=1}

= exp

(
− µ

σ
WT −

T

2

(
µ

σ

)2)
×
(
1{G=0}

1 + Φ
(
(a−Wt)/

√
T + δ − t

)
− Φ

(
(b−Wt)/

√
T + δ − t

)
1 + Φ(a/

√
T + δ)− Φ(b/

√
T + δ)

+ 1{G=1}
Φ
(
(b−Wt)/

√
T + δ − t

)
− Φ

(
(a−Wt)/

√
T + δ − t

)
Φ(b/
√
T + δ)− Φ(a/

√
T + δ)

)−1
and Q∗ and α are defined in (3.1) and (3.2).

Table 2

[a, b]

[109,111] [108,112] [107,113] [112,114] [106,108]

ϵ

0.01 0.272 0.284 0.296 0.413 0.135
0.05 0.142 0.150 0.157 0.277 0.039
0.10 0.087 0.088 0.095 0.209 0.010
0.15 0.053 0.055 0.059 0.164 0.001
0.20 0.032 0.033 0.034 0.129 < 0.001
0.25 0.017 0.019 0.020 0.102 < 0.001
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Table 2 provides the values of the optimal α for µ = 0.08, σ = 0.25, S0 =
100, K = 110, T = 0.25, δ = 0.02, G = 1 and different values of ϵ and end-
points of the interval [a, b] for ST+δ. In the programme we use the simple fact that
E[f(WT )|G = 1] = E

[
f(WT ),WT+δ ∈ [a, b]

]
/P(G = 1) for a measurable func-

tion f and to simulate a numerator we choose only those trajectories for which
WT+δ ∈ [a, b].

4. PROOFS

Before we give the proofs of the main Theorems 2.1 and 2.2 we present a
few introductory lemmas and theorems. We start with the result of [1] and [2]
concerning the properties of the equivalent martingale measure QG for the insider.
We recall that the condition (2.2) is assumed to be satisfied.

THEOREM 4.1. (i) The process ZG
t := ZF

t /p
G
t is a (G,P)-martingale.

(ii) The measure QG defined in (2.3) has the following properties:

(a) FT and σ(G) are independent under QG;

(b) QG = QF on (Ω,FT ) and QG = P on
(
Ω, σ(G)

)
.

We are now in a position to state the theorem which relates the martingale
measures of the insider and the regular trader.

THEOREM 4.2. Let X = (Xt)t0 be an F-adapted process. The following
statements are equivalent:

(i) X is an (F,QF)-martingale;
(ii) X is an (F,QG)-martingale;
(iii) X is a (G,QG)-martingale.

P r o o f. The equivalence of (i) and (ii) follows from the fact that QF = QG
on FT . The implication (iii)⇒ (ii) is a consequence of the tower property of the
conditional expectation. Finally, taking A = As ∩{ω ∈ Ω : G(ω) ∈ B} (As ∈ Fs,
B is a Borel set), we obtain the implication (ii)⇒ (iii) from the standard monotone
class arguments and the following equalities:

EQG(1AXt) = EQG(1As1{G∈B}Xt) = QG(G ∈ B)EQG(1AsXt)

= QG(G ∈ B)EQG(1AsXs) = EQG(1AXs), s ¬ t,

where in the second equality we use Theorem 4.1 (ii). �

REMARK 4.1. We need Theorem 4.2 to guarantee the martingale representa-
tion for the insider’s replicating strategy. Moreover, from this representation and
Theorem 4.1 we can deduce that the cost of perfect hedging for the insider is the
same as for the regular trader, that is EQG [H|G0] = EQFH .
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REMARK 4.2. In general, Theorem 4.2 is not true for the local martingales,
since a localizing sequence (τn) of G-stopping times is not a sequence of F-
stopping times.

LEMMA 4.1. Let k be a positive Gt-measurable random variable. For every
A ∈ F such that

Q∗ (A| Gt) ¬ Q∗
(
dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣Gt) P-a.s.

we have

P (A| Gt) ¬ P
(
dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣Gt) P-a.s.

Similarly, if

P (A| Gt)  P
(
dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣Gt) P-a.s.,

then

Q∗ (A| Gt)  Q∗
(
dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣Gt) P-a.s.

P r o o f. Let us put Ã := {(dQ∗/dP)|GT ¬ k}. Note that

(1Ã − 1A)

(
k − dQ∗

dP

∣∣∣∣
GT

)
 0.

Thus
dQ∗

dP

∣∣∣∣
Gt

(
Q∗(Ã|Gt)−Q∗(A|Gt)

)
=

dQ∗

dP

∣∣∣∣
Gt
EQ∗

(
(1Ã − 1A) | Gt

)
= EP

(
dQ∗

dP

∣∣∣∣
GT

(1Ã − 1A)

∣∣∣∣Gt)
¬ k

(
P(Ã|Gt)− P(A|Gt)

)
,

which completes the proof. �

LEMMA 4.2. The following holds true:

dQ∗

dQG

∣∣∣∣
G0

= 1.

P r o o f. Note that for A = {ω ∈ Ω : G ∈ B} ∈ G0 (B is a Borel set) we have

Q∗(A) = EQG

[
dQ∗

dQG
1A

]
=

EQG [H1A]

EQGH

=
EQG [H]QG(A)

EQGH
= QG(A),

where in the last but one equality we use Theorem 4.1. �
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P r o o f o f T h e o r e m 2.1. Consider the value process Vt = αEQGH +∫ t

0
ξu dSu for any strategy (αEQGH, ξ) ∈ AG. Note that for its success set A de-

fined in (2.5) we have
VT  H1A.

Moreover, by Theorem 4.2 the process Vt is a nonnegative (G,QG)-local martin-
gale, hence it is a (G,QG)-supermartingale and

αEQGH = αV0  EQG(VT |G0)  EQG(H1A|G0).

Thus, from Lemmas 4.2 and 4.1 we obtain

Q∗(A|G0) ¬
α

(dQ∗/dQG)|G0
= α P-a.s.,

and therefore

P(A|G0) ¬ P
(
dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0) P-a.s.(4.1)

It remains to show that (EQG [H1{(dQ∗/dP)|GT¬k}
|G0], ξ̃) ∈ AG, and that this

strategy attains the upper bound (4.1). The first statement follows directly from the
definition of ξ̃:

EQG(H1{(dQ∗/dP)|GT¬k}
|G0) +

t∫
0

ξ̃u dSu = EQG(H1{(dQ∗/dP)|GT¬k}
|Gt)  0.

Moreover,

P
(
EQG [H1{(dQ∗/dP)|GT¬k}

|G0] +
T∫
0

ξ̃u dSu  H
∣∣G0)

= P(H1{(dQ∗/dP)|GT¬k}
 H|G0)  P

(
dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0),
which completes the proof in view of (4.1). �

P r o o f o f T h e o r e m 2.2. Observe that for any (αEQGH, ξ) ∈ AG we
have

Q∗
(
αEQGH +

T∫
0

ξudSu  H
∣∣G0)

=
1

(dQ∗/dQG)|G0
EQG

(
dQ∗

dQG

∣∣∣∣
GT

1
{αEQGH+

∫ T

0
ξudSuH}

∣∣∣∣G0)

¬
EQG

(
αEQGH +

∫ T

0
ξudSu

∣∣G0)
EQGH

= α.
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Applying the second part of Lemma 4.1 for the success set

A =
{
αEQGH +

T∫
0

ξu dSu  H
}

and using the required inequality (2.4) and the definition of k given in (2.7) we
derive

(4.2) α  Q∗
(
αEQGH +

T∫
0

ξu dSu  H
∣∣G0)  Q∗

(
dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0).
We prove now that for this particular minimal choice of α being the right-hand side
of (4.2) the strategy (EQG [H1{(dQ∗/dP)|GT¬k}

|G0], ξ̃) satisfies the inequality (2.4)
of Problem 2.2:

P
(
αEQGH +

T∫
0

ξ̃u dSu  H
∣∣G0)

= P
(
EQG [H1{(dQ∗/dP)|GT¬k}

|G0] +
T∫
0

ξ̃u dSu  H
∣∣G0)

= P(H1{(dQ∗/dP)|GT¬k}
 H|G0)  P

(
dQ∗

dP

∣∣∣∣
GT
¬ k

∣∣∣∣G0) = 1− ϵ.

This completes the proof. �
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