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Abstract. Unifying and generalizing previous investigations for vector
spaces and for locally compact groups, E. Siebert obtained the following
remarkable result: A Lévy process on a completely metrizable topologi-
cal group G, resp. a continuous convolution semigroup (µt)t­0 of prob-
abilities, satisfies a moment condition

∫
fdµt < ∞ for some submulti-

plicative function f > 0 if and only if the jump measure of the process,
resp. the Lévy measure η of the continuous convolution semigroup, satisfies∫
{U fdη <∞ for some neighbourhood U of the unit e. Here we generalize

this result to additive processes, resp. convolution hemigroups (µs,t)s¬t, on
(second countable) locally compact groups.
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1. INTRODUCTION

A probability ν on a normed vector space (V, ∥ · ∥) has a k-th moment if∫
∥x∥kdν <∞ or, equivalently, if f : x 7→ (1 + ∥x∥)k is ν-integrable. f is con-

tinuous, submultiplicative, symmetric and satisfies f(0) = 1. Hence moment con-
ditions are integrability conditions for (particular) submultiplicative functions.

For investigations in limit theorems on more general structures, in partic-
ular on locally compact groups, investigations of integrability of submultiplica-
tive functions provide interesting tools. In [28], Theorem 1, and [30], Theorem 5,
Siebert obtained characterizations of integrability of such a function f for contin-
uous convolution semigroups, resp. for Lévy processes, in terms of the behaviour
of the Lévy measures, resp. the jump measures of the processes: [28] is based on
analytical methods whereas in [30] the emphasis is laid on the behaviour of the pro-
cesses. In fact, a partial key result (for processes with uniformly bounded jumps,
resp. for Lévy measures with uniformly bounded supports), [30], Theorem 4, is
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proved for additive processes, resp. for convolution hemigroups. Whereas the gen-
eral characterization of integrability of submultiplicative f (relying on [30], Theo-
rem 5) is proved there only for continuous convolution semigroups, resp. for Lévy
processes.

For vector spaces this characterization was proved almost simultaneously by
Z. Jurek and S. Smalara [17] and A. de Acosta [1]. For partial results on groups see,
e.g., [15], [21] and the references in [28], [30]. In [30] Siebert proved this result
for completely metrizable topological groups, unifying previous investigations for
vector spaces and groups.

These characterizations were generalized for special submultiplicative func-
tions f (logarithmic moments) and for particular hemigroups, resp. additive pro-
cesses arising in connection with self-decomposability, resp. (generalized) Orn-
stein–Uhlenbeck processes: For vector spaces see, e.g., [16], 3.6.6; for homoge-
neous groups see, e.g., [8], §2.14 VII, [7]. (Logarithmic moments are defined by
the submultiplicative functions f : x 7→ 1 + log(1 + ∥x∥) ≈ log+ ∥x∥.)

Hemigroups, resp. additive processes, turned out to be essential for investiga-
tions in various applications. The background for hemigroups on locally compact
groups is found, e.g., in [29], [10]–[12] and the references mentioned there; see
also [3].

Siebert’s proofs ([30], Theorem 5, resp. [28], Theorem 1) rely on a splitting of
the underlying Lévy measure η of the continuous convolution semigroup (µt)t­0
(resp. the jump measure of the underlying process) into a part η1 with bounded
support V and a bounded measure η2 concentrated on {V . Hence we obtain two
continuous convolution semigroups (µ

(i)
t )t­0, i = 1, 2: For the first any, continu-

ous and submultiplicative f is integrable, the second one is a Poisson semigroup
with generator γ = c · (ρ− εe) =: η2 − ∥η2∥ · εe, and the underlying continuous
convolution semigroup (µt)t­0 is represented by a perturbation series in terms of
(µ

(1)
t )t­0 and γ. This technique allows us to reduce the investigations to the Pois-

son part, and we obtain ([28], [30]) the following: A continuous and submultiplica-
tive f is integrable with respect to the underlying continuous convolution semi-
group iff f is integrable with respect to η2, the bounded part of the Lévy measure.

Here, in Theorem 5.1, we generalize Siebert’s results to (Lipschitz-continu-
ous) convolution hemigroups on locally compact groups. As mentioned above, the
original proofs rely on a representation by perturbation series. Therefore, we start
in Section 2 with perturbation series for operator hemigroups (also called gener-
alized semigroups or evolution families) to provide the tools for the next sections.
Then, applying this result to convolution operators and following (and generaliz-
ing) the proofs of [30], resp. [28], we obtain a version of Siebert’s characterization
in the general situation (Theorem 5.1). At the first glance, a slightly weaker version,
since an additional technical condition (3.1), resp. (5.4), is needed. This condition
is however always satisfied for continuous convolution semigroups.

In the Appendix we sketch briefly some applications and examples.
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2. PERTURBATION SERIES REPRESENTATIONS FOR HEMIGROUPS OF OPERATORS

DEFINITION 2.1. Let B be a separable Banach space, and B(B) the Banach
space of bounded operators. A family {Ut,t+s}0¬t¬t+s¬T ⊆ B(B) (T ¬ ∞) is
called a continuous hemigroup of operators if (s, t) 7→ Ut,t+s is continuous with
respect to the strong operator topology, Us,s = I for all s, and Us,rUr,t = Us,t for
all s ¬ r ¬ t, and finally ∥Ut,t+s∥ ¬Meβs for all t, s ­ 0, for some M ­ 1 and
β ­ 0.

To simplify the notation, here we shall throughout restrict to the case M = 1
and frequently also β = 0, i.e., we restrict to contractions.

Hemigroups of operators were investigated under different notation, e.g., evo-
lution families or evolution operators (cf. [18], [20], [9], [13]) or semi-groupes
généralisées [24], etc. In view of the applications to distributions of additive pro-
cesses we prefer the expression operator hemigroups (cf. [11]) by analogy to the
standard notation in probability theory.

THEOREM 2.1. (a) Let {Us,t}0¬s¬t be a continuous hemigroup of contrac-
tions. Let R ∋ t 7→ C(t) ∈ B(B) be a measurable mapping, uniformly bounded,
∥C(t)∥ ¬ β for all t ­ 0. Then

Vt,t+s :=
∑
k­0

V
(k)
t,t+s with V (0)

t,t+s := Ut,t+s,

V
(k+1)
t,t+s :=

s∫
0

V
(0)
t,t+uC(t+ u)V

(k)
t+u,t+sdu

defines a continuous operator hemigroup satisfying a growth condition

∥Vt,t+s∥ ¬ eβs for all t, s ­ 0.

(b) If s 7→ Ut,t+s is a.e. differentiable with

∂+

∂s
Ut,t+s|s=0(x) =: A(t)(x) for x ∈ D

(
A(t)

)
,

and if D :=
∩

t­0D
(
A(t)

)
is dense, then for all x ∈ D, s 7→ Vt,t+s(x) is differen-

tiable a.e. with
∂+

∂s
Vt,t+s(x)|s=0 = A(t)x+ C(t)x,

resp. in the integrated form:

Vt,t+s(x) =
s∫
0

Vt,t+u

(
A(u) + C(u)

)
(x)du.
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(c) In particular, let C(t)= c(t)
(
S(t) − I

)
with contractions S(·) and 0¬

c(·)¬β, where t 7→ c(t) and t 7→ S(t) are measurable. Then we obtain the repre-
sentations

Vt,t+s = e−βs
∑
k­0

W
(k)
t,t+s with ∥W (k)

t,t+s∥ ¬
βksk

k!
,(2.1)

W
(0)
t,t+s := Ut,t+s, W

(k+1)
t,t+s :=

s∫
0

W
(0)
t,t+uC̃(t+ u)W

(k)
t+u,t+sdu,

where C̃(τ) = C(τ) + β · I = c(τ)S(τ) +
(
β − c(τ)

)
· I .

Hence ∥Vt,t+s∥ ¬ 1, 0 ¬ t ¬ t+ s ¬ T . Alternatively,

Vt,t+s = e−βs
∑
k­0

skβk

k!
W̃

(k)
t,t+s with ∥W̃ (0)

t,t+s∥ ¬ 1, W̃
(k)
t,t+s :=

k!

skβk
W

(k)
t,t+s.

P r o o f. (a) Consider the Banach space of measurable functionsL1(R+,B) ={
f : R+ → B : ∥f∥∗ :=

∫
R+
∥f(t)∥dt <∞

}
. Then

(2.2) Ps : (Psf) (t) := Ut,t+s

(
f(t+ s)

)
and

(2.3) Qs : (Qsf) (t) := es·C(t)
(
f(t)

)
for all t, s ­ 0

define continuous one-parameter semigroups of space-time operators on B̃ :=(
L1(R+,B), ∥ · ∥∗

)
, where (Ps)s­0 are contractions and ∥|Qs∥| ¬ es·β , s ­ 0,

∥| · ∥| denoting the operator norm on B̃. See, e.g., [24], II.7, [11], 8.6, 8.7, for
the space-time semigroup (2.2), with B̃ := C0(R+,B). Here, to ensure QsB̃ ⊆ B̃
in (2.3), we had to use B̃ := L1(R+,B).

Let T and S denote the generators of (Ps)s­0 and (Qs)s­0, respectively. In
particular, S : (Sf) (t) := C(t)

(
f(t)

)
, t ­ 0, is a bounded operator. Let (Rs)s­0

denote the semigroup generated by T+ S. (The addition of generators is well de-
fined since S is bounded.)

According to Kato [19], IX, §2, Theorem 2.1, (2.4), (2.5) (resp. [14], (13.2.4)–
(13.2.6), [26], [24], II.3, [5], I, 6.4), (Rs)s­0 is representable by a norm-convergent
perturbation series in B(B̃):

Rs =
∑
k­0

V(k)
s , where V(0)

s = Ps and V(k+1)
s =

s∫
0

Pu SV(k)
s−udu.

(Equivalently, V(k+1)
s =

∫ s

0
Ps−u SV(k)

u du; cf., e.g., [19], [14].)
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We prove now the following

CLAIM. Let f ∈ B̃, k ­ 0, t, s ­ 0, 0 ¬ u ¬ s. Then for all t, s ­ 0, k ∈ Z+

there exist operators V (k)
t,t+s ∈ B(B) such that

(2.4) (V(k)
s f)(t) = V

(k)
t,t+s

(
f(t+ s)

)
λ1-a.e.

P r o o f o f t h e C l a i m. We will proceed by induction. For k = 0 we have
(V

(0)
s f)(t) = (Psf) (t) = Ut,t+s

(
f(t + s)

)
, hence the assertion with V

(0)
t,t+s =

Ut,t+s.
Let k + 1 > 0 and assume that (2.4) is proved for k′ ¬ k. Then

(V(k+1)
r f)(w) =

r∫
0

(V(0)
u SV(k)

r−uf)(w)du =
r∫
0

Uw,w+u

(
hk(w + u)

)
du =: (∗),

where hk(w′) := C(w′)
(
gk(w

′)
)
, gk(w′) := Vw′,w′+r−u

(
f(w′ + r − u)

)
.

For w′ := w + u we obtain therefore

(∗) =
r∫
0

Uw,w+uC(w + u)Vw+u,w+r

(
f(w + r)

)
du.

Inserting r = s and w = t we get

(V(k+1)
s f)(t) =

s∫
0

Ut,t+uC(t+ u)V
(k)
t+u,t+s

(
f(t+ s)

)
du =: V

(k+1)
t,t+s

(
f(t+ s)

)
and this step has been proved. �

Put f = φ ⊗ x, x ∈ B, φ ∈ L1(R+), i.e., f : t 7→ φ(t)x, where 0 ¬ φ ¬ 1,
and φ ≡ 1 on [a, b]. Then for s, t, s+ t ∈ [a, b] we obtain

V
(k+1)
t,t+s

(
(φ⊗ x)(s+ t)

)
= V

(k+1)
t,t+s (x) =

s∫
0

Ut,t+uC(t+ u)V
(k)
t+u,t+s(x)du,

as asserted. Note that (2.4) holds true for λ1-almost all t. But considering the par-
ticular f := φ ⊗ x as above, we see that the continuity of (t, t+ s) 7→ Ut,t+s(x)

for all x yields that (t, t+ s) 7→ V
(k)
t,t+s(x) is continuous for all x and k. Hence for

f = ψ ⊗ x, ψ ∈ L1(R+) ∩ C0(R+), (2.4) is valid for all t ­ 0.
Note that

V
(0)
t,t+u = Ut,t+u, V

(1)
t′,t′+s′ =

s′∫
0

Ut′,t′+u1C(t
′ + u1)Ut′+u1,t′+s′ du1.

Hence, inserting t′ = t+ u and s′ = s− u, we get

V
(2)
t,t+s =

s∫
0

s−u∫
0

Ut,t+uC(t+ u)Ut+u,t+u+u1C(t+ u+ u1)Ut+u+u1,t+s du1du,
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whence, by induction,

V
(k+1)
t,t+s =

s∫
0

w0∫
0

. . .
wk∫
0

Ut,t+v0C(t+ v0) . . .

. . . Ut+vkC(t+ vk+1)Ut+vk+1,t+sduk+1 . . . du1du,

where v0 := u, vi := u+
∑i

1 uj , wi := s− vi. Consequently, we immediately ob-
tain ∥V (k)

t,t+s∥ ¬ (skβk)/k!, and hence ∥Vt,t+s∥ ¬ eβs.
Finally, the relations

Rs (φ⊗ x) (t) =
(∑

k

V
(k)
t,t+s(x)

)
· φ(t+ s) =: Vt,t+s(x) · φ(t+ s),

and furthermoreRsRs′ = Rs+s′ yield the hemigroup property

Vt,t+s+s′ = Vt,t+sVt+s,t+s+s′ .

(Here, φ, s, s′, t are suitably chosen as above.)

(b) CLAIM. Let x ∈ D. Then

d+

ds
Vt,t+s(x)|s=0 =

∑
k

d+

ds
V

(k)
t,t+s(x)|s=0 = A(t)(x) + C(t)(x).

P r o o f o f t h e C l a i m. We proceed by induction. Let k = 0. By assump-
tion,

d+

ds
V

(0)
t,t+s(x)|s=0 =

d+

ds
Ut,t+s(x)|s=0 = A(t)(x) for x ∈ D

(
A(t)

)
.

Furthermore, for f ∈ D(T) we have (d+/ds)Rsf |s=0 = Tf + Sf .
If x ∈ D and φ ∈ C1 ∩ L1(R+), then f := φ⊗ x ∈ D(T), and

(Tf) (t) =
d+

ds

(
Ut,t+s(x) · φ(t+ s)

)
|s=0 = A(t)(x) · φ(t) + x · φ′(t).

On the other hand, S(φ⊗ x)(t)=C(t)(x)φ(t). Moreover, since (d+/ds)esS|s=0=S
is bounded, we obtain for λ1-almost all t

d+

ds
Rs|s=0(φ⊗ x)(t) =

d+

ds

(
Vt,t+s(x)φ(t+ s)

)
|s=0

=
d+

ds

(
Ut,t+s(x) · φ(t+ s)

)
|s=0 + C(t)(x) · φ(t)

= x · φ′(t) +
(
A(t) + C(t)

)
(x) · φ(t).

Consequently, the assertion of the Claim follows if we choose φ and t, t+ s suit-
able as before. �

Probability and Mathematical Statistics 30/2010, z. 2
© for this edition by CNS



Integrability of submultiplicative functions 323

(c) For the special caseC(t) = c(t)
(
S(t)− I

)
we put S =: S̃− βI , i.e., define

C̃(t) := c(t)S(t) + (β − c(t)) · I and S̃ : t 7→ C̃(t)
(
f(t)

)
.

Denote by (R̃)s­0 the semigroup generated by T + S̃ and represent R̃s by a per-
turbation series. In view ofRs = R̃s · e−s·β , the assertion follows. �

REMARK 2.1. Of course, it is possible to obtain perturbation series represen-
tations under weaker conditions. For operator semigroups see, e.g., [14], [23], [5]
or [31] and the references therein. Therefore, in particular, the assumptions guar-
anteeing that the space-time semigroups (Ps) and (Qs) (cf. (2.2), (2.3)) consist of
contractions and that the generator of (Qs) is bounded could be weakened. But
in view of the applications we have in mind, both conditions appear natural. In
particular, we need in the sequel that all operators C(t) are bounded.

3. CONTINUOUS HEMIGROUPS OF PROBABILITIES AND PERTURBATION SERIES

In the following let G denote a locally compact topological group. G is as-
sumed to be second countable. ByM1(G) we denote the convolution semigroup
of probabilities, ⋆ denotes convolution. We use the abbreviation ⟨ν, f⟩ :=

∫
G fdν.

In the sequel we apply the results of Section 2 to operators defined by convolu-
tion hemigroups on a locally compact group (cf. Definition 3.1 below). There, B :=
C0(G) and µ ∈Mb(G) is identified with the convolution operatorRµ : Rµf(x) :=∫
G f(xy)dµ(y), f ∈ C0(G).

DEFINITION 3.1. (a) A continuous convolution semigroup is a one-parameter
family of probabilities (µs)s­0 depending continuously on s, and satisfying µs+t =
µs ⋆ µt for all s, t ­ 0. Throughout we assume µ0 = ε0.

(b) (Cf. [29], [10], [11].) A convolution hemigroup is a two-parameter family
of probabilities (µt,t+s)0¬t¬t+s¬T , depending continuously on the time parameters
(t, t + s) and fulfilling µt,t+s ⋆ µt+s,t+s+s′ = µt,t+s+s′ , where 0 ¬ t ¬ t + s ¬
t+ s+ s′ ¬ T for some 0 < T ¬ ∞.

If (µt,t+s)0¬t¬t+s¬T is a convolution hemigroup of probabilities, then the
convolution operators (Ut,t+s := Rµt,t+s)0¬t¬t+s¬T form a continuous hemigroup
of contractions on the Banach space B := C0(G).

We will frequently make use of the following well-known observation:

LEMMA 3.1. Let (µt,t+s)0¬t¬t+s be a separately continuous hemigroup, i.e.,
t 7→ µs,t and s 7→ µs,t are continuous, and µt,t = εe for all t. Then for all T <∞,
for all sequences 0 ¬ tn ¬ tn + sn ¬ T with sn → 0 we obtain µtn,tn+sn → εe
stochastically. Consequently, for all neighbourhoods U of e and all sn → 0 we
obtain

sup
0¬t¬T

µt,t+sn({U)→ 0.
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P r o o f. For all subsequences (n′) ⊆ N there exists a converging subsequence

(n′′) ⊆ (n′), i.e., tn
(n′′)−→ t0 ∈ [0, T ]. Hence for all r > t0 we have r ­ tn + sn for

sufficiently large n ­ n(r) and, by continuity, µtn,tn+sn ⋆ µtn+sn,r → µt0,r along
(n′′), and also µtn+sn,r → µt0,r. Consequently, by the shift-compactness theorem
([25], III, Theorems 2.1 and 2.2, [10], Theorem 1.21), we infer that {µtn,tn+sn} is
relatively compact and all accumulation points ν satisfy ν ⋆ µt0,r = µt0,r. Hence,
considering r = rn ↓ t0, we obtain ν ⋆ εe = εe, whence ν = εe.

Hence we have shown that for all subsequences (n′) ⊆ N there exists a sub-
sequence (n′′) ⊆ (n′) such that µtn,tn+sn → εe along (n′′). Thus the assertion
follows. �

COROLLARY 3.1. For a hemigroup (µt,t+s) as above it follows that for all
functions φ ∈ Cb(G)+ for all ε > 0, 0 < T <∞ there exists a δ = δ(ε, T ) > 0
such that for 0 ¬ t ¬ t+ s ¬ T, s ¬ δ we have ⟨µt,t+s, φ⟩ ­ φ(e)− ε.

Let (µt)t­0 be a continuous convolution semigroup with corresponding C0-
contraction semigroup (Rµt) acting on C0(G). The infinitesimal generator is de-
fined as

N :=
d+

dt
Rµt |t=0.

Then D(N) ⊇ D(G), the Schwartz–Bruhat space, and, moreover, D(G) is a core
for N . The generating functional is defined as

⟨A, f⟩ := Nf(e) =
d+

dt
⟨µt, f⟩|t=0 for f ∈ D(G).

In fact, A is canonically extended to

E(G) := {f ∈ Cb(G) : f · φ ∈ D(G) ∀φ ∈ D(G)}.

(For details see, e.g., [10], IV, 4.1–4.5. Note that for Lie groups we have D(G) =
C∞c (G) and E(G) = C∞b (G).) As a consequence of Siebert’s characterization of
generating functionals ([27], Satz 5, [10], 4.4.18, 4.5.8) we infer for Lipschitz-
continuous hemigroups (µt,t+s) that (d+/ds)⟨µt,t+s, f⟩|s=0 =: ⟨A(t), f⟩ exists
λ1-a.e. for any f∈E(G) and defines a family of generating functionals

(
A(t)

)
0¬t¬T .

(For details see, e.g., [29], Theorem 4.3, Corollary 4.5, and [11], [12].)
(µt,t+s) is a priori defined for 0 ¬ t ¬ t + s ¬ T (for some T ¬ ∞). If the

hemigroup is (a.e.) differentiable with generating functionals

A(t) =
∂+

∂s
µt,t+s|s=0

and if T < ∞, we continue tacitly the hemigroup beyond time T defining
A(T + t) := A(t), resp. µT+t,T+t+s = µt,t+s, 0 ¬ t ¬ T , etc.
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Next we apply the results in Section 2 to convolution hemigroups. Tacitly we
identify measures with convolution operators on B := C0(G) and we identify the
generating functionals of continuous convolution semigroups with generators of
the corresponding C0-contraction semigroups.

We note the following corollaries to Theorem 2.1:

COROLLARY 3.2. Let (µt,t+s)0¬t¬t+s be a Lipschitz-continuous hemigroup
inM1(G) with a family of generating functionals A(t) = (∂+/∂s)µt,t+s|s=0 for
λ1-almost all t. (For details the reader is referred, e.g., to [30], [29], [11].) Let, for
t ­ 0, γ(t) := c(t) ·

(
ρ(t)− εe

)
be Poisson generators, where ρ(t) ∈M1(G) and

0 ¬ c(t) ¬ β <∞. Furthermore, t 7→ c(t) and t 7→ ρ(t) ∈ M1(G) are assumed
to be measurable.

Then there exists an a.e. differentiable hemigroup (νt,t+s) with generating
functionals (∂+/∂s)νt,t+s|s=0 = A(t) + γ(t) for λ1 a.e. t ­ 0.

νt,t+s admits a representation by perturbation series:

νt,t+s = e−β·s
∑
k­0

ν
(k)
t,t+s,

where

ν
(0)
t,t+s = µt,t+s, ν

(k+1)
t,t+s =

s∫
0

µt,t+u ⋆ σ(t+ u) ⋆ ν
(k)
t+u,t+sdu,

and
σ(r) := c(r)ρ(r) +

(
β − c(r)

)
· εe ∈Mb

+(G).

Furthermore, ν(k)t,t+s ∈Mb
+(G) with ∥ν(k)t,t+s∥ ¬ (βk · sk)/k! for k ­ 0.

P r o o f. It is an immediate consequence of Theorem 2.1 (c), since ∥σ(r)∥ =
β and ∥µt,t+u ⋆ σ(t + u) ⋆ ν

(k)
t+u,t+s∥ = β · ∥ν(k)t+u,t+s∥ for all 0 ¬ t ¬ t + u ¬

t+ s, k ∈ Z+. �

In particular we are interested in the following special case:

COROLLARY 3.3. Let (νt,t+s)0¬t¬t+s be a Lipschitz-continuous hemigroup
inM1(G) with generating functionals A(t) = (∂+/∂s)|s=0νt,t+s for λ1-almost
all t. Let U be an open neighbourhood of e in G such that the Lévy measures
satisfy

(3.1) ηA(t)({U) =: c(t) ¬ β <∞ for all t

and t 7→ A(t), so t 7→ c(t) are measurable. Let us put γ(t) := c(t)
(
ρ(t) − εe

)
with ρ(t) :=

(
1/c(t)

)
ηA(t)|{U ∈ M1(G) and A(t) := A(t) − γ(t). Let, finally,

(µt,t+s) be the hemigroup generated by
(
A(t)

)
, t ­ 0.
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Then (νt,t+s) admits a series representation:

νt,t+s = e−βs
∑
k­0

ν
(k)
t,t+s

with summands ν(k)t,t+s sharing the properties described in Corollary 3.2.

P r o o f. For the proof let us put

γ(t) := ηA(t)|{U − ηA(t)({U) · εe = c(t)
(
ρ(t)− εe

)
.

Hence σ(t) = ηA(t)|{U +
(
β − ηA(t)({U)

)
· εe. Then it is enough to apply Corol-

lary 3.2. �

4. SUBMULTIPLICATIVE AND SUBADDITIVE FUNCTIONS

We collect some properties of submultiplicative and subadditive functions. At
first we note the nearly obvious

LEMMA 4.1. Let f : G→ R+ be submultiplicative and g : G→ R+ subad-
ditive. Then:

(a) If f ̸= 0, then f(e) ­ 1. If f is symmetric, i.e., f(x−1) = f(x) for all x,
and f ̸= 0, then f ­ 1. (In fact, as immediately seen, f ­

√
f(e).)

(b) k := f + 1 and h := g + 1 are submultiplicative and greater than or
equal to one.

(c) h := eg is submultiplicative and greater than or equal to one.
(d) If f ­ 1, then h := log f is subadditive and greater than or equal to zero.

Hence, according to (b), log(g + 1) + 1 is submultiplicative and greater than or
equal to one.

(e) If f ­ 1, then f̃ : x 7→ f(x−1) is submultiplicative and greater than or
equal to one. Furthermore, h := max(f, f̃) is submultiplicative, greater than or
equal to one and symmetric.

(f) Let G be second countable and let f be measurable with f(e) ­ 1. Then
the function F : x 7→ supy∈G

(
f(xy)/f(y)

)
is submultiplicative, measurable with

F (e) = 1 and satisfying F ¬ f ¬ f(e) · F .

In view of Lemma 4.1 there is no serious loss of generality if we restrict our-
selves in the following frequently to a particular class of submultiplicative func-
tions f :

DEFINITION 4.1. A submultiplicative function f is called admissible if f is
continuous, symmetric, f ­ 1 with f(e) = 1.

Analogously, a subadditive function g is called admissible if g is continuous,
symmetric, g ­ 0 with g(e) = 0.
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LEMMA 4.2. g(xy) ­ |g(x)− g(y)| for all x, y ∈ G if g is subadditive, sym-
metric and greater than or equal to zero. Hence, if g is continuous at e with
g(e) = 0, then g is (left and right) uniformly continuous:

max
(
|g(xy)− g(x)|, |g(yx)− g(x)|

)
¬ g(y) for all x, y ∈ G.

Indeed, g(x) = g
(
(xy)y−1

)
¬ g(xy) + g(y) and, on the other hand, we have

g(y) = g
(
x−1(xy)

)
¬ g(x) + g(xy), whence the assertion.

PROPOSITION 4.1. Let f : G→ [1,∞) be submultiplicative and symmetric.
Then we have

f(xy) ­ f(x)

f(y)
· 1{f(x)­f(y)} +

f(y)

f(x)
· 1{f(y)>f(x)},

whence, in particular,

f(xy) ­ max

{
f(x)

f(y)
,
f(y)

f(x)
, 1

}
.

Indeed, applying Lemma 4.2 to g := log f yields

f(xy) = eg(xy) ­ e|g(x)−g(y)| = f(x)

f(y)
· 1{f(x)­f(y)} +

f(y)

f(x)
· 1{f(y)>f(x)}.

PROPOSITION 4.2. Let f : G → [1,∞) be measurable, symmetric and sub-
multiplicative. Let µ, ν, λ ∈Mb

+(G). Then we have:
(a) ⟨µ ⋆ ν, f⟩ ¬ ⟨µ, f⟩ · ⟨ν, f⟩.
(b) ⟨µ ⋆ ν, f⟩ ­ max{⟨µ, f⟩ · ⟨ν, 1/f⟩, ⟨µ, 1/f⟩ · ⟨ν, f⟩}.
(c) Hence
⟨µ ⋆ ν ⋆ λ, f⟩ ­ max{⟨µ, f⟩ · ⟨ν, 1/f⟩ · ⟨λ, 1/f⟩,

⟨µ, 1/f⟩ · ⟨ν, f⟩ · ⟨λ, 1/f⟩, ⟨µ, 1/f⟩ · ⟨ν, 1/f⟩ · ⟨λ, f⟩}.

N o t e. In fact, as f and 1/f are (strictly) positive, it is not necessary to sup-
pose the integrals to be finite.

P r o o f. The assertion (a) is obvious.
(b) By Proposition 4.1 we have

⟨µ ⋆ ν, f⟩ =
∫ ∫

f(xy)dµ(x)dν(y)

­
∫ ∫ f(x)

f(y)
· 1{f(x)­f(y)} +

f(y)

f(x)
· 1{f(y)>f(x)}dν(y)dµ(x)

=
∫
f(x)

∫ 1

f(y)

(
1{f(x)­f(y)} +

f(y)2

f(x)2
· 1{f(y)>f(x)}

)
dν(y)dµ(x)

­
∫
f(x)

∫ 1

f(y)
(1{f(x)­f(y)} + 1{f(y)>f(x)})dν(y)dµ(x)

= ⟨µ, f⟩ · ⟨ν, 1/f⟩.

The other assertions are now obvious. �
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PROPOSITION 4.3. Let f be submultiplicative and admissible (cf. Defini-
tion 4.1), and assume µn → µ weakly in M b

+(G). Then ⟨µ, f⟩ ¬ lim inf⟨µn, f⟩.
Indeed, for all N > 0 we have ⟨µn, f ∧ N⟩ → ⟨µ, f ∧ N⟩ by assumption.

Hence ⟨µ, f⟩ = supN ⟨µ, f ∧N⟩ = supN limn⟨µn, f ∧N⟩ ¬ lim infn⟨µn, f⟩.

PROPOSITION 4.4. Let f : G→ [1,∞) be submultiplicative and admissible.
Let (µt,t+s)0¬t¬t+s be a continuous hemigroup with ⟨µt0,t0+s0 , f⟩ <∞. Then

sup
t0¬t¬t+s¬t0+s0

⟨µt,t+s, f⟩ <∞.

P r o o f. Let α ∈ (0, 1). Then there exists a δ = δ(α) > 0 such that for 0 <
u− v < δ we have ⟨µu,v, 1/f⟩ > α (cf. Lemma 3.1, Corollary 3.1 applied to φ =
1/f ). Furthermore, according to Lemma 4.2 we have

⟨µt0,t0+s0 , f⟩ ­ ⟨µt0,t0+v, 1/f⟩⟨µt0+v,t0+u, f⟩⟨µt0+u,t0+s0 , 1/f⟩.

Consequently, choose t1, s1 such that t0¬ t1¬ t1 + s1¬ t0 + s0, t1 − t0<δ
and t0 + s0 − t1 − s1 < δ. Then

⟨µt1,t0+s0 , f⟩ ¬ ⟨µt0,t0+s0 , f⟩ · α−1,

⟨µt0,t1+s1 , f⟩¬⟨µt0,t0+s0 , f⟩ · α−1, and ⟨µt1,t1+s1 , f⟩¬⟨µt0,t0+s0 , f⟩ · α−2.

Let [t∗, t∗ + s∗] ⊆ [t0, t0 + s0] be a subinterval of length s∗ < δ. Then there
exist t0 < . . . < ti < ti+1 < . . . < tN+1 := t0 + s0 such that ti+1 − ti < δ for
all i and t∗ = ti0 , t∗ + s∗ = ti0+1 for some i0. Therefore, repeating the above
consideration N times, we obtain ⟨µt∗,t∗+s∗ , f⟩ ¬ ⟨µt0,t0+s0 , f⟩ · α−2N .

Hence for any subinterval [t, t+ s] ⊆ [t0, t0 + s0], decomposing [t, t+ s] into
at most N subintervals of lengths less than δ we obtain finally

⟨µt,t+s, f⟩ ¬ (⟨µt0,t0+s0 , f⟩ · α−2N )N .

(Note that N ≈ [s0/δ] + 1 can be chosen independently of the particular decom-
position.) �

5. MOMENTS OF LIPSCHITZ-CONTINUOUS HEMIGROUPS
AND THEIR LÉVY MEASURES

The following key result is proved in [30], Theorem 4:

PROPOSITION 5.1. Let (µt,t+s), t, s ­ 0, be a Lipschitz-continuous hemi-
group with generating functionals A(t) and B(s, t) :=

∫ t

s
A(τ)dτ and Lévy mea-

sures ηA(τ) and ηB(s,t)=
∫ t

s
ηA(τ)dτ, respectively. Assume that there exists a neigh-

bourhood U of e such that

(5.1) ηA(τ)

(
{U

)
= 0 for all τ, whence ηB(s,t)

(
{U

)
= 0 for all s < t.
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Then for any continuous submultiplicative function f : G → [1,∞), for all 0 <
T <∞ we have:

(5.2) sup
0¬t¬t+s¬T

⟨µt,t+s, f⟩ <∞.

In fact, more is shown there: Let α > 0, r ∈ (0, α). Then there exists t > 0
such that

sup
0¬s¬t
⟨µr,r+s, f⟩ = sup

0¬s¬t

∫
f(X−1r Xr+s)dP

¬
∫

sup
0¬s¬t

f(X−1r Xr+s)dP ¬ β(t).

There β(t) ↓ 1 (with t ↓ 0) and (X−1r Xr+s) denote the increments of an additive
process with distributions (µr,r+s)r,s­0.

Hence, if f(e) = 1, then sup (⟨µr,r+s, f⟩ − 1) → 0 as t ↓ 0. This proves in
particular the assertion (5.2) if [0, T ] is covered by a finite number of small inter-
vals.

Recall the notation introduced in Corollary 3.3: c(t) = ηA(t)({U) ¬ β, and
c(t) · ρ(t) = ηA(t)|{U , σ(t) = c(t)ρ(t) +

(
β − c(t)

)
εe.

LEMMA 5.1. Let (νt,t+s) be represented by a perturbation series as in Corol-
laries 3.2 and 3.3: νt,t+s = e−β·s

∑
k­0 ν

(k)
t,t+s. Then for submultiplicative admis-

sible functions f we have:
(a) ⟨νt,t+s, f⟩ = e−βs

∑
k­0⟨ν

(k)
t,t+s, f⟩, ⟨ν

(0)
t,t+s, f⟩ = ⟨µt,t+s, f⟩ and

⟨ν(k+1)
t,t+s , f⟩ ¬

s∫
0

⟨µt,t+u ⋆ σ(t+ u) ⋆ ν
(k)
t+u,t+s, f⟩du ¬ . . .(5.3)

¬
s0∫
0

. . .
sk∫
0

k+1∏
i=0

⟨µti,ti+1 , f⟩ ·
k∏

i=0

⟨σ(ti+1), f⟩duk . . . du0,

where t0 = t, ti+1 := ti + ui, tk+1 := t+ s, s0 := s, si := s−
∑i

1 uj .

(b) ⟨νt,t+s, f⟩ ­ ⟨µt,t+s, f⟩ · e−βs.
(c) ⟨νt,t+s, f⟩ ­ α · e−βs

∫ s

0
⟨σ(t+ u), f⟩du for some α=α(t, t+ s)∈(0, 1].

(d) Furthermore,

s∫
0

⟨σ(t+ u), f⟩du =
s∫
0

c(t+ u)⟨ρ(t+ u), f⟩du+ δ(s) · f(e)

with δ(s) :=
∫ s

0

(
β − c(t+ u)

)
du ¬ β · s.
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P r o o f. The assertions (a) and (b) follow immediately by Corollaries 3.2 and
3.3 and by Proposition 4.2 (a).

Analogously, (c) holds by applying Proposition 4.2 (c) to

⟨νt,t+s, f⟩ ­ e−βs
s∫
0

⟨µt,t+u ⋆ σ(t+ u) ⋆ µt+u,t+s, f⟩du,

defining C := inf0¬u¬s⟨µt,t+u, 1/f⟩, D := inf0¬u¬s⟨µt+u,t+s, 1/f⟩ and α :=
C ·D. (Recall that f(e) = 1 and 0 < 1/f ¬ 1.)

The assertion (d) is again obvious. �

Now we have the means to formulate the main result:

THEOREM 5.1. Let (νt,t+s) be a Lipschitz-continuous hemigroup with gen-
erating functionals A(t) = (∂/∂s)|s=0 µt,t+s and B(s, t) =

∫ t

s
A(τ)dτ, respec-

tively. Assume as in Corollary 3.3, formula (3.1),

(5.4) c(τ) := ηA(τ)({U) ¬ β, 0 ¬ τ ¬ T,

for some neighbourhood U of the unit e. Let, as before, f : G → [1,∞) be sub-
multiplicative and admissible (cf. Definition 4.1). Then the following assertions
are equivalent:

(i) ⟨νt,t+s, f⟩ <∞ for all 0 ¬ t ¬ t+ s ¬ T.
(ii) ⟨ν0,T , f⟩ <∞.
(iii)

∫ T

0
⟨σ(τ), f⟩dτ <∞ (with the notation introduced in Corollary 3.3).

(iv) ⟨ηB(0,T ), f1{U ⟩ =
∫ T

0

∫
{U fdηA(τ)dτ <∞.

(v) sup0¬t¬t+s¬T ⟨ηB(t,t+s), f1{U ⟩ <∞.

P r o o f. We use the notation introduced before, cf. especially Corollary 3.3.
For (i)⇔ (ii) see Proposition 4.4.
(iii)⇔ (iv). Note that σ(τ) ­ 0, βT ­

∫ T

0

(
β − ηA(r)({U)

)
dr ­ 0 and

⟨ηB(0,T ), f1{U ⟩ =
T∫
0

⟨σ(τ), f⟩dτ −
T∫
0

(
β − ηA(r)({U)

)
dr

(cf. Lemma 5.1 (d)). Hence the assertion follows.
(iv)⇔ (v) is obvious, since the integrands are nonnegative.
(ii)⇒ (iii) follows by Lemma 5.1 (c). (Note that α = C ·D > 0.)
(iii) ⇒ (ii). According to Lemma 5.1 (a) it suffices to show that ⟨ν0,T , f⟩ =

e−βT
∑

k⟨ν
(k)
0,T , f⟩ <∞.

For k = 0 we have ⟨ν(0)0,T , f⟩ = ⟨µ0,T , f⟩ ¬ supt¬t+s¬T ⟨µt,t+s, f⟩ =: M0 =

M0(T ) < ∞ (cf. Proposition 5.1). Note that 1 ¬ M0 ¬ M2
0 and, by assumption
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(iii),
∫ T

0
⟨σ(τ), f⟩dτ < ∞. The function t 7→ Γ(t) :=

∫ t

0
⟨σ(v), f⟩dv is increas-

ing, bounded on [0, T ] and absolutely continuous with respect to Lebesgue mea-
sure λ1|[0,T ]. Hence for all ε > 0 there exists a δ(ε) > 0 such that for all s < δ(ε)
and for all t we have Γ(t, t + s) :=Γ(t + s)−Γ(t)<ε. Furthermore, for k ­ 0,
d > 0 we have (with the notation introduced in (5.3)), in view of (5.3) and
Proposition 4.2 (c),

⟨ν(k+1)
t,t+s , f⟩ ¬

s0∫
0

. . .
sk∫
0

k∏
i=0

⟨µti,ti+1 , f⟩ ·
k−1∏
i=0

⟨σ(ti+1), f⟩duk . . . du0

¬Mk+1
0 ·

s0∫
0

. . .
sk∫
0

k−1∏
i=0

⟨σ(ti+1), f⟩duk . . . du0

=Mk+1
0 ·

k∏
i=0

Γ(0, sk) ¬M0 · (M0 · d)k;

(5.5)

if s < δ(d), then si < δ(d) for all i.
To prove the last estimate of (5.5) note that

sk∫
0

k−1∏
i=0

⟨σ(ti+1), f⟩duk

=
k−2∏
i=0

⟨σ(ti+1), f⟩ ·
sk∫
0

⟨σ(tk−1 + uk), f⟩duk ¬
k−2∏
i=0

⟨σ(ti+1), f⟩ · d, etc.

Let 0 < c < 1, choose 0 < d < c/M0. (Note that M0 only depends on T .) We
begin with 0 = t0. Put ti+1 := ti + si and choose si < δ(d). Hence Γ(ti, ti+1)<d.

Then according to (5.5) we observe that ⟨νt0,t1 , f⟩ ¬ e−βs1
∑

k⟨ν
(k)
t0,t0+s1

, f⟩ ¬
e−βs1 (1− c)−1 ·M0.

Now replace t0 by t0 + s =: t1, s < δ(d) etc. After N repetitions, N ≈
T/δ(d), the interval [0, T ] is covered, T =

∑N
1 si, and we obtain, in view of

Proposition 4.2,

⟨ν0,T , f⟩ ¬
N∏
1

⟨νti,ti+1 , f⟩ ¬
N∏
1

(
e−βsi(1− c)−1 ·M0

)
= e−βT (1− c)−N ·MN

0 <∞. �

REMARK 5.1. (a) The constantM0 in (5.5) depends on the length of the cho-
sen interval. Indeed, put

M0 =M0(s) := sup
0¬t¬t+u¬t+s

⟨µt,t+u, f⟩

if the behaviour of u 7→ νt,t+u is considered in the interval 0 ¬ u ¬ s.
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If the hemigroup (νt,t+s) is time-homogeneous, i.e. if (νs := νt,t+s)s­0 (and
also (µs := µt,t+s)s­0) are continuous convolution semigroups, then we obtain a
sharper estimate. Put with M0(s) = supu¬s⟨µu, f⟩:

(5.6) ⟨νt,t+s, f⟩ = ⟨νs, f⟩ ¬M0(s) exp(−sβ) exp
(
M0(s)⟨σ, f⟩

)
.

Here

A(t) ≡ A, σ(t) ≡ σ = ηA|{U , β := σ(G) = ηA({U) ≡ c(t).

With different notation the upper bound (5.6) is found in [30], the proof of
Theorem 5. In fact, in the time-homogeneous case we have:

⟨νs, f⟩ = ⟨νt,t+s, f⟩ = e−βs
∑
k

⟨ν(k)t,t+s, f⟩ with ⟨ν(0)t,t+s, f⟩ = ⟨µt,t+s, f⟩,

⟨ν(k+1)
t,t+s , f⟩ ¬

s∫
0

⟨µu, f⟩⟨σ, f⟩⟨ν(k)t+u,t+s, f⟩du

¬M0(s)⟨σ, f⟩
s∫
0

⟨ν(k)t+u,t+s, f⟩du ¬ . . . ¬
M0(s)

(k + 1)!

(
M0(s)⟨σ, f⟩

)k+1
.

Thus (5.6) follows.
(b) Siebert’s results in [28] and [30] for the time-homogeneous case are proved

for general continuous convolution semigroups, and in that case the restrictive
condition (3.1), resp. (5.4), is trivially fulfilled (for any T > 0). (In fact, then
ηA({U) =: β <∞.) It is natural to conjecture that the assertions of Theorem 5.1
hold true also without condition (3.1), resp. (5.4). But up to now no proof is
available.

(c) Throughout, in order to avoid problems with measurability and in view of
[30], Theorem 4, we assumed G to be second contable. In fact, this is not a serious
restriction:

At first, without loss of generality we may assume G to be σ-compact, since
the group generated by the supports

∪
0¬t<t+s¬T supp(νt,t+s) is σ-compact. As

well known (cf., e.g., [4], p. 101, exerc. 11) a σ-compact group is representable
as a projective limit of second countable groups G = lim

←
G/K, K ∈ K, a set of

compact normal subgroups with
∩

K∈KK = {e}. Let f be as above; then W :=
{f = 1} is a closed subgroup. Moreover, g := log f is uniformly continuous by
Lemma 4.2 and {g = 0} = W . Hence g and f are W -invariant and if g, resp.
f , is K-invariant for some subgroup K, then K ⊆ W . But g is K0-invariant for
some K0 ∈ K (cf. the above reference [4]), whence K0 ⊆W . Therefore, f is K0-
invariant, hence integrability of f with respect to (νt,t+s) can be reduced to the
case of second countable groups.
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6. APPENDIX

In the following we sketch briefly some applications and examples in order to
show that in many interesting cases it is easier to check integrability of admissible
submultiplicative functions with respect to Lévy measures than with respect to the
generated probabilities.

6.1. Convolution semigroups: Moments of (semi-)stable laws. Let G be a sec-
ond countable contractible locally compact group with contracting automorphism
τ ∈ Aut(G). Let {Uk}k∈Z be a filtration, i.e., Uk are compact neighbourhoods
of e with

∪
Un = G,

∩
Un = {e}, Un ⊇ Un+1 and τUn = Un+1 for all n ∈ Z

(see [8], Lemma 3.7.3). L := U0\U1 is a cross-section with respect to the action
of τ . Let (µt)t­0 be a (τ, c)-semistable continuous convolution semigroup, i.e.,
τ(µt) = µc·t for all t ­ 0, where 0 < c < 1 (cf., e.g., [8], §3.4).

Let | · | denote a subadditive group-norm, i.e., a continuous symmetric sub-
additive function | · | : G → R+ such that |x| = 0 iff x = e and {|x| < ε} is a
neighbourhood of e for ε > 0 (see [8], 2.7.26 d)). Assume that, for some constants
1 < r ¬ R, rn|x| ¬ |τ−nx| ¬ Rn|x| for n ∈ Z+. Then, for γ > 0 we have:

(6.1)
∫
|x|γdµt(x) <∞, t > 0, iff

∫
{|x|­1}

|x|γdη(x) <∞,

where η denotes again the Lévy measure of (µt). In fact, the left integral is finite
iff

∫
(1 + |x|γ)dµt(x) < ∞, and hence iff

∫
(1 + |x|)γdµt(x) < ∞. According

to Theorem 5.1 (resp. by Siebert’s result for continuous convolution semigroups)
this is equivalent to

∫
{|x|­1} (1 + |x|)

γ dη(x) <∞, and, as before, this is the case

iff
∫
{|x|­1} |x|

γdη(x) <∞. (Note that x 7→ (1 + |x|)γ is an admissible submulti-
plicative function.)

EXAMPLE 6.1. The above-mentioned Lévy measure is representable as η =∑
k∈Z c

−kτk(λ) for λ = η|L ∈Mb
+(L) (cf., e.g., [8], Proposition 3.4.8). Hence it

follows easily that the integral in (6.1) is finite iff
∑

k­0 c
k
∫
L
|τ−kx|γdλ(x) <∞.

By assumption we have rkγ
∫
L
|x|γdλ ¬

∫
L
|τ−kx|γdλ ¬ Rkγ

∫
L
|x|γdλ. Hence

we obtain:∫
|x|γdµt(x) <∞ if Rγ < 1/c, i.e., γ < log(1/c)/ logR,

and
rγ < 1/c, i.e., γ < log(1/c)/ log r, if

∫
|x|γdµt(x) <∞.

(For vector spaces compare with, e.g., [17], [16], 4.12.2–4.12.4, [8], 1.7.9; for ho-
mogeneous groups see [8], 2.7.28–2.7.32.)

In particular, if |τ−kx| = rk|x|, k ∈ Z+, then
∫
|x|γdµt < ∞ iff 0 < γ <

log(1/c)/ log r.
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EXAMPLE 6.2. The totally disconnected case. Let G be totally disconnected.
Then the filtration can be chosen to consist of open compact subgroups. We fix
0 < α < 1 and define |x| := αk(x) for x ̸= e and |e| = 0, where k(x) :=
min {k ∈ Z : x ∈ Uk}. (Frequently, α := 1/p, where p := ord{Uk/Uk+1}, the
modulus of τ .) Then we obtain∫

|x|γdµt(x) <∞ iff α−γ < c−1, i.e., γ < log c/ logα.

(In fact, | · |α= | · | is a group norm, with |xy|¬max{x, y} and |τkx|=αk · |x|,
k ∈ Z. Hence r = α−1.)

EXAMPLE 6.3. The case of homogeneous groups: dilation semistable laws.
Let G be a homogeneous group, in particular, a connected contractible Lie group
with contractive automorphism τ . Let (δt) ⊆ Aut(G) be a group of dilations and
| · | a corresponding homogeneous norm. (Cf., e.g., [8], 2.7.26 d).) Assume, e.g.,
that also τ is a dilation, τ = δd for some 0 < d < 1. Then as before we obtain:∫

|x|γdµt(x) <∞ iff d−γ < c−1, i.e., γ < log c/ log d.

(Note that |τkx| = |δkdx| = dk · |x| for all x ∈ G, k ∈ Z in that case. Hence r =
d−1.)

6.2. Convolution hemigroups: Logarithmic moments of (semi-)stable hemi-
groups and (semi-)self-decomposability. Let again G be a homogeneous group
with dilations (δt) and corresponding subadditive homogeneous norm. Let (ρt)t∈R
be a contracting one-parameter group of automorphisms with additive parametriza-
tion ρt+s = ρtρs, ρt(x)→ e as t→∞ (x ∈ G).

EXAMPLE 6.4. Let (µt,t+s)0¬t¬t+s be a stable convolution hemigroup, i.e.
a hemigroup satisfying ρr(µt,t+s) = µt+r,t+s+r for all r, s, t ­ 0. (These hemi-
groups are the distributions of increments of an additive process, a generalized
Ornstein–Uhlenbeck process.) It is well known that limt→∞ µ0,t =: µ exists iff
logarithmic moments exist, i.e.,

∫
log+ |x|dµ0,1(x) <∞, or, equivalently, if for all

0 ¬ s, t,
∫
log+ |x|dµt,t+s(x) <∞. (For vector spaces see, e.g., [16], for groups,

e.g., [7], [8], §2.14. Note that µ is self-decomposable and an invariant distribu-
tion for the underlying additive process.) As before, this property is equivalent to∫
ψ(x)dµt,t+s(x) <∞, where ψ(x) :=

(
1+ log(1+ |x|)

)
≈ log+(|x|). The inte-

grand ψ is admissible submultiplicative, and hence, according to Theorem 5.1, this
integral is finite iff

∫ T

0

∫
{|x|>1} ψ(x)dηtdt <∞, where ηt are the Lévy measures of

(∂/∂s)µt,t+s|s=0 =: A(t). Note that the stability property implies the existence of
the derivatives A(t) = (∂/∂s)|s=0 µt,t+s, and furthermore A(t+ s) = ρt

(
A(s)

)
.

Hence A(t) = ρt
(
A(0)

)
, and as t 7→ ρt is continuous, the condition (3.1), resp.
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(5.4) is obviously fulfilled and we have:

T∫
0

∫
{|x|>1}

ψ(x)dηt(x)dt =
T∫
0

∫
{|x|>1}

ψ(x)dρt(η0)(x)dt <∞

iff
∫

{|x|>1}
ψ(x)dη0(x) <∞,

where η0 is the Lévy measure of the underlying background driving Lévy process.
Hence we infer that the additive process (Xt), resp. its incrementsXt,t+s with

distributions µt,t+s, has logarithmic moments (and hence there exists an invariant
distribution µ = limt→∞ µ0,t) iff the background driving Lévy process has loga-
rithmic moments.

Thus we obtained a new proof of a well-known result: For vector spaces see,
e.g., [16], Theorem 3.6.6, for groups see, e.g., [7] and [8], §2.14, in particular
Theorem 2.14.25.

EXAMPLE 6.5. The above-mentioned proofs in [7] and [8] rely on an embed-
ding of G into a space-time group GoR and the application of Siebert’s result to
a continuous convolution semigroup on this enlarged group. This method breaks
down in case of semi-stable hemigroups, resp. semi-self-decomposable laws, i.e.,
hemigroups µt,t+s satisfying ρ (µt,t+s) = µt+c,t+s+c for all t, t+ s, some contrac-
tive ρ ∈ Aut(G) and some c > 0. Here the background driving Lévy process has
to be replaced by an additive process, a background driving additive periodic pro-
cess. For vector spaces cf. [2], for groups see [3]. Again the limit µ = limt→∞ µ0,t
exists iff µ0,c has finite logarithmic moments (equivalently, in view of Lemma 4.1,
iff all µt,t+s share this property). Under the additional conditions that the embed-
ding hemigroup is Lipschitz-continuous and the Lévy measures ηt of the almost
everywhere existing derivatives (∂/∂s)µt,t+s|s=0 =: A(t) satisfy the boundedness
condition (3.1), resp. (5.4), it can be shown that the semistable hemigroup has log-
arithmic moments iff this is the case for the periodic background driving process.
(For vector spaces cf., e.g., [2], 2.4, 3.2–3.4, or [22].)

We omit the details here.

Note added in proof. To mention a further reference for the representation
of σ-compact locally compact groups as projective limits of metrizable groups
(cf. Remark 5.1 (c)): M. Tkačenko, Introduction to topological groups, Topology
Appl. 86 (1998), pp. 179–231, Theorem 5.2.

REFERENCES

[1] A. de Acosta, Exponential moments of vector valued random series and triangular arrays,
Ann. Probab. 8 (1980), pp. 381–389.

[2] P. Becker-Kern, Random integral representation of operator-semi-selfsimilar processes with
independent increments, Stochastic Process. Appl. 109 (2004), pp. 327–344.

Probability and Mathematical Statistics 30/2010, z. 2
© for this edition by CNS



336 W. Hazod

[3] P. Becker-Kern and W. Hazod, Mehler hemigroups and embedding of discrete skew
convolution semigroups on simply connected nilpotent Lie groups, in: Infinite Dimensional
Harmonic Analysis IV. Proceedings of the Fourth German-Japanese Symposium, J. Hilgert,
A. Hora, T. Kawazoe, K. Nishiyama and M. Voit (Eds.), World Scientific Publishing, 2009,
pp. 32–46.
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