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Abstract. Stochastic variational inequalities provide a unified treat-
ment for stochastic differential equations living in a closed domain with
normal reflection and/or singular repellent drift. When the domain is a con-
vex polyhedron, we prove that the reflected-repelled Brownian motion does
not hit the non-smooth part of the boundary. A sufficient condition for non-
hitting a face of the polyhedron is derived from the one-dimensional situa-
tion. A full answer to the question of attainability of the walls of the Weyl
chamber may be given for a radial Dunkl process.
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1. INTRODUCTION

For a Brownian motion constrained to live in a convex polyhedral domain
under action of a singular drift and/or normal reflection on the faces, a typical
question is to ask whether it may hit the edges of the polyhedron. Our main result
is that this hitting time is a.s. infinite. Then the possibility of hitting the single faces
is discussed.

Stochastic differential equations with reflection on the faces of a convex poly-
hedron have been studied in several papers (e.g., [30], [31], [11], [12]). Their so-
lution is a continuous process that may or may not hit the edges, depending on the
drift and diffusion coefficients of the process and on the direction of reflection (nor-
mal or oblique). In particular, Williams [31] has proved that the Brownian motion
with a skew symmetry condition on the direction of reflection does not touch the
intersections of the faces of the polyhedron. Her result includes the case of normal
reflection.

On the other hand, there is an extensive literature about non-colliding Brow-
nian particles (e.g., [16]–[18], [25]). Most of these works originate in the study
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of the eigenvalues of Gaussian matrix processes. These eigenvalues are solutions
to systems of stochastic differential equations with a singular drift that prevents
the particles from colliding. Extensions of these systems are provided by Dunkl
processes [26] that were recently developed in connection with harmonic analysis
on symmetric spaces. The radial part of a Dunkl process may be considered as a
Brownian motion perturbed by a singular drift which forces the process to live in
a cone generated by the intersection of a finite set of half-spaces ([9], [10], [14]).
Depending on the strength of the repulsion, the process may touch the walls of the
cone or not.

Actually it is possible to unify both theories of (normal) reflection and strong
repulsion within a common framework. This is carried out by stochastic variational
inequalities, also called multivalued stochastic differential equations (MSDE) that
were mainly developed by Cépa ([4], [5]). These equations are associated with a
convex function in a domain of Rd. Depending on the boundary behavior of this
function the diffusion will (normally) reflect on the boundary, hit the boundary
without local time, or live in the open domain. We shall here follow this way and
concentrate on a Brownian motion living in a convex polyhedral domain, bounded
or unbounded. With each face of the polyhedron there is associated a repelling
force with normal reflection when the repulsion is not strong enough. In this setting
we ask whether the process may hit the boundary of the domain. Our main task
will be to rule out the possibility of hitting the intersection of two faces. Once this
is achieved, the problem is now basically one-dimensional and we may use the
ordinary scale function of real diffusions.

In some previous works ([20], [8]), this issue has been studied in the particular
case of the limiting hyperplanesHij := {x = (x1, . . . , xd) ∈Rd : xi = xj}, i ̸= j,
and presented as the problem of collisions between Brownian particles. There is a
simple collision if precisely two coordinates coincide and a multiple collision if
at least three coordinates coincide at the same time. Because the d-dimensional
Brownian motion does not hit the intersection of two hyperplanes, one can guess
that an additional drift does not change anything. However, a rigorous proof is
necessary because the singularity of the drift makes useless the usual Girsanov
change of probability measure. And the counterexample of Bass and Pardoux [1]
has shown that uniform nondegeneracy of the diffusion term does not preclude
multiple collisions.

As in [8], where the particular case of electrostatic repulsion was considered,
our proof only uses basic tools from stochastic calculus, mainly McKean’s mar-
tingale method [23] which was already applied in [2] to prove non-collision for
the eigenvalues of Wishart processes. Another way could be to use the theory of
Dirichlet forms as done in [20] where a general condition of non-collision has been
obtained.

The paper is organized as follows. In Section 2 we introduce basic definitions
and notation. The main features about stochastic variational inequalities are also
recalled. Section 3 is devoted to non-attainability of the edges of the polyhedron.
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Constrained Brownian motion 275

In Section 4 we give a sufficient condition of non-attainability of a single face.
Section 5 presents some applications to Brownian particles with nearest neighbor
interaction, Wishart processes and Dunkl processes.

2. MULTIVALUED STOCHASTIC DIFFERENTIAL EQUATION
IN A POLYHEDRAL DOMAIN

Let
(
Ω,F , (Ft, t ­ 0),P

)
be a filtered probability space endowed with the

usual conditions and B = (Bt) be an (Ft)-adapted d-dimensional Brownian mo-
tion starting from the origin. Let

Φ : Rd → (−∞,+∞]

be a lower semi-continuous convex function such that

dom(Φ) := {x : Φ(x) < ∞}

has nonempty interior. Let

D := Int
(
dom(Φ)

)
.

For simplicity of the notation, we will assume that Φ is C1 on D. If x ∈ ∂D, we
say that the unit vector n(x) is a unit inward normal to D at x if

n(x) · (x− z) ¬ 0

for any z ∈ D. Based on the results in [4], the following theorem has been proved
in [6] (see also Theorem 2.2 in [7]).

THEOREM 2.1. For any F0-measurable random variable X0 with values in
D, there exist a unique continuous (Ft)-adapted process X = {Xt, 0 ¬ t <∞}
with values in D and a unique continuous (Ft)-adapted non-decreasing process
L = {Lt, 0 ¬ t <∞} such that

Xt = X0 + Bt −
t∫
0

∇Φ(Xs) ds +
t∫
0

ns dLs, 0 ¬ t <∞,

Lt =
t∫
0

1{Xs∈∂D}dLs, 0 ¬ t <∞,

where ns is dLs-a.e. a unit inward normal to D at Xs. For any 0 < T <∞,

(2.1)
T∫
0

1{Xs∈∂D}ds = 0

and

(2.2)
T∫
0

|∇Φ(Xs)| ds < ∞.
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From now on we concentrate on a particular polyhedral setting. Let I :=
{1, . . . ,m}, where m ­ 1. We consider a convex function Φ of the form

(2.3) Φ(x) :=
∑
i∈I
ϕi(x · ni − ai),

where, for any i ∈ I, ϕi is an l.s.c. convex function, ϕi = +∞ on (−∞, 0), ϕi is
C1 on (0,+∞), ni is a unit vector, and ai is a real number.

We may assume all ni are different. Then

∇Φ(x) =
∑
i∈I

ni ϕ
′
i(x · ni − ai),

D = {x ∈ Rd : x · ni > ai ∀i ∈ I},
D = {x ∈ Rd : x · ni ­ ai ∀i ∈ I}.

Henceforth, we assume that D is not empty. There exists a ball with center y ∈ D
and radius b > 0 included in D. Let Xt be the solution given by Theorem 2.1. For
i ∈ I let

U i
t := Xt · ni − ai.

We will need a strengthening of inequality (2.2) ([7], Theorem 2.2).

LEMMA 2.1. For any i ∈ I, for any 0 < t <∞, we have

t∫
0

|ϕ′i(U i
s)| ds < ∞.

P r o o f. This is clear if ϕ′i(0+) > −∞. Let

J := {j ∈ I : ϕ′j(0+) = −∞}

and let 0 < ε < b be such that ϕ′j(u) < 0 for any j ∈ J and u ∈ (0, ε). For K ⊂ J
let us define

AK := {x ∈ D : x · nj < aj + ε ∀j ∈ K, x · nj ­ aj + ε ∀j ∈ J \K}.

Then for t > 0

t∫
0

1AK
(Xs)

∣∣ ∑
j ̸∈K

nj ϕ
′
j(U

j
s )
∣∣ds ¬ ∑

j ̸∈K

t∫
0

1AK
(Xs)|ϕ′j(U j

s )|ds < ∞.

Using (2.2) we get

t∫
0

1AK
(Xs)

∣∣ ∑
j∈K

nj ϕ
′
j(U

j
s )
∣∣ds < ∞,
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and therefore

−(b− ε)
∑
j∈K

t∫
0

1AK
(Xs)ϕ

′
j(U

j
s ) ds ¬

t∫
0

1AK
(Xs)

∑
j∈K

(y −Xs) · nj |ϕ′j(U j
s )|ds

¬
t∫
0

1AK
(Xs)|y −Xs|

∣∣ ∑
j∈K

njϕ
′
j(U

j
s )
∣∣ds

<∞

by the continuity of X on [0, t]. Then for any j ∈ J we have

(2.4)
t∫
0

|ϕ′j(U j
s )| ds =

t∫
0

1{Uj
s<ε}|ϕ

′
j(U

j
s )| ds +

t∫
0

1{Uj
s­ε}|ϕ

′
j(U

j
s )| ds

=
∑

j∈K⊂J

t∫
0

1AK
(Xs) |ϕ′j(U j

s )|ds +
t∫
0

1{Uj
s­ε}|ϕ

′
j(U

j
s )| ds <∞. �

For any J ⊂ I, J ̸= ∅, we set

HJ := {x ∈ Rd : x · nj = aj ∀j ∈ J},

KJ := {x ∈ Rd : x · nj = aj ∀j ∈ J, x · nj > aj ∀j ̸∈ J},

σJ := inf{t > 0 : Xt ∈ HJ},

τJ := inf{t > 0 : Xt ∈ KJ},

VJ := span{nj , j ∈ J},

qJ := dimVJ,

πJ := orthogonal projection onto VJ.

LEMMA 2.2. If n(x) is a unit inward normal to D at x ∈ KJ, then we have
n(x) ∈ VJ.

P r o o f. Let v ⊥ VJ. For ε > 0 small enough,

z1 = x+ εv, z2 = x− εv

satisfy

z1 · nj = aj ∀j ∈ J, z1 · ni > ai ∀i ̸∈ J,

z2 · nj = aj ∀j ∈ J, z2 · ni > ai ∀i ̸∈ J.

Then
n(x) · (x− z1) ¬ 0, n(x) · (x− z2) ¬ 0,

and therefore
n(x) · v = 0. �
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3. NON-ATTAINABILITY OF THE EDGES

This section is devoted to the proof of the following theorem.

THEOREM 3.1. For any J ⊂ I with |J| := card(J) ­ 2,

P(σJ =∞) = 1.

P r o o f. (a) We first consider the initial condition X0. From (2.1) we deduce
that for any u > 0 there exists 0 < v < u such that Xv ∈ D a.s. Using the con-
tinuity of paths and the Markov property we may and do assume that X0 ∈ D in
order to prove that σJ =∞ a.s.

(b) We will also assume that

(3.1) max
i∈I

ϕ′i(0+) < 0.

If not, we introduce for any 0 < T < ∞ the equivalent probability measure Q
defined on FT by

dQ

dP
:= exp

{
c
(
BT ·

∑
i∈I

ni

)
− 1

2
c2T

∣∣∑
i∈I

ni

∣∣2},
where

c > max
i∈I

ϕ′i(0+).

The continuous process
B′t := Bt − ct

∑
i∈I

ni

is a Q-Brownian motion on [0, T ] and now

dXt = dB′t −
∑
i∈I

niψ
′
i(Xt · ni − ai)dt+ ntdLt,

where
ψi(u) := ϕi(u)− cu, i ∈ I.

If Q(σJ < T ) = 0, then P(σJ < T ) = 0, and if this is true for any T , we obtain
P(σJ =∞) = 1.

(c) We are now going to prove that σI = τI =∞ a.s. (with m ­ 2). If qI = 1,
then m = 2, n1 + n2 = 0 and HI = KI = ∅. Assume now qI ­ 2 and HI ̸= ∅.
Choose some z ∈ HI and set

Zt := πI(Xt − z).

Then

Zt = Z0 + Ct −
∑
i∈I

t∫
0

ni ϕ
′
i(U

i
s)ds +

t∫
0

ns dLs,
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where C is a qI-dimensional Brownian motion. Set

St := |Zt|2.

Then

St = S0 + 2
t∫
0

Zs · dCs − 2
∑
i∈I

t∫
0

U i
s ϕ
′
i(U

i
s)ds+ 2

t∫
0

Zs · ns dLs + qIt.

From Lemma 2.2 we deduce that on ∂D =
∪

J⊂IKJ

Zs · ns = (Xs − z) · ns = 0,

and thus
t∫
0

Zs · ns dLs = 0.

Let 0 < T <∞. For t < τI ∧ T ,

(3.2) logSt = logS0 + 2
t∫
0

Zs · dCs

Ss
− 2

∑
i∈I

t∫
0

U i
s ϕ
′
i(U

i
s)

Ss
ds + (qI− 2)

t∫
0

ds

Ss
.

By the assumption (3.1) there exists 0 < β ¬ ∞ such that ϕ′i ¬ 0 on (0, β] and

−
t∫
0

U i
s ϕ
′
i(U

i
s)

Ss
ds ­ −

t∫
0

U i
s ϕ
′
i(U

i
s)

Ss
1{U i

s­β}ds

­ − 1

β

T∫
0

|ϕ′i(U i
s)| ds > −∞.

We now proceed as in [23], p. 47. As t→ τI ∧ T , the continuous local martingale
part in the right-hand side of (3.2) either converges to a finite limit or oscillates
between +∞ and −∞. Thus it does not converge to −∞ and a.s. SτI∧T > 0.
Therefore

P(τI ¬ T ) = 0

and the conclusion follows since T is arbitrary.
(d) Let now J ⊂ I with 2 ¬ |J| ¬ m− 1. We shall show by a backward induc-

tion on |J| that P(τJ =∞) = 1. Remark that the backward induction assumption
entails the equality σJ = τJ a.s. As previously done, we may assume qJ ­ 2 and
KJ ̸= ∅. Select now z ∈ KJ and set

Zt := πJ(Xt − z)

= Z0 + Ct −
∑
j∈J

t∫
0

nj ϕ
′
j(U

j
s )ds−

∑
i ̸∈J

t∫
0

πJni ϕ
′
i(U

i
s)ds+

t∫
0

πJns dLs,
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where C is a qJ-dimensional Brownian motion. Let again St := |Zt|2. For ε > 0
and r > 0 we set

τε := inf{t > 0: St +min
i̸∈J

(U i
t )

2 ¬ 2 ε2},

ρr = inf{t > 0: |Xt| ­ r}.

From the induction assumption we infer that τε →∞ as ε→ 0. Let 0 < T <∞.
We introduce the equivalent probability measure Q defined on FT by

dQ

dP
= exp

{ τε∧ρr∧T∫
0

∑
i̸∈J

1{U i
s­ε}ϕ

′
i(U

i
s)ni · dCs

− 1

2

τε∧ρr∧T∫
0

∣∣ ∑
i̸∈J

1{U i
s­ε}ϕ

′
i(U

i
s)πJni

∣∣2 ds}.
Then

Dt := Ct −
τε∧ρr∧t∫

0

∑
i̸∈J

1{U i
s­ε}ϕ

′
i(U

i
s)πJni ds

is a qJ-dimensional Q-Brownian motion on [0, T ]. For t ¬ τε ∧ ρr ∧ T , we have

St = S0 + 2
t∫
0

Zs · dDs − 2
∑
j∈J

t∫
0

U j
s ϕ
′
j(U

j
s )ds

− 2
∑
i̸∈J

t∫
0

1{U i
s<ε} Zs ·ni ϕ

′
i(U

i
s) ds+ 2

∑
L⊂I,L ̸⊂J

t∫
0

1KL
(Xs)Zs ·nsdLs+qJt

and for t < σJ ∧ τε ∧ ρr ∧ T , we get

logSt = logS0 + 2
t∫
0

Zs · dDs

Ss
− 2

∑
j∈J

t∫
0

U j
s ϕ′j(U

j
s )

Ss
ds

− 2
∑
i̸∈J

t∫
0

1{U i
s<ε}

ϕ′i(U
i
s)

Ss
Zs · ni ds

+ 2
∑

L⊂I,L ̸⊂J

t∫
0

1KL
(Xs)

Zs · ns

Ss
dLs + (qJ − 2)

t∫
0

ds

Ss
.

By the induction hypothesis and the continuity of paths, if σJ <∞, then for any
L ̸⊂ J there exists an interval (σJ − δ, σJ] of positive length on which Xs ̸∈ KL.
Therefore

σJ∧τε∧ρr∧T∫
0

1KL
(Xs)

Zs · ns

Ss
dLs > −∞.
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For s < τε, if U i
s < ε for some i ̸∈ J, then Ss ­ ε2 and we obtain as well

−
σJ∧τε∧ρr∧T∫

0

1{U i
s<ε}

ϕ′i(U
i
s)

Ss
Zs · ni ds > −∞.

The other terms behave as in (c), and thus

0 = Q(σJ ¬ τε ∧ ρr ∧ T ) = P(σJ ¬ τε ∧ ρr ∧ T ).

Letting ε→ 0 and r, T →∞ we get

P(σJ =∞) = 1,

and we are done. �

4. KEEPING OFF FROM A WALL

We first recall some features from the one-dimensional setting [22]. Let ϕ :
R→ (−∞,+∞] be a convex lower semicontinuous function. Assume ϕ = +∞
on (−∞, 0) and C1 on (0,+∞). Consider the one-dimensional MSDE

dYt = dBt − ϕ′(Yt)dt+
1

2
dL0

t ,

Yt ­ 0,

where L0 is the local time of Y at 0. There are three types of boundary behavior:

repulsion
ϕ(0) <∞ weak: local time not zero

ϕ(0) =∞,
∫
0+

exp{2ϕ} <∞ middle: local time zero

ϕ(0) =∞,
∫
0+

exp{2ϕ} =∞ strong: boundary not hit

We shall check the behavior of the multidimensional process X according to
this classification in the neighborhood of the faces of the polyhedron. For any i ∈ I
we write Hi,Ki, σi, τi in place of H{i},K{i}, σ{i}, τ{i}, respectively.

PROPOSITION 4.1. For any i ∈ I such that ϕi(0) =∞ and for any t > 0,

t∫
0

1Hi(Xs) dLs = 0.

P r o o f. From the occupation times formula and Lemma 2.1 we obtain

∞∫
0

La
t (Ui) |ϕ′i(a)| da =

t∫
0

|ϕ′i(U i
s)| ds <∞

Probability and Mathematical Statistics 30/2010, z. 2
© for this edition by CNS



282 D. Lépingle

and from ϕi(0) =∞ and the continuity of a 7→ La
t (Ui) we deduce

L0
t (Ui) = 0.

Thus

0 = U i
t − (U i

t )
+

=
t∫
0

1Hi(Xs)ni · dBs −
t∫
0

1Hi(Xs)
∑
j∈I

ϕ′j(U
j
s )ni · nj ds

+
t∫
0

1Hi(Xs)ni · ns dLs

=
t∫
0

1Ki(Xs)ni · ns dLs =
t∫
0

1Ki(Xs) dLs =
t∫
0

1Hi(Xs) dLs. �

We now set for any i ∈ I and x ­ 0

pi(x) :=
x∫
1

exp
{
2
(
ϕi(u)− ϕi(1)

)}
du.

THEOREM 4.1. For any i ∈ I such that pi(0) = −∞ or, equivalently,

(4.1)
∫
0+

exp{2ϕi} =∞,

we have P(σi =∞) = P(τi =∞) = 1.

P r o o f. From the Itô formula and Proposition 4.1 we obtain

pi(U
i
t ) =

= pi(U
i
0)+

t∫
0

p′i(U
i
s)
[
dCi

s−
∑
j ̸=i

ni ·nj ϕ
′
j(U

j
s )ds+

∑
j ̸=i

1Kj (Xs)ni ·nj dLs

]
,

where Ci = B · ni is a one-dimensional Brownian motion. As in the proof of
Theorem 3.1, let

τε := inf{t > 0 : U i
t +min

j ̸=i
(U j

t ) ¬ 2 ε},

ρr = inf{t > 0 : |Xt| ­ r}.

Let 0 < T <∞. We again introduce the equivalent probability measure Q defined
on FT by

dQ

dP
= exp

{ τε∧ρr∧T∫
0

∑
j ̸=i

1{Uj
s­ε}ϕ

′
j(U

j
s )ni · nj dC

i
s

− 1

2

τε∧ρr∧T∫
0

∣∣ ∑
j ̸=i

1{Uj
s­ε}ϕ

′
j(U

j
s )ni · nj

∣∣2 ds}.
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Then

Di
t := Ci

t −
t∧τε∧ρr∫

0

∑
j ̸=i

1{Uj
s­ε}ϕ

′
j(U

j
s )ni · nj ds

is a Q-Brownian motion on [0, T ] and for t ¬ τε ∧ ρr ∧ T we have

pi(U
i
t ) = pi(U

i
0)

+
t∫
0

p′i(U
i
s)
[
dDi

s −
∑
j ̸=i

1{Uj
s<ε}ni · nj ϕ

′
j(U

j
s )ds+

∑
j ̸=i

1Kj (Xs)ni · nj dLs

]
.

For j ̸= i,

−
σi∧τε∧ρr∧T∫

0

1{Uj
s<ε} p

′
i(U

i
s)ni · nj ϕ

′
j(U

j
s ) ds > −∞

and

+
σi∧τε∧ρr∧T∫

0

1Kj (Xs) p
′
i(U

i
s)ni · nj dLs > −∞.

Then
0 = Q(σi ¬ τε ∧ ρr ∧ T ) = P(σi ¬ τε ∧ ρr ∧ T ),

meaning that P(σi =∞) = 1. �

5. APPLICATIONS

5.1. Brownian particles with nearest neighbor repulsion. Rost and Vares [27]
have considered the following system:

dX1
t = dB1

t + ϕ′(X2
t −X1

t ) dt,

dXi
t = dBi

t +
(
ϕ′(Xi+1

t −Xi
t)− ϕ′(Xi

t −X i−1
t )

)
dt, i = 2, . . . , n− 1,

dXn
t = dBn

t − ϕ′(Xn
t −Xn−1

t ) dt,

where X1
t < . . . < Xn

t and ϕ is a positive convex function on (0,∞) satisfying

(5.1) ϕ(0) =∞, ϕ(∞) = 0,
1∫
0

(
ϕ′(x)

)2
e−2ϕ(x) dx < ∞.

This is an MSDE where the function Φ is given by (2.3) with ϕi(x) = ϕ(
√
2x),

ni =
1√
2
(ei+1 − ei), ai = 0 for i = 1, . . . , n − 1, and ej is the j-th basis vector.

Condition (5.1) for non-collision is stronger than (4.1) as can be seen from the
Schwarz inequality:

∞ =
(
ϕ(0)− ϕ(1)

)2 ¬ 1∫
0

(ϕ′)2 e−2ϕ
1∫
0

e2ϕ.
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5.2. Wishart and Laguerre processes. Wishart processes have been intro-
duced in [2] and [3]. If B is an n × n Brownian matrix, a Wishart process with
parameters n and δ ­ n + 1 may be obtained as a solution to the matrix-valued
SDE

dSt =
√

St dBt + dB′t
√

St + δ In dt.

The eigenvalue process (λ1t , . . . , λ
n
t ) of St satisfies

(5.2) dλit = 2
√
λit dW

i
t +

(
δ +

∑
j ̸=i

λit + λjt

λit − λ
j
t

)
dt, 1 ¬ i ¬ n,

and the square roots rit =
√
λit,

(5.3) drit = dW i
t +

1

2

δ − n
rit

dt +
1

2

∑
j ̸=i

(
1

rit + rjt
+

1

rit − r
j
t

)
dt,

where (W i, . . . ,Wn) is an n-dimensional Brownian motion. This system is an
MSDE with

(5.4) Φ(r1, . . . , rn)

= −1
2

[
(δ − n)

∑
i

log ri +
∑
i>j

log(ri + rj) +
∑
i>j

log(ri − rj)
]

on {0 < r1 < . . . < rn} and ∞ elsewhere. Systems (5.3) and (5.2) have strong
solutions for δ > n. If δ = n, we must add to the right-hand side of (5.3) a local
time at 0 that disappears in (5.2). It has been proved in [3] that the eigenvalues
never collide, and if moreover δ ­ n+ 1, the smallest one never vanishes. This is
in accordance with Theorem 4.1.

Laguerre processes ([21], [13]) are Hermitian versions of Wishart processes.
Constants are changed in (5.2), (5.3) and (5.4).

5.3. Reflection groups and Dunkl processes. We only give a short introduc-
tion to this topic and refer to [19] and [26] for more details. For α ∈ RN \ {0} we
denote by sα the orthogonal reflection with respect to the hyperplane Hα perpen-
dicular to α:

sα(x) = x − 2
α · x
|α|2

.

A finite subset R ⊂ RN \ {0} is called a root system if for all α ∈ R

R ∩Rα = {α,−α}, sα(R) = R.

The group W ⊂ O(N) which is generated by the reflections {sα, α ∈ R} is called
the reflection group associated with R. For β ∈ RN \

∪
α∈RHα, the hyperplane
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Hβ := {x ∈ RN : β · x = 0} separates the root system R into R+ and R−. Such
a set R+ is called a positive subsystem and defines the positive Weyl chamber C
by the formula

C := {x ∈ RN : α · x > 0 ∀α ∈ R+}.
A subset S of R+ is called simple if S is a vector basis for span(R). The elements
of S are called simple roots. Such a subset exists, is unique and we actually get

C = {x ∈ RN : α · x > 0 ∀α ∈ S}.

A function k : R → R on the root system is called a multiplicity function if
it is invariant under the natural action of W on R. If the multiplicity function k is
positive onR+, we define the radial Dunkl process XW as theC-valued continuous
Markov process whose generator is given by

LWk u(x) =
1

2
∆u(x) +

∑
α∈R+

k(α)
α · ∇u(x)
α · x

for u ∈ C2(C) with the boundary condition α · ∇u(x) = 0 for x ∈ Hα. Demni
([14], [15]) has remarked that XW may be viewed as the solution to the MSDE

dYt = dBt − ∇Φ(Yt) dt,

where B is an N -dimensional Brownian motion and

Φ(y) = −
∑

α∈R+

k(α) log(α · y)

on C and Φ = ∞ elsewhere. From [9] or [10] we know that this equation has
a unique strong solution, and if moreover k(α) ­ 1/2 for any α ∈ R, then the
process never hits the walls Hα of the Weyl chamber. In [15], it is proved that if
k(α) < 1/2 for a simple root α, then the process hits Hα a.s. As a consequence
of this result and of Theorem 4.1 (see also the statement at the bottom of p. 117
in [10]), we are in a position to classify the boundary behavior of the radial Dunkl
process in the Weyl chamber.

PROPOSITION 5.1. For any α ∈ R+ let σα := inf{t > 0 : XW
t ∈ Hα}.

• If α ∈ R+ \ S, then P(σα =∞) = 1.
• If α ∈ S and k(α) ­ 1/2, then P(σα =∞) = 1.
• If α ∈ S and k(α) < 1/2, then P(σα <∞) = 1.

5.4. Trigonometric and hyperbolic interactions. Other interactions have been
studied in [7].

The trigonometric system ([16], [18], [29]) reads

dXj
t = dBj

t +
γ

2

∑
k ̸=j

cot
Xj

t −Xk
t

2
, 1 ¬ j ¬ n,

X1
t ¬ X2

t ¬ . . . ¬ Xn
t ¬ X1

t + 2π.
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This can be interpreted as the solution to the MSDE associated with

Φ(x) =
∑
i>j

ϕ

(
x · ei − ej√

2

)
+

∑
i<j

ϕ

(
x · ei − ej√

2
+ π
√
2

)
,

where

ϕ(u) =


∞, u ¬ 0,

−γ log
(
sin(u/

√
2)
)
, 0 < u < π/

√
2,

0, u ­ π/
√
2.

It has been proved in [7] that there exist a.s. collisions if γ < 1/2.
The hyperbolic system ([24], [28]) is

dXj
t = dBj

t + γ
∑
k ̸=j

coth (Xj
t −Xk

t ), 1 ¬ j ¬ n,

X1
t ¬ X2

t ¬ . . . ¬ Xn
t .

In this case we have

Φ(x) =
∑

1¬j<k¬n
ϕ

(
x · ek − ej√

2

)
with

ϕ(u) =

{
∞, u ¬ 0,

−γ log
(
sinh(
√
2u)

)
, u > 0,

and collisions occur with positive probability if γ < 1/2.
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