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Abstract. We study the tail asymptotic of the stationary joint queue
length distribution for a generalized Jackson network (GJN for short), as-
suming its stability. For the two-station case, this problem has recently been
solved in the logarithmic sense for the marginal stationary distributions un-
der the setting that arrival processes and service times are of phase-type.
In this paper, we study similar tail asymptotic problems on the stationary
distribution, but problems and assumptions are different. First, the asymp-
totics are studied not only for the marginal distribution but also the station-
ary probabilities of state sets of small volumes. Second, the interarrival and
service times are generally distributed and light tailed, but of phase-type
in some cases. Third, we also study the case that there are more than two
stations, although the asymptotic results are less complete. For them, we
develop a martingale method, which has been recently applied to a single
queue with many servers by the author.
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1. INTRODUCTION

Asymptotic analyses have been actively studied in the recent queueing the-
ory. This is because queueing models, particularly, queueing networks, become
very complicated and their exact analyses are getting harder. We are interested in
asymptotic analyses for large queues in a generalized Jackson network and aim to
understand their asymptotic behaviors through its modeling primitives.

∗ This paper is partly supported by JSPS KAKENHI Grant Number 16H027860001.
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There are two different types of asymptotic analyses for large queues. One is
for a given fixed model. Large deviations are typically studied for this. Another
is to study them through an approximating model. For example, such a model is
obtained as the limit of a sequence of models under heavy traffic by scaling time,
space and/or modeling primitives. It is called heavy traffic approximation (e.g.,
see [20], [22]). Here, large queues are caused by heavy traffic. In this paper, we
focus on the large deviations for a fixed model. Among them, we are particularly
interested in the logarithmic tail asymptotics of the stationary distribution for a
generalized Jackson network, GJN for short.

This problem has been studied by the standard approach of large deviations,
but the decay rates are hard to obtain analytically by using modeling primitives
(e.g., see [14]). The author [17] recently studied it by a matrix analytic method, and
derived the decay rates for the marginal stationary distributions in an arbitrary di-
rection for a two-station GJN, assuming phase-type distributions for service times
and arrival processes, called a phase-type setting. We aim to generalize this result
under a more general setting by a different approach.

Let d  2 be the number of stations in the GJN. For d = 2, we relax the
phase-type assumption, and consider the decay rates of the stationary probabili-
ties for state sets of small volumes in addition to those of the marginal stationary
distribution. For d  3, we derive upper and lower bounds for those decay rates.

Our basic idea is to simplify the derivation of those asymptotic results in such
a way that they are obtained in a similar manner to a reflecting random walk on a
multidimensional orthant. This simplification greatly benefits for analysis although
the decay rate problems for the reflecting random walk have not been fully solved
even for d = 2. To this end, we take an approach studied for a single queue with
heterogeneous servers in [18], and modify it for a queueing network. In this ap-
proach, we first describe the GJN by a piecewise deterministic Markov process,
PDMP for short. We then derive martingales for change of measures, and formu-
late the asymptotic problems under a new measure.

PDMP is a continuous time Markov process whose sample path is composed
of two parts, a continuous part, which is deterministic, and a discontinuous part,
called jumps, by which randomness is created. Thus, PDMP is particularly suitable
for queueing models. However, jump instants are random, and state changes at
them are complicated. Because of this, PDMP is hard for analysis. So, other meth-
ods have been employed in queueing theory. For example, the state space is dis-
cretized by using phase-type distributions, and a Markov chain is obtained. Then,
matrix analysis is applicable. This phase-type approach is numerically powerful
but analytically less explicit because of state space description. Furthermore, it is
getting harder to apply as a queueing model becomes complicated like a queueing
network. We will not use such a matrix analysis. Nevertheless, it turns out that the
phase-type assumption is helpful in our asymptotic analysis in some cases.

Contrary to the analytical difficulty, the PDMP has a simple sample path. Its
time evolution is easily presented by a stochastic integral equation using a test
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function, which maps the states of the PDMP to real values (see (2.7) below).
In this stochastic equation, state changes at the jump instants cause difficulty for
analysis as we mentioned above. Davis [9], who introduced PDMP, replaces those
state changes at jump instants by a martingale and the so-called boundary condition
on the test function.

However, it is not easy to find a good class of the test functions which charac-
terize a distribution on the state space of the PDMP. The idea of [18] is to choose
a smaller class of test functions to overcome those difficulties. We then have a
semi-martingale which cannot characterize a distribution on the state space, but
still retains full information to study large queues. Once the semi-martingale is ob-
tained, we use the standard technique for change of measure through constructing
an exponential martingale, called a multiplicative functional.

In applying this martingale approach to the GJN, we need to know how the
network model is changed under the new measure. Intuitively, some of its stations
must be unstable for the tail asymptotic analysis to work. To study this instability
problem, we will use the fact that the network structure is unchanged under the
change of measure, and therefore the stability of each station is characterized by the
traffic intensity at that station. These traffic intensities are obtained from the traffic
equations, but they are non-linear because of unstable stations. Thus, the instability
problem is not obvious. We challenge it, and find some sufficient conditions for the
GJN to be partly unstable under the new measure, which depends on the choice of
a martingale for change of measure.

This paper is made up of four sections. In Section 2, the GJN (generalized
Jackson network) is described by a PDMP, and a martingale for change of measure
is derived. This section also considers geometric interpretations of the stability
condition of the GJN, and present main results for the asymptotic problems. Sec-
tion 3 discusses the method of change of measure, and considers how the GJN is
changed under a new measure. In Section 4, the main results are proved. For this,
we first list major steps for deriving upper and lower bounds, then prepare several
lemmas to complete the proofs.

In this paper, we will use real vectors in the following way. Column and row
vectors and their dimensions are not specified as long as they can be identified
in the context where they are used. Their inequality holds in entrywise; ek is the
unit vector whose k-th entry is one while all the other entries vanish; 1 is the
vector all of whose entries are one. The inner product

∑
i xiyi of vectors x,y of

the same dimension is denoted by ⟨x,y⟩, and ∥x∥ =
√
⟨x,x⟩; x is said to be a

unit direction vector if x  0 and ∥x∥ = 1. We denote the set of all unit direction
vectors in Rd+ by

−→
U d. For x in a finite-dimensional vector space S and its subset

B, we will use the convention that x+B = {x+ y ∈ S;y ∈ B}. For a finite set
A, its cardinality is denoted by |A|.

Acknowledgments. Professor Tomasz Rolski organized a series of interna-
tional conferences in Karpacz and Będlewo in Poland since 1980 up to the last
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year. I have benefited from those conferences about not only academic collabora-
tions but also personal interactions. This paper is one of such outcomes, and I am
grateful to Tomasz’s great academic contribution as well as his warm hospitality.

2. GENERALIZED JACKSON NETWORK

We are concerned with a queueing network which has a finite number of sta-
tions with single servers and single class of customers. At each station, there is an
infinite buffer, exogenous customers arrive subject to a renewal process if any, and
customers are served in first-come-first-served manner by independent and identi-
cally distributed service times. Furthermore, the renewal process and service times
are independent of everything else. Customers who complete service at a station
are independently routed to the next stations or leave the network according to a
given probability. We refer to this queueing network as a GJN (generalized Jackson
network).

2.1. Notation and assumptions. Let us introduce the notation for a GJN. Let d
be the total number of stations. We index stations by elements inJ ≡ {1, 2, . . . , d},
and let E be the set of the stations which have exogenous arrivals. For each station
i, let Fe,i for i ∈ E be the interarrival time distribution of exogenous customers,
and let Fs,i for i ∈ J be the service time distribution. Let pij be the probability
that a customer completing service at station i is routed to station j for i, j ∈ J ,
where those customers leave the outside of the network with probability

pi0 ≡ 1−
∑
i∈J

pij .

To exclude trivial cases, we assume that d× dmatrixP ≡ {pij ; i, j ∈ J } is strictly
substochastic, and (d + 1) × (d + 1) matrix P ≡

{
pij ; i, j ∈ {0} ∪ J

}
is irre-

ducible, where p00 = 0, and p0i > 0 only if i ∈ E , where the value of p0i is speci-
fied later. We call P a routing matrix, while P is called an over all routing matrix.

At time t, letLi(t) be the number of customers in station i ∈ J , and letRs,i(t)
be the residual service time of a customer being served there if any, where we set up
a new service time just after service completion, and this service time is unchanged
as long as station i is empty. Thus, all Rs,i(t) are always positive because of the
right continuity, and Rs,i(t−) vanishes only at service completion instants. For
i ∈ E , let Re,i(t) be the residual time to the next exogenous arrival at station i.

Denote the vectors whose i-th entries are Li(t), Rs,i(t) for i ∈ J and Re,i(t)
for i ∈ E by L(t),Rs(t),Re(t), respectively, and define X(t) and R(t) as

X(t) =
(
L(t),Re(t),Rs(t)

)
, R(t) =

(
Re(t),Rs(t)

)
, t  0.

Then, {pij ; i, j ∈ J }, {Fe,i; i ∈ E} and {Fs,i; i ∈ J } are the modeling primitives,
and the state space S for X(t) is given by

S = {(z,ye,ys); z ∈ Zd+,ye ∈ RE+,ys ∈ Rd+},



Tail asymptotics in generalized Jackson network 399

where Z+ and R+ are the sets of all nonnegative integers and all nonnegative real
numbers, respectively. As usual, we assume that X(t) is right-continuous and has
left-hand limits. Let {Ft; t  0} be a filtration generated by histories of all the
sample paths of X(·); then Ft is right-continuous, and {X(t); t  0} is an Ft-
Markov process.

Let F̂e,i and F̂s,i be the moment generating functions, MGF for short, of the
distributions Fe,i and Fs,i, respectively. We define βw,i and θw,i for w = e, s as

βw,i = sup{θ ∈ R; F̂w,i(θ) <∞}, θw,i = inf{θ ∈ R; e−θ < F̂ (βw,i)}.

We will assume that βw,i > 0 and θw,i =∞ for all w = e, s and i. That is, all the
distributions, Fw,i, have light tail and their moment generating functions diverge at
their singular points. These conditions are assumed for technical simplicity.

For some important cases, we have to restrict these distributions in the fol-
lowing class. A positive random variable T or its distribution is said to have a
conditional MGF with a uniform bound if there is a function h of θ > 0 such that
E(eθT ) <∞ implies that

(2.1) E(eθ(T−t)|T > t) ¬ h(θ), θ > 0,

as long as P(T > t) > 0. Obviously, if T is bounded, it satisfies the condition (2.1).
Another obvious example is an NBU distribution, which is characterized by
P(T > s + t|T > s) ¬ P(T > t) for s, t > 0. An important class for our appli-
cation is of phase-type, which is defined as

(2.2) F (t) ≡ P(T ¬ t) = 1− aetU1, t  0,

where a is a finite-dimensional probability vector, and U is a defective transition
rate matrix with the same dimension as a such that (−U)−1 is finite.

LEMMA 2.1. A phase-type distribution has a conditional MGF with a uniform
bound.

P r o o f. Assume that F is given by (2.2). Let T be a random variable subject
to F , and let b(s) = aesU/(aesU1). Then b(s) is a probability vector, and

P(T > s+ t|T > t) = b(t)esU1, s, t > 0,

and therefore

E(eθ(T−t)|T > t) = b(t)(−U)(θI + U)−11, t  0, θ > 0,

which is finite as long as E(eθT ) = a(−U)(θI + U)−11 is finite. Hence, we have
(2.1) by letting h(θ) be the maximum of all the entries of the vector
(−U)(θI + U)−11. �



400 M. Miyazawa

Thus, we consider the tail asymptotic problem for the GJN assuming the distri-
butions of Te,i, Ts,j to have light tails, and, in some cases, we assume the following:

(A1) All the Te,i for i ∈ E and Ts,i for j ∈ J have conditional MGF with uniform
bounds, that is, satisfy (2.1).

Let λi = 1/E(Te,i) for i ∈ E and µi = 1/E(Ts,i) for i ∈ J . For convenience, we
put λi = 0 for i ∈ J \ E . We now put p0i = λi/

∑
j∈J λj for i ∈ J in P . Let αi

for i ∈ J be the solutions of the following traffic equation:

(2.3) αi = λi +
∑
j∈J

αjpji, i ∈ J .

It is easy to see that the solutions uniquely exist because the routing matrix P
is strictly substochastic and P is irreducible. Let ρi = αiE(Ts,i), and assume the
stability condition, that is,

(2.4) ρi < 1, i ∈ J .

In Section 2.5, we will consider the case where some of stations are unstable. This
case occurs under change of measure, and ρi is no longer a right traffic intensity.

2.2. Piecewise deterministic Markov process (PDMP). In this paper, we con-
sider {X(t); t  0} as a piecewise deterministic Markov process, PDMP for short,
introduced by Davis [9]. PDMP is a Markov process with piecewise determinis-
tic and continuously differentiable sample path and finitely many discontinuous
epochs in each finite time interval. Its randomness arises at discontinuous epochs,
which are uniquely determined by hitting times when the deterministic sample
path gets into a specified state set. The set of those discontinuous epochs consti-
tutes a counting process, and the piecewise deterministic sample path is randomly
changed at those times. We here assume that there is no other discontinuous state
change. This slightly changes the standard description of PDMP due to [9], but
it is a matter of formulation since Davis’ PDMP can be described by the present
formulation as well.

We now introduce the notation to describeX(t) as a PDMP. LetN be a count-
ing process for the expiring times of all the remaining times. That is,

N(t) =
∑

u∈(0,t]

(∑
i∈E

1
(
∆Re,i(u) > 0

)
+
∑
i∈J

1
(
∆Rs,i(u) > 0

))
, t  0,

where ∆ is the difference operator such that ∆f(t) = f(t) − f(t−) for a func-
tion f which is right-continuous and has left-hand limits. Clearly, N counts all
the discontinuous points of X(t). However, it may multiply counts at the same
instant, and therefore ∆N(t) may be greater than one. To avoid this, we define a
simplification of N as

N∗(t) =
∑

u∈(0,t]
1
(
∆N(u) > 0

)
, t  0.
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We then let t0 = 0, and inductively define tn = inf{u > tn−1;∆N
∗(u) > 0} for

n = 1, 2, . . . Thus, tn is the n-th discontinuous epoch of X(t), and a stopping time
with respect to Ft.

Between times tn−1 and tn, X(t) is linearly changing, so continuously differ-
entiable in such a way that

d

dt
Li(t) = 0,

d

dt
Re,i(t) = −1(i ∈ E),

d

dt
Rs,i(t) = 1

(
Rs,i(t) > 0

)
.

This differentiation can be described by an operator A on C1(S), which is the set
of all continuously differentiable functions from S to R. Namely, A is defined as

(2.5) Af(x) = −
∑
i∈E

∂

∂ye,i
f(z,ye,ys)−

∑
i∈J

∂

∂ys,i
f(z,ye,ys)1(zi  1).

Since the PDMP is a strong Markov process, the conditional distribution of
X(tn) given Ftn− is a function of X(tn−) for each n  1, which is characterized
by the transition kernel K given by

Kf
(
X(t−)

)
= E

(
f
(
X(t)

)
|X(t−)

)
, X(t−) ∈ Γ,(2.6)

for f ∈M(S), where Γ is the set of x ≡ (z,ye,ys) ∈ S such that

∃i ∈ E , ye,i = 0 or ∃i ∈ J , zi  1, ys,i = 0.

This Γ is referred to as a terminal set, while K is referred to as a jump kernel.

2.3. Martingale decomposition of the PDMP. From (2.5) and (2.6) and the
counting process N∗, we have a time evolution equation for f ∈ C1(S), that is,

(2.7) f
(
X(t)

)
= f

(
X(0)

)
+

t∫
0

Af
(
X(u)

)
du+

t∫
0

∆f
(
X(u)

)
dN∗(u).

We refer to f as a test function, as is typically called.
We apply the same martingale method as discussed in [18]. We repeat it here

briefly for this paper to be self-contained. We first note that

M0(t) ≡
t∫
0

(
f
(
X(u)

)
−Kf

(
X(u−)

))
dN∗(u), t  0,

is an Ft-martingale if E
(
|M(t)|

)
<∞. Since

∆f
(
X(u)

)
= f

(
X(u)

)
−Kf(u−) +Kf

(
X(u−)

)
− f

(
X(u−)

)
,
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it follows from (2.7) that

M0(t) = f
(
X(t)

)
− f

(
X(0)

)
(2.8)

−
[ t∫

0

Af
(
X(s)

)
ds+

t∫
0

(
Kf
(
X(s−)

)
− f

(
X(s−)

))
dN∗(s)

]
.

We define M(·) and D(·) as

M(t) = f
(
X(t)

)
− f

(
X(0)

)
−

t∫
0

Af
(
X(s)

)
ds, t  0,(2.9)

D(t) =
t∫
0

(
Kf
(
X(s−)

)
− f

(
X(s−)

))
dN∗(s).(2.10)

Since

(2.11) M(t) =M0(t) +D(t), t  0,

we have the following fact.

LEMMA 2.2. For the PDMP X(·), if the condition

Kf(x) = f(x), ∀x ∈ Γ,(2.12)

is satisfied and if E
(
|M(t)|

)
<∞ for all t  0, then M(·) is an Ft-martingale.

We refer to (2.12) as a terminal condition following the terminology of [18].

2.4. Terminal condition for the GJN. A key of our arguments is to find a set
of test functions satisfying the terminal condition (2.12). For this, we mainly apply
the following test function, parameterized by θ ∈ Rd,

(2.13) fθ(x) = e⟨θ,z⟩−⟨γe(θ),ye⟩−⟨γs(θ),ys⟩, x ≡ (z,ye,ys) ∈ S,

using some vector-valued functions γe(θ) ∈ RE and γs(θ) ∈ RJ , where we re-
call that ⟨a, b⟩ is the inner product of vectors a, b of the same dimensions. In some
cases, it needs to truncate some of ye,i and ys,j as ye,i ∧ v and ys,j ∧ v for v > 0,
which causes the change of γe,i(θi) to γe,i(v, θi), as we will see, where a ∧ b =
min(a, b) for a, b ∈ R. By Je(v) we denote the set of i ∈ E such that ye,i is trun-
cated by v. Similarly, Js(v) denotes the set of i ∈ J such that ys,i is truncated by
v for i ∈ Js(v). Let J(v) =

(
Je(v), Js(v)

)
⊂ E ×J . Then, the test function fθ is

changed to

(2.14) fJ(v),θ(x) = e⟨θ,z⟩−wJ(v)(θ,y), x ≡ (z,y) ∈ S,
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where y = (ye,ys) and

wJ(v)(θ,y) =
∑

i∈Je(v)
γe,i(v, θi)(ye,i ∧ v) +

∑
i∈E\Je(v)

γe,i(θi)ye,i(2.15)

+
∑

i∈Js(v)
γs,i(v, θi)(ys,i ∧ v) +

∑
i∈J\Je(v)

γs,i(θi)ys,i.

Obviously, f∅,θ(x) = fθ(x).
Our first task is to determine functions γe,i(v, ·) and γs,j(v, ·) for v ∈ (0,∞]

so that the terminal condition (2.12) is satisfied, where γu,i(·) = γu,i(∞, ·) for
u = e, s. For this, we first consider a prototype for them as we have done in Sec-
tion 2.3 of [18]. Let T be a positive-valued random variable, and denote its distri-
bution by F . We truncate T by a positive number v as T (v) ≡ T ∧ v, and denote
the distribution of T (v) by F (v). We denote the moment generating functions of F
and F (v) by F̂ and F̂ (v), respectively.

Note that F̂ (v)(θ) exists and is finite for all θ ∈ R, but this may not be true for
F̂ (θ) ≡ F̂ (∞)(θ). For v ∈ (0,∞], let

β
(v)
F = sup{θ ∈ R; F̂ (v)(θ) <∞},(2.16)

θ
(v)
F = inf{θ ∈ R; e−θ < F̂ (v)(β

(v)
F )};(2.17)

then β(v)F =∞ and θ(v)F = −∞ for v <∞, while they may be finite for v =∞,
where θ(v)F ¬ 0, since β(v)F  0. Note that F̂ (θ) is finite for θ < β

(∞)
F . Define ξ to

be a solution of the equation

(2.18) eθF̂ (v)(ξ) = 1, θ ∈ R, v > 0.

Obviously, ξ uniquely exists for each θ ∈ R and v > 0. We denote it by ξF (v, θ).
It has the following properties, which are proved in Lemma 2.4 of [18].

LEMMA 2.3. For each fixed v > 0:
(a) ξF (v, 0) = 0, and ξF (v, θ) is strictly decreasing and concave in θ ∈ R.
(b) ξF (v, θ) is positive and decreasing in v for each fixed θ < 0.
(c) ξF (v, θ) is negative and increasing in v for each fixed θ > 0.
(d) ξF (v, θ) is differentiable in θ, and

∂

∂θ
ξF (v, θ) = −

e−θ

(F̂ (v))′
(
ξF (v, θ)

) .
We define ξ(△)F (θ) and ξF (θ) as

ξ
(△)
F (θ) = lim

v↑∞
ξF (v, θ), θ ∈ R, ξF (θ) = ξF (+∞, θ), θ > θ

(∞)
F ,

which exist and are finite. These functions have some nice properties. For them,
we cite Lemma 2.5 of [18] in which θ =∞ in the present case.
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LEMMA 2.4. (a) ξ(△)F (θ) is nonincreasing and concave for all θ ∈ R.

(b) ξ(△)F (θ) has the following properties:

ξ
(△)
F (θ) =

{
β
(∞)
F , θ ¬ θ(∞)

F ,

ξF (θ), θ > θ
(∞)
F ,

d

dθ
ξ
(△)
F (θ) =

{
0, θ < θ

(∞)
F ,

(ξ
(∞)
F )′(θ), θ > θ

(∞)
F ,

where (ξ
(∞)
F )′(θ

(∞)
F ) is the derivative from the right if θ(∞)

F is finite, and

(2.19) eθF̂
(
ξ
(△)
F (θ)

){¬ 1, θ < θ
(∞)
F ,

= 1, θ  θ(∞)
F .

Throughout the paper, we assume that

(2.20) θ
(∞)
Fe,i

= −∞, i ∈ E , θ
(∞)
Fs,i

= −∞, i ∈ J ,

which means that Fe,i and Fs,j have light tails, and their moment generating func-
tions diverge at the upper boundaries of their convergence domains. This assump-
tion can be removed by using ξ(△)F as shown in [18] for a single queue. However,
it will be complicated for a queueing network. This is the reason why we assume
(2.20).

Let
qi(θ) = e−θi

( ∑
j∈J

pije
θj + pi0

)
, θ ∈ Rd, i ∈ J .

Then qi(θ) > 0 and is convex in θ, and it is easy to see that

log qi(θ) = −θi + log
( ∑
j∈J

pije
θj + pi0

)
is a convex function of θ ∈ Rd because

∑
j∈J pije

θj + pi0 is a sum of convex
functions (see the lemma of [12]).

We now define γe,i(v, θi) and γs,i(v,θ) for v ∈ (0,∞] as

(2.21)
γe,i(v, θi) = −ξF (v)

e,i

(θi), i ∈ E ,

γs,i(v,θ) = −ξF (v)
s,i

(
log qi(θ)

)
, i ∈ J .

As informally mentioned, we let γe,i(θi) = γe,i(∞, θi) and γs,i(θ) = γs,i(∞,θ).
Due to the assumption (2.20), these functions are well defined for all θ ∈ Rd.
Clearly, their definitions are equivalent to

(2.22)
eθiF̂

(v)
e,i

(
− γe,i(v, θi)

)
= 1, i ∈ E ,

qi(θ)F̂
(v)
s,i

(
− γs,i(v,θ)

)
= 1, i ∈ J .

These equations mean that ∆Re,i(t) and ∆Rs,j(t) at the jump instants are com-
pensated by the change of the queue lengths so that the terminal condition (2.12)
is satisfied. This is an intuitive background for the definitions of γe,i, γs,j .
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REMARK 2.1. The reader may wonder why the minus signs are needed in
(2.21) because γe,i, γs,j in the test functions fθ, and fθ also have the minus signs,
and they can be cancelled. The reason for this is that they have nice interpretations
for large deviations. For example, let Ne,i(t) be the number of arrivals at station
i ∈ E by time t. Then Ne,i(·) is a renewal process, and Glynn and Whitt [10] show
that

(2.23) lim
t→∞

1

t
logE(eθiNe,i(t)) = γe,i(θi), θi > θ

(∞)
Fe,i

,

for any initial distribution forNe,i(·). This suggests that γe,i(θi) must be one of the
key information for the tail asymptotic of our problem. However, we will not use
this property of γe,i because the definition (2.21) is sufficiently informative for our
analysis.

Note that γe,i(v, θi) and γs,i(v,θ) are convex in θi and θ, respectively, because
ξ
F

(v)
e,i

(θ) and ξFs,i(θ) are decreasing and concave in θ ∈ R and log qi(θ) is convex.

For v ∈ (0,∞], and J(v) ≡
(
Je(v), Js(v)

)
⊂ E × J , let, for θ ∈ Rd,

γJ(v)(θ) =
∑

i∈Je(v)
γe,i(v, θi) +

∑
i∈E\Je(v)

γe,i(θi)(2.24)

+
∑

i∈Js(v)
γs,i(v, θi) +

∑
i∈J\Js(v)

γs,i(θi),

and γ(θ) = γ∅(θ), that is,

γ(θ) =
∑
i∈E

γe,i(θi) +
∑
i∈J

γs,i(θ).

Furthermore, γJ(v)(θ) converges to γ(θ) for each θ ∈ Rd as v → ∞, which is
uniform on a compact set of θ. The next lemma is a key for our arguments, and
easily follows from Lemma 3.2 in [4]. We also remarked its intuitive meaning
below (2.22). So far, its proof is omitted.

LEMMA 2.5. For v ∈ (0,∞], the test function fJ(v),θ of (2.14) satisfies the
terminal condition (2.12) with equality for all θ ∈ Rd, respectively.

We next consider a martingale for the test functions fJ(v),θ. Denote the prob-
ability measure for X(·) with the initial state x ∈ S by Px, and let Ex stand for
the expectation under Px. We first note that

(2.25) Ex

(
fJ(v),θ

(
X(t)

))
<∞, t  0,

always holds for each x ∈ S and θ ∈ Rd because the total number of exogenous
arrivals and service completions in each finite time interval has a super-light tail
(lighter than any exponential decay); see, e.g., Lemma 4.1 of [18] for the single
queue case. Hence, Lemmas 2.2 and 2.5 immediately imply the following fact.
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LEMMA 2.6. Fix θ ∈ Rd and x ∈ S. For the PDMP X(·) and the test func-
tion fθ of (2.14), let, for t  0,

MJ(v),θ(t) = fJ(v),θ

(
X(t)

)
− fJ(v),θ

(
X(0)

)
(2.26)

+
t∫
0

γJ(v)(θ)fJ(v),θ

(
X(u)

)
du

−
∑

i∈Je(v)
γe,i(v, θi)

t∫
0

1
(
Re,i(u) > v

)
fJ(v),θ

(
X(u)

)
du

−
∑

i∈Js(v)
γs,i(v,θ)

t∫
0

1
(
Rs,i(u) > v

)
fJ(v),θ

(
X(u)

)
du

−
t∫
0

∑
i∈Je(v)

γs,i(v,θ)1
(
Li(u) = 0

)
fJ(v),θ

(
X(u)

)
du

−
t∫
0

∑
i∈J\Je(v)

γs,i(θ)1
(
Li(u) = 0

)
fJ(v),θ

(
X(u)

)
du.

Then MJ(v),θ(·) is an Ft-martingale under Px.

As always,M∅,θ(·) is simply denoted byMθ(·), which also is anFt-martingale
under Px. Note that (2.26) may read as a semi-martingale representation of
fJ(v),θ

(
X(t)

)
.

2.5. Stability condition and geometric interpretation. As we mentioned in
Section 2.1, the GJN (generalized Jackson network) is stable if the stability condi-
tion (2.4) holds. Except for trivial cases, it is also necessary. We will consider this
network under change of measure, which is generally unstable, and it is important
to see under what condition which station is unstable. To make these arguments
clear, we formally define stability and instability for each station. Station i is said
to be weakly stable (stable) if Li(t) is recurrent (positive recurrent, respectively),
and to be weakly unstable (unstable) ifLi(t) is null recurrent or transient (transient,
respectively).

In this subsection, we so far do not assume the stability condition (2.4), and
consider conditions for a station to be unstable (or stable). For this, we first need to
compute an arrival rate at each station, which is obtained as the maximal solution
{α̃i; i ∈ F} of the following traffic equation (e.g., see [5], [6]):

(2.27) α̃i = λi +
∑
j∈J

(α̃j ∧ µj)pji, i ∈ J ,

where we recall that µi = 1/E(Ts,i). Let ρ̃i = α̃i/µi, which may be different from
ρ (see at the end of Section 2.1). Under appropriate conditions such as Ts,i has a
spread out distribution (see [1] for its definition), station i is weakly stable (stable)
if and only if ρ̃i ¬ 1 (ρ̃i < 1), and weakly unstable (unstable) if and only if ρ̃i  1
(ρ̃i > 1, respectively).
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It is easy to see that α̃i ¬ αi for all i ∈ J , where recall that αi is the solution
of the standard traffic equation (2.3). The α̃i can be numerically obtained from
(2.27) in finite steps, but it is hard to get its analytic expression. For us, it is partic-
ularly important to give sufficient conditions in terms of γe,i, γs,i for a station to be
unstable or weakly unstable because these functions are well handled under change
of measure. We first give sufficient conditions for instability in terms of λi, µi, pij
and αi.

LEMMA 2.7. (a) For each j ∈ J , if either αj ¬ µj or

λj +
∑
k∈J

µkpkj ¬ µj(2.28)

holds, then ρ̃j ¬ 1. That is, station j is weakly stable.
(b) If µj < αj and if ρ̃i ¬ 1 for all i ∈ J \ {j}, then ρ̃j > 1, that is, station

j is unstable.
(c) If, for all j ∈ J ,

λj +
∑
k∈J

µkpkj  µj ,(2.29)

then ρ̃j  1 for all j ∈ J . That is, all stations are weakly unstable. If (2.29) holds
with strict inequality for j = i, then ρ̃i > 1, that is, station i is unstable.

REMARK 2.2. For our application, it would be nice if (b) can be generalized
in such a way that, for A ⊂ J , if µj < αj for all j ∈ A and if ρ̃i ¬ 1 for all
i ∈ J \ A, then ρ̃j > 1 for all j ∈ A. Unfortunately, this is generally not true.
A counterexample is easily obtained, for example, for a three-station tandem queue
(see Section 4 of [5] for some related discussions). We need to update αj using the
information on the unstable station to be available to get such a generalization,
but it would be less analytically tractable. Thus, we will not pursue it in this paper.

P r o o f. (a) Since α̃j ¬ αj , it follows from αj ¬ µj that ρ̃j ¬ 1. If (2.28)
holds, (2.27) implies that α̃j ¬ µj , which is equivalent to ρ̃j ¬ 1.

(b) Suppose that ρ̃j ¬ 1, contrary to the claim; then ρ̃k ¬ 1 for all k ∈ J
by the second assumption. Hence, α̃k ¬ µk for all k ∈ J , and therefore the non-
linear traffic equation (2.27) is identical with the linear traffic equation (2.3). Thus,
αk = α̃k ¬ µk for all k ∈ J . This contradicts the assumption that µi < αi, and
therefore (b) is proved.

(c) Let A = {i ∈ J ; α̃i < µi}; then (2.27) can be written as

α̃j = λj +
∑
i∈A

α̃ipij +
∑

i∈J\A
µipij .

Hence, (2.29) implies that

α̃j − µj = λj − µj +
∑
i∈A

(α̃i − µi)pij +
∑
i∈J

µipij 
∑
i∈A

(α̃i − µi)pij .
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We then sum up both sides of this inequality for all j ∈ A, which yields∑
i∈A

(α̃i − µi)
(
1−

∑
j∈A

pij
)
 0.

Since α̃i − µi < 0 for i ∈ A, we must have∑
j∈A

pij = 1, i ∈ A,

which contradicts the irreducibility of the over all routing matrix P , and therefore
A = ∅. This proves the first half of (c). It also implies that α̃j = µj for all j ∈ J .
Hence, if (2.29) holds with strict inequality, then (2.27) implies that

α̃j = λj +
∑
k∈J

µkpkj > µj .

This proves the remaining part of (c). �

We next characterize the conditions in Lemma 2.7 by the gradient vector of
γ(θ) and γs,i(θ) at θ = 0. Define the gradient operator∇ as

∇γ(θ) =
(
∂

∂θ1
γ(θ),

∂

∂θ2
γ(θ), . . . ,

∂

∂θd
γ(θ)

)
.(2.30)

Since

∂

∂θi
γe,i(θi)

∣∣∣∣
θi=0

= λi,
∂

∂θi
γs,i(θ)

∣∣∣∣
θ=0

= −µi,(2.31)

∂

∂θj
γs,i(θ)

∣∣∣∣
θ=0

= µipij , i, j ∈ J ,(2.32)

and α = λ(I − P )−1, we have

∇γ(0) = λ− µ(I − P ), ∇γ(0)(I − P )−1 = α− µ.(2.33)

Using these facts, we have geometric interpretations for the conditions in Lem-
ma 2.7 by the curves of γ(θ) = 0 and γs,i(θ) = 0 for i ∈ J . For this, we introduce
vectors ti ∈ Rd for i ∈ J such that

(2.34) ⟨∇γs,j(0), ti⟩ = 0, j ̸= i, ⟨∇γs,i(0), ti⟩ > 0.

Note that this ti is uniquely determined except for its length ∥ti∥.

LEMMA 2.8. Let T = (t1, t2, . . . , td); then, for some positive vector a,

T = −(I − P )−1∆a,(2.35)

and therefore T is non-singular, and ti ¬ 0 with tii < 0 for all i ∈ J .
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P r o o f. Since (2.31) yields

(2.36) ∇γs,j(0) = µj
(
(pj1, pj2, . . . , pjd)− ej

)
, j ∈ J ,

(2.35) is immediate from (2.34). �

LEMMA 2.9. (a) For j ∈ J , the condition (2.28) holds if and only if the j-th
entry of the gradient vector∇γ(0) is not positive.

(b) For each k ∈ J , µk < (=, >) αk if and only if ⟨∇γ(0), tk⟩ < (=, >,
respectively) 0.

REMARK 2.3. γs,i(θ)=0 (> 0) if and only if qi(θ)=1 (> 1, respectively),
by the definition (2.21), so they present the same geometric curve. However, the
gradients ∇γs,i(θ) and ∇qi(θ) may not be identical. In particular, ∇γs,i(0) =
µi∇qi(0).

P r o o f. (a) is immediate from the first equation of (2.33).
(b) It follows from (2.35) that

α− µ = ∇γ(0)(I − P )−1 = −∇γ(0)(t1, t2, . . . , td)∆−1a .

Thus, µk − αk and ⟨∇γ(0), tk⟩ have the same sign, which proves the claim. �

θ1

θ2

γs,2(θ) = 0

γs,1(θ) = 0

n2t2

t1

n1

n

γ(θ) = 0

0

θ2

γs,2(θ) = 0

γs,1(θ) = 0

n2
t2

n

t1

n1

γ(θ) = 0

θ1

Figure 1. Geometric objects for d = 2, where n = ∇γ(0), ni = ∇γi(0) for i = 1, 2.

Figure 1 illustrates the two cases for d = 2. The left panel shows that n < 0
and ⟨n, ti⟩ > 0 for i = 1, 2, and both stations are stable by Lemma 2.9. The right
panel shows that n1 > 0, n2 < 0, ⟨n, t1⟩ < 0 and ⟨n, t2⟩ > 0, and station 1 is
unstable while station 2 is stable by Lemmas 2.7 and 2.9.

Lemma 2.9 together with Lemmas 2.7 and 2.8 provides us geometric inter-
pretations of the stability and instability conditions for stations through curves
γ(θ) = 0 and γs,i(θ) = 0 for i ∈ J . We will use them for the GJN before and
after change of measure.
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2.6. Tail asymptotics. We now return to the assumption that the GJN is sta-
ble, that is, (2.4) holds. Under this assumption, we will use the following sets for
considering the tail asymptotics of the stationary distribution. Let

ΓIN = {θ ∈ Rd; γ(θ) < 0}, ΓOUT = {θ ∈ Rd; γ(θ) > 0},
←−
Γ IN = {θ ∈ Rd;θ < θ′,∃θ′ ∈ ΓIN},

−→
Γ OUT = {θ ∈ Rd;θ′ < θ, ∃θ′ ̸∈

←−
Γ IN}.

For A ⊂ J , let

ΓA = {θ ∈ Rd; γs,i(θ) > 0, ∀i ∈ J \A},

and put ΓIN
A = ΓIN ∩ ΓA and

←−
Γ IN
A = {θ ∈

←−
Γ IN;θ < θ′,∃θ′ ∈ ΓIN

A}.

In particular, for A = {k} with k ∈ J and u = IN or OUT, ΓuA is simply denoted by
Γuk . Those sets are open and connected. We denote their boundaries by putting the
operator ∂ like ∂ΓIN, which is {θ ∈ Rd; γ(θ) = 0}. Obviously, ∂ΓIN = ∂ΓOUT, and
∂
←−
Γ IN = ∂

−→
Γ OUT.

Note that ΓIN is a non-empty bounded and convex set because γ(θ) is convex
and diverges as ∥θ∥ goes to infinity in any direction, and therefore ΓOUT is also not
empty. We check below that ΓIN

A is not empty for A ̸= ∅.

LEMMA 2.10. Assume that the GJN is stable, and let A ⊂ J .
(a) If A ̸= ∅, then ΓIN

A is not empty, and contains some θ  0 with θi > 0 for
all i ∈ A.

(b) Define

ΓCX
A =

{
θ ∈ ΓIN;

∑
i∈E

γe,i(θ) +
∑
j∈A

γs,j(θ) < 0
}
;

then ΓCX
A is convex, ΓIN

A ⊂ ΓCX
A , and ∂ΓIN ∩ ΓA ⊂ ∂ΓCX

A .

P r o o f. (a) We note two facts. Firstly, ⟨∇γ(0), ti⟩ > 0 for all i ∈ J by
Lemma 2.9 and the stability condition (2.4). Secondly, ti ¬ 0 with tii < 0 by
Lemma 2.8. These facts imply bi(−ti) ∈ Γ for some bi > 0. Let H IN

i = {x ∈ Γ;
⟨∇γs,i(0),x⟩  0}. Since H IN

i is a convex set (half space), H IN
J\A ≡

∩
i∈J\AH

IN
i

is also convex, and contains bj(−tj) for j ∈ A because ti ∈ H IN
i and tj ̸∈ H IN

i

for j ̸= i. Hence, their convex combination is also in H IN
J\A, and nonnegative with

positive entries for j ∈ A because bj(−tj)  0 and bj(−tjj) > 0 for all j ∈ A.
Furthermore, H IN

J\A ⊂ ΓIN
A because x ∈ H IN

i implies that γs,i(x) > 0 for x ̸= 0.
Thus, (a) is proved.

(b) Since γe,i and γs,j are convex functions, ΓCX
A is a convex set. Since γs,i(θ)

> 0 for all i ∈ J \A for θ ∈ ΓIN
A, we have, for θ ∈ ΓIN,∑

i∈E
γe,i(θ) +

∑
j∈A

γs,j(θ) = γ(θ)−
∑

i∈J\A
γs,i(θ) < 0,
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which proves that ΓIN
A ⊂ ΓCX

A . If θ ∈ ∂ΓIN ∩ ΓA, then γ(θ) = 0 and γs,i(θ) > 0 for
all i ∈ J \A, and therefore θ ∈ ∂ΓCX

A . �

REMARK 2.4. Since γs,i(θ) = 0 is equivalent to qi(θ) = 1 by (2.21), θ ∈
∂ΓA, equivalently, γs,i(θ) = 0 for i ∈ J \A, if and only if

(I − P (J\A))eθJ\A = P (J\A,A)eθA + pJ\A,0,

where P (J\A) ≡ {pij ; i, j ∈ J \ A} and P (J\A,A) ≡ {pij ; i ∈ J \ A, j ∈ A},
eθA is the |A|-dimensional vector whose i-th entry is eθi for i ∈ A, and pJ\A,0 is
the |J \A|-dimensional vector whose i-th entry is pi0 for i ∈ J \A. Since P (J\A)

is strictly substochastic, if θi  0 for i ∈ A and θ ∈ ∂ΓA, then

eθJ\A = (I − P (J\A))−1(P (J\A,A)eθA + pJ\A,0)  1J\A,

which implies that θj  0 for j ∈ J \A.

We now present main results, which are proved in Section 4.3. For this, we
use the following notation. For x ∈ Rd and A ⊂ J , let xA be the |A|-dimensional
vector which is obtained from x by dropping its i-entry of x for all i ∈ J \A. Let

φk(θ) = E
(
e⟨θ,L⟩1(Lk = 0)

)
, k ∈ J , φ(θ) = E(e⟨θ,L⟩),

r∗(ek) = sup
{
θk;θ ∈ ΓIN

k ∩Θk, φk(θ) <∞
}
, k ∈ J ,

where Θk =
{
θ ∈ Rd; θi  0,∀i ∈ J \ {k}

}
∪
{
θ ∈ Rd; θi < 0, ∀i ∈ J \ {k}

}
.

Note that Θk = R2 for d = 2, and therefore r∗(ek) = r{k}(ek). For A ⊂ J and

c ∈
−→
U d, that is, the unit direction vector c, let

rA(c) = sup
{
⟨θ, c⟩;θ ∈ ΓIN

A, φi(θ) <∞,∀i ∈ A
}
,

mA(c) = sup
{
u;uc ∈

←−
Γ IN
A, φi(θ) <∞,∀i ∈ A

}
.

Note that rA(c) ¬ mA(c) because ∥c∥ = 1.

THEOREM 2.1. Assume that the GJN is stable, and letB0 be a compact subset
of Rd+.

(a) For k ∈ J ,

lim sup
x→∞

1

x
logP(L ∈ xek +B0) ¬ −r∗(ek).(2.37)

(b) If the uniformly bounded assumption (A1) is satisfied, then, for c ∈
−→
U d,

lim sup
x→∞

1

x
logP(L∈xc+B0)¬−max{rA(c); cA > 0A, A∈2J \ ∅},(2.38)

lim sup
x→∞

1

x
logP(⟨c,L⟩ > x) ¬ −max{mA(c);A ∈ 2J \ ∅}.(2.39)
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For B ⊂ Rd+, define a convex corn as

Corn(B) = {x ∈ Rd+;ux ∈ B, ∃u > 0}.

0
θ1

θ2

γ(θ) = 0

∂
←−

Γ
IN Corn(

←−

Γ
IN

∩ ∂Γ
IN
)

0
θ1

θ2

γs,2(θ) = 0

γs,1(θ) = 0

γ(θ) = 0

∂
←−

Γ
IN

2

Corn(
←−

Γ
IN

∩ ∂Γ
IN

1
)

Corn(
←−

Γ
IN

∩ ∂Γ
IN

2
)

∂
←−

Γ
IN

1

Figure 2. Corns used in Theorem 2.2 below.

THEOREM 2.2. Assume that the GJN is stable.
(a) For d = 2, let B0 be a compact set of R2

+; then, for k = 1, 2,

lim inf
x→∞

1

x
logP(L ∈ xek +B0)  −r{k}(ek).(2.40)

(b) For general d  2 and c ∈
−→
U d, if c ∈ Corn(

←−
Γ IN ∩ ∂ΓIN), then

(2.41) lim inf
x→∞

1

x
logP(⟨c,L⟩ > x)  − sup{u  0;uc ∈ ΓIN}.

(c) For d = 2, k = 1, 2 and c ∈
−→
U 2, if c ∈ Corn(

←−
Γ IN ∩ ∂ΓIN

k ), then

(2.42) lim inf
x→∞

1

x
logP(⟨c,L⟩ > x)  − sup{u  0;uc ∈

←−
Γ IN
k }.

For d = 2, we can get bounds explicitly. For this, let

δ1 = sup{θ1  0;θ ∈ ΓIN
1 , θ2 ¬ δ2},(2.43)

δ2 = sup{θ2  0;θ ∈ ΓIN
2 , θ1 ¬ δ1},(2.44)

which are known to have a unique solution δ = (δ1, δ2) (see the proof of Corol-
lary 2.1 in Section 4.3), and define

D2 = {θ ∈
←−
Γ IN; θi < δi, i = 1, 2}.

Then we have the following corollary.
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COROLLARY 2.1. Assume the stable GJN has two stations (d = 2).
(a) For k = 1, 2,

(2.45) lim
x→∞

1

x
logP(L ∈ xek +B0) = − sup{θk;θ ∈ D2}.

(b) If (A1) is satisfied, then, for c ∈
−→
U 2,

lim sup
x→∞

1

x
logP(L ∈ xc+B0) ¬ − sup{⟨θ, c⟩;θ ∈ D2},(2.46)

lim
x→∞

1

x
logP(⟨c,L⟩ > x) = − sup{u;uc ∈ D2}.(2.47)

It is notable that D2 have been obtained as the convergence domain of φ(θ)
≡ E(e⟨θ,L⟩), and used to derive (2.47) for the two-station JGN with phase-type
Fe,i, Fs,j in Theorem 4.2 of [17]. The asymptotic (2.45) in the coordinate directions
is not derived in [17], but can be obtained from Theorem 3.2 there. We here have
the asymptotic (2.45) without the phase-type assumption. We conjecture that the
assumption (A1) can be removed from all the results, but it seems a quite hard
problem.

Similar results to (2.45) and (2.47) are known for a reflecting random walks on
the quarter plane (e.g., see [15], [16]) and semi-martingale reflecting two-dimen-
sional Brownian motions, SRBM for short (see [7]). On the other hand, the asymp-
totic (2.46) is new for the GJN, but known for the two-dimensional SRBM (see [2],
[8]), where (2.46) is sharpened.

For d  3, there is very little known about the tail asymptotics of the stationary
distribution not only for the GJN but also a reflecting random walk and SRBM.
There are some studies in the framework of sample path large deviations, but those
results need to solve certain optimization problems, which are hard to solve even
numerically (e.g., see [14]). Contrary to them, (2.38) and (2.39) may be applied to
get explicit bounds, by using ideas for a reflecting random walk (see Theorem 6.1
of [16]).

3. CHANGE OF MEASURE FOR GJN

In this section, we present some preliminary results for proving Theorems 2.1
and 2.2 and Corollary 2.1. A change of measure is typically used in the theory of
large deviations. We also use it, and construct a new measure using a multiplica-
tive functional, which is obtained from the martingale MJ(v),θ(·) in Section 2.4.
However, we assume J(v) = ∅ in this section for making arguments simpler. It
also suffices for major applications in the later sections.

Thus, the new measure is constructed from Mθ(·) ≡ M∅,θ(·). For this, we
first drive a multiplicative functional. Its derivation is rather standard, but will be
detailed because it is crucial for our arguments. Our major interest in this section
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is to see how the GJN is modified under the new measure. It is important for us
to specifically identify its modeling parameters, which has not been studied in the
literature except for the single queue case (see [18]), and may have an independent
interest.

3.1. Multiplicative functional. Let Y (t) be a left-continuous process, which is
called predictable because Y (t−) isFt−-measurable. Assume that Y (·) is bounded
in each finite interval. Recall that M0(·), M(·) and D(·) are defined by (2.8), (2.9)
and (2.10), respectively. Assume that the terminal condition (2.12) is satisfied. As-
sume that M(·) is an Ft-martingale under Px for each x ∈ S.

We define the integral of Y (·) with respect to martingale M(·) by

Y ·M(t) ≡ 1 +
t∫
0

Y (u)dM(u),

where integration is a natural extension of a Riemann–Stieltjes integral (see Sec-
tion 4d of Chapter I of [11]). For a positive-valued test function f , choose Y (t) as

Y (t) =
1

f
(
X(0)

) exp(− t∫
0

Af
(
X(u)

)
f
(
X(u)

) du),
which is obviously positive and continuous in t and adapted toFt. Hence, Y ·M(·)
is a martingale. We denote it by Ef (·). Thus, it follows from (2.9) that

Ef (t) = 1 +
t∫
0

Y (u)
(
df
(
X(u)

)
−Af

(
X(u)

)
du
)

(3.1)

= 1 +
t∫
0

Y (u)df
(
X(u)

)
+

t∫
0

f
(
X(u)

)
Y ′(u)du

= 1 +
[
Y (u)f

(
X(u)

)]t
0
=
f
(
X(t)

)
f
(
X(0)

) exp(− t∫
0

Af
(
X(u)

)
f
(
X(u)

) du),
which is an Ft-martingale under Px.

On the other hand, Ef (·) is a multiplicative functional because it is right-
continuous, Ef (0) = 1, Ex

(
Ef (t)

)
= 1 and

Ef (s+ t) = Ef (s)Θs ◦ Ef (t), s, t  0,

where

Θs ◦ Ef (t) =
f
(
X(s+ t)

)
f
(
X(s)

) exp

(
−
s+t∫
s

Af
(
X(u)

)
f
(
X(u)

) du).
Thus, we can define a probability measure P̃fx for an initial state x ∈ S by

(3.2)
dP̃fx
dPx

∣∣∣∣
Ft

= Ef (t), t  0,
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because Ef (·) is a martingale (see [13] for details). We refer to (3.2) as exponen-
tial change of measure. Let Pν and P̃fν be probability measures such that Pν(C) =∫
S
Px(C)ν(dx) and P̃fν (C) =

∫
S
P̃fx(C)ν(dx) for X(0) to have a probability dis-

tribution ν on S, (3.2) implies that, for a nonnegative Ft-measurable random vari-
able U with finite expectation, we have

(3.3) Ẽfν (U) = Eν
(
UEf (t)

)
, Eν(U) = Ẽfν

(
Ef (t)−1U

)
,

where Eν and Ẽfν represent the expectations concerning Pν and P̃fν , respectively.
Similarly, for conditional expectations, we have, for 0 ¬ s < t,

Ẽ(U |Fs) = E
(
U
Ef (t)

Ef (s)

∣∣∣∣Fs), E(U |Fs) = Ẽ
(
U
Ef (s)

Ef (t)

∣∣∣∣Fs).(3.4)

One can easily check this equation from the definition of a conditional expectation
(see, e.g., Section III.3 of [11]).

When f = fθ of (2.13) andM =Mθ of (2.26) with J(v) = ∅, we denote P̃fθx
by P̃(θ)

x . If J(v) ̸= ∅, then the new measure is denoted by P̃(J(v),θ)
x .

3.2. GJN under the new measure. Let us consider how the GJN is modified
under the new measure P̃(θ)

x . A general principle for change of measure is consid-
ered for a PDMP in [19], but we need to compute specific modeling parameters.
For this, we follow the method of [18] studied for a single queue with many hetero-
geneous servers. We modify it here for the GJN. Since the differential operator A
is unchanged because it works on a deterministic part of the sample path of X(·),
we only need to consider the jump kernel K. Denote it under P̃(θ)

x by K̃(θ).
We first write Efθ(t) explicitly as

(3.5) Efθ(t) = exp
(
⟨θ,L(t)−L(0)⟩ − w

(
θ,R(t)−R(0)

)
− γ(θ)t

+
t∫
0

∑
i∈J

γs,i(θ)1
(
Li(u) = 0

)
du
)
,

where w(θ,y) = w∅(θ,y) (see (2.15)), that is,

w(θ,y) =
∑
i∈E

γe,i(θi)ye,i +
∑
i∈J

γs,i(θi)ys,i.

Our first task is to compute the distributions of Te,i, Ts,j under P̃(θ)
x . These dis-

tributions (moment generating functions) are denoted, respectively, by F (θ)
e,i (F̂ (θ)

e,i )

and F (θ)
s,j (F̂ (θ)

s,j ). Recall β(v)F of (2.16), and denote β(∞)
Fe,i

and β(∞)
Fs,j

simply by β(∞)
e,i

and β(∞)
s,j , respectively. The following lemma is similar to Lemma 4.4 of [18].
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LEMMA 3.1. For each θ ∈ Rd, v ∈ (0,∞] and η ∈ R,

F̂
(θ)
e,i (η) = eθiF̂e,i

(
η − γe,i(θi)

)
, η ¬ β(∞)

e,i + γe,i(θi), i ∈ E \ Je(v),(3.6)

F̂
(θ)
s,i (η) = qi(θ)F̂s,i

(
η − γs,i(θ)

)
, η ¬ β(∞)

s,i + γs,i(θ), i ∈ J \ Js(v).(3.7)

Since F̂ (θ)
e,i (0) = F̂

(θ)
s,i (0) = 1 by (2.19)–(2.21), F (θ)

e,i and F (θ)
s,j are proper dis-

tribution functions. Let

λ
(θ)
i =

(
Ẽ(θ)
e,i (Te,i)

)−1
, µ

(θ)
i =

(
Ẽ(θ)
s,i (Ts,i)

)−1
,

where Ẽ(θ)
e,i and Ẽ(θ)

s,i represent the conditional expectations under Ẽ(θ)
x just before

time when external arrivals and service completion, respectively, at station i occur.
Then, by Lemma 3.1, we have

λ
(θ)
i =

(
eθiF̂ ′e,i

(
− γe,i(θi)

))−1
, i ∈ E ,(3.8)

µ
(θ)
i =

(
qi(θ)F̂

′
s,i

(
− γs,i(θi)

))−1
, i ∈ J .(3.9)

The jump kernel K is changed to K̃(θ) as

(3.10) K̃(θ)1Bℓ×Be×Bs(x)

=

{
P̃(θ)
e,i (z + ei ∈ Bℓ,ye + Te,iei ∈ Be,ys ∈ Bs), ye,i = 0,

P̃(θ)
s,i (z − ei + ej ∈ Bℓ,ye ∈ Be,ys + Ts,iei ∈ Bs), ys,i = 0,

where θ0 = 0. Hence, the routing probability from station i to j under P̃(θ)
x is

p
(θ)
ij ≡ e

−θi+θjpij/qi(θ).(3.11)

Thus, the GJN keeps the same network structure under the new probability
measure P̃(θ)

x , but its modeling primitives, Fe,i, Fs,j and pij , are changed to F (θ)
e,i ,

F
(θ)
s,j and p(θ)ij , respectively, which do not depend on the initial state x. Let

q
(θ)
i (η) = e−ηi

( ∑
j∈J

p
(θ)
ij e

ηj + p
(θ)
i0

)
, i ∈ J ,

which corresponds to qi(η) in the original model, where η ∈ Rd is a variable. From
this definition and (3.11), we have

q
(θ)
i (η) =

qi(η + θ)

qi(θ)
.
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As in the original network model, we define γ(θ)e,i (ηi), γ
(θ)
s,j (η) as the unique

solutions of the following equations:

eηiF̂
(θ)
e,i

(
− γ(θ)e,i (ηi)

)
= 1, i ∈ E , q

(θ)
i (η)F̂

(θ)
s,i

(
− γ(θ)s,i (η)

)
= 1, i ∈ J ,

for v ∈ (0,∞]. These definitions yield

γ
(θ)
e,i (ηi) = γe,i(ηi + θi)− γe,i(θi), γ

(θ)
s,j (η) = γs,j(η + θ)− γs,j(θ),

and define γ(θ)(η) as

γ(θ)(η) =
∑
i∈E

γ
(θ)
e,i (ηi) +

∑
i∈J

γ
(θ)
s,i (η) = γ(η + θ)− γ(θ).

Let α(θ) = λ(θ)(I − P (θ))−1, and α̃(θ) is defined similarly to α̃.
We immediately see from these formulas that

(3.12) ∇γ(θ)s,i (0) = ∇γs,i(θ), ∇γ(θ)(0) = ∇γ(θ).

Similarly to (2.33) and (2.24), we have

∇γ(θ)(0) = λ(θ) − µ(θ)(I − P (θ)),(3.13)

∇γ(θ)s,j (0) = µ
(θ)
j

(
(p

(θ)
j1 , p

(θ)
j2 , . . . , p

(θ)
jd )− ej

)
, j ∈ J .(3.14)

Hence, we can update Lemmas 2.7 and 2.9 in exactly the same way as for the
network model under P̃(θ)

x , where αj , α̃j are updated to α(θ)
j , α̃

(θ)
j , respectively.

The following lemma is almost immediate from (3.11) and (3.14), but will
be useful to check the conditions in Lemma 2.9 in which µk, αk are updated to
µ
(θ)
k , α

(θ)
k , respectively. As ti of (2.34), we define t

(θ)
i ∈ Rd by

⟨∇γs,j(θ), t(θ)i ⟩ = 0, j ̸= i, ⟨∇γs,i(θ), t(θ)i ⟩ > 0.

Hence, the following lemma can be obtained similarly to Lemma 2.8.

LEMMA 3.2. Let T (θ) be the matrix whose i-th column is t
(θ)
i ; then T (θ) is

non-singular and not positive, that is, t(θ)i ¬ 0 with t(θ)ii < 0 for all i ∈ J .

4. PROOFS

The goal of this section is to prove the theorems and their corollary. A main
idea is to use the new measure introduced in Section 3.2 by appropriate choosing
the parameter θ. Some of its arguments are parallel to those in Section 4 of [18],
but we require more lemmas because the state space for the queue lengths is mul-
tidimensional. We start to represent the stationary tail probability under the new
measure.
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4.1. A procedure for deriving tail asymptotics. Recall the notation w(θ,y),
and, for R(t) =

(
Re(t),Rs(t)

)
,

w
(
θ,R(t)

)
= ⟨γe(θ),Re(t)⟩+ ⟨γs(θ),Rs(t)⟩.

Then, it follows from (3.3) and (3.5) that, for a given initial distribution ν,

(4.1) dPν =
(
Efθ(t)

)−1
dP̃(θ)

ν = fθ
(
X(0)

)
exp

(
− ⟨θ,L(t)⟩+ w

(
θ,R(t)

)
+ γ(θ)t−

∑
i∈J

γs,i(θ)
t∫
0

1
(
Li(u) = 0

)
du
)
dP̃(θ)

ν

on Ft, where we recall that fθ
(
X(0)

)
= e⟨θ,L(0)⟩−w(θ,R(0)).

We take the initial distribution ν in the following way. Let SL = Zd+, SR =

RE+ × Rd. For each A ⊂ J , let τ EX
A , τ

RE
A be the first exit from and return times to

∂ASL concerning L(t) such that τ EX
A < τ RE

A , where

∂ASL =
∪
i∈A
{z ∈ SL; zi = 0}.

Let ν−A be the distribution ofX(τ EX
A −) given thatX(0) is subject to the normalized

stationary distribution limited on ∂L
AS ≡ ∂ASL × SR. This ν−A is taken for ν in

(4.1). Denote a random vector subject to the stationary distribution ofX(t) byX ≡
(L,Re,Rs). Then, the cycle formula yields, for x > 0 and B(x) ⊂ SL \ ∂ASL,

P
(
L ∈ B(x)

)
= b(A)Eν−A

( τRE
A∫
0

1
(
L(u) ∈ B(x)

)
du
)
,(4.2)

where b(A) = P(L ∈ SL \ ∂ASL)/Eν−A (τ
RE
A − τ EX

A ). We are interested here in the

asymptotic of P
(
L ∈ B(x)

)
as x→∞.

We apply change of measure to (4.2). For this, let τx be a stopping time which
satisfies

τx ¬ τ IN
B(x) ≡ inf{t  0;L(t) ∈ B(x)}, x > 0.(4.3)

We do not make any extra assumption for this τx in this section, but it will be
either τ IN

B(x) or τ IN
C(x) for some C(x) ⊂ SL \ ∂ASL in Sections 4.2 and 4.3. In what

follows, except for Steps 5 and 5′, we fix A ⊂ J . Let

Y (t) = Eν−A

( τRE
A∫
t

1
(
L(u) ∈ B(x)

)
du
∣∣Ft).
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Then it follows from (4.1) with ν = ν−A and (4.2) that

(4.4) P
(
L ∈ B(x)

)
= b(A)Eν−A

(
Y (τx)

)
= b(A)Ẽ(θ)

ν−A

[
fθ
(
X(0)

)
Y (τx)1(τx <∞)e−⟨θ,L(τx)⟩+w(θ,R(τx))

× exp
(
γ(θ)τx −

∑
i∈J\A

γs,i(θ)
τx∫
0

1
(
Li(u) = 0

)
du
)]
.

We are now ready to consider the asymptotic of P
(
L ∈ B(x)

)
as x→∞. For

its upper bound, we take the following steps.
S t e p 1. Choose θ ∈ ΓIN

A; then γ(θ) < 0 and γs,i(θ) > 0 for all i ∈ J \ A,
and therefore

exp
(
γ(θ)τx −

∑
i∈J\A

γs,i(θ)
τx∫
0

1
(
Li(u) = 0

)
du
)
< 1.

In Steps 2–4 below, we keep the same θ ∈ ΓIN
A.

S t e p 2. Verify that there is a constant C1 such that, if τx <∞, then

Y (τx)e
w(θ,R(τx)) < C1.(4.5)

S t e p 3. Verify that Ẽ(θ)

ν−A

(
fθ
(
X(0)

))
is finite if φi(θ) <∞ for all i ∈ A.

S t e p 4. Find finite real-valued functions a0(θ) and a1(θ) > 0 such that

a1(θ)x− ⟨θ,L(τx)⟩ ¬ a0(θ);(4.6)

then e−⟨θ,L(τx)⟩ is bounded above by ea0(θ)−a1(θ)x.
S t e p 5. Derive an inequality from (4.4) using Steps 1–4. Take the logarithms

of both sides of this inequality, and divide by x; then letting x → ∞ yields the
upper bound −a1(θ) for each θ and A ⊂ J . We then take the infimum of −a1(θ)
for all θ and A ⊂ J for which Steps 1–4 work well.

To derive the lower bounds, we will use the martingale MJ(v),θ of (2.26) in
Lemma 2.6 for change of measure, choosing the index set for truncation: J(v) ≡(
Je(v), Js(v)

)
for each fixed θ ∈ Rd as

(4.7) Je(v) = {i ∈ E ; γe,i(θi) < 0}, Js(v) = {i ∈ E ; γs,i(θ) < 0},

and we choose a sufficiently large v such that γe,i(v, θi) < 0 for all i ∈ Je(v) and
γs,j(v,θ) < 0 for all j ∈ Js(v), which is possible by Lemma 2.4 and the assump-
tion (2.20). Then, wJ(v)(θ,y) of (2.15) is bounded below for all y = (ye,ys) ∈
RE × Rd. Namely,

(4.8) wJ(v)(θ,y)  v
( ∑
i∈Je(v)

γe,i(v, θi) +
∑

i∈Js(v)
γs,i(v,θ)

)
> −∞.
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Then, using the martingale (2.26), we see that (4.4) is changed as

P
(
L ∈ B(x)

)
= b(A)Ẽ(J(v),θ)

ν−A

[
fJ(v),θ

(
X(0)

)
Y (τx)1(τx <∞)(4.9)

× exp
(
− ⟨θ,L(τx)⟩+ wJ(v)

(
θ,R(τx)

)
+ γ(θ)τx

−
∑

i∈Je(v)

τx∫
0

γe,i(v, θi)1
(
Re,i(u) > v

)
du

−
∑

i∈Js(v)

τx∫
0

γs,i(v,θ)1
(
Rs,i(u) > v

)
du

−
∑

i∈J\A

τx∫
0

γJs(v),i(θ)1
(
Li(u) = 0

)
du
)]
,

where γJs(v),i(θ) = γs,i(v,θ)1
(
i ∈ Js(v)

)
+ γs,i(θ)1

(
i ̸= Js(v)

)
. Note that the

first integration term with minus sign in the exponent of (4.9) is bounded below by
zero by the choice of J(v). We now take the following steps for the lower bounds.

S t e p 1′. Choose θ ∈ ΓOUT such that γs,i(θ) < 0 for all i ∈ J \ A, which
implies i ∈ Js(v) and, for sufficiently large v > 0,

exp
(
γ(θ)τx −

∑
i∈J\A

τx∫
0

γs,i(v,θ)1
(
Li(u) = 0

)
du
)
 1.

The lower bounds are only used for Theorem 2.2. Thus, A = J for general d
and A = {k} for d = 2. We also keep the same θ in Steps 2′–4′ below.

S t e p 2′. Verify that there is a constant C2 such that, if τx <∞, then

Y (τx) > C2.(4.10)

This inequality can be considered opposite to (4.5) in Step 2 because of (4.8).
S t e p 3′. Find finite-valued functions a0(θ), a1(θ) such that

a1(θ)x− ⟨θ,L(τx)⟩  a0(θ);(4.11)

then e−⟨θ,L(τx)⟩ is bounded below by ea0(θ)−a1(θ)x.
S t e p 4′. Find a subset U of ∂ASL such that

lim inf
x→∞

P̃(θ)

ν−A

(
L(0) ∈ U, τx <∞

)
> 0,(4.12)

Ẽ(θ)

ν−A

(
1
(
L(0) ∈ U

)
fθ
(
X(0)

))
<∞.(4.13)

S t e p 5′. The final step is similar to Step 5 of the upper bound.
In this procedure, we first need to find appropriate B(x) and τx so that (4.11)

and (4.12) hold, then go through steps. Among them, (4.12) is technically most
demanding.
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4.2. Lemmas for tail asymptotics. We start with the following lemma.

LEMMA 4.1. For each A ⊂ J , let us choose an open or closed set B(x) ⊂
SL \ ∂ASL for x > 0, and let θ ∈ ΓIN

A. If there is a positive constant c0 to be inde-
pendent of x such that

sup{|⟨θ, (z − z′)⟩|; z, z′ ∈ B(x)} < c0∥θ∥,(4.14)

then (4.5) with τx = τ IN
B(x) holds, where C1 is independent of x.

P r o o f. We follow the proving method of Lemma 4.6 of [18]. We replace
L(·) by H(·) such that H(·) is obtained from L(·) by removing the reflecting
boundary ∂ASL. Hence, the state space of H(·) has no limitation concerning en-
tries with indices in A. For t > 0, let

σx(t) = inf{u  t+ τ IN
B(x);H(u) ∈ B(x)};

then, on {τ IN
B(x) <∞},

t ¬
τRE
A∫

τ IN
B(x)

1
(
L(u) ∈ B(x)

)
du ¬

∞∫
τ IN
B(x)

1
(
H(u) ∈ B(x)

)
du

implies that t+ τ IN
B(x) ¬ σx(t) <∞. Hence, we have, on {τ IN

B(x) <∞},

(4.15) Y (τ IN
B(x))e

w(θ,R(τ IN
B(x)

))

= Eν−A

( τRE
A∫

τ IN
B(x)

1
(
H(u) ∈ B(x)

)
du e

w(θ,R(τ IN
B(x)

))∣∣Fτ IN
B(x)

)

= Eν−A

(∞∫
0

1
( τRE

A∫
τ IN
B(x)

1
(
H(u) ∈ B(x)

)
du > t

)
dt e

w(θ,R(τ IN
B(x)

))
∣∣∣Fτ IN

B(x)

)
¬
∞∫
0

Eν−A

(
e
w(θ,R(τ IN

B(x)
))
1
(
σx(t) <∞

)∣∣Fτ IN
B(x)

)
dt.

We evaluate the integrand in the last integral using change of measure by H(·)
similar to L(·). Let

Je(v) = {i ∈ E ; γe,i(θi) > 0}, Js(v) = {i ∈ J ; γs,i(θ) > 0},

and we choose a sufficiently large v such that γe,i(v, θi) > 0 for all i ∈ Je(v) and
γs,j(v,θ) > 0 for all j ∈ Js(v), which is possible by the same reason as that used
for (4.7).



422 M. Miyazawa

For change of measure, we use the test function fJ(v),θ of (2.14) and the mar-
tingale MJ(v),θ of (2.26), where L(t) is replaced by H(t). Then, the exponential
martingale Ef (·) is obtained as

EfJ(v),θ(t) =
e⟨θ,H(t)⟩−wJ(v)(θ,R(t))

e⟨θ,H(0)⟩−wJ(v)(θ,R(0))
(4.16)

× exp
(
− γJ(v)(θ)t+

∑
i∈J\A

γs,i(θ)
t∫
0

1
(
Hi(u) = 0

)
du

+
∑

i∈Je(v)
γe,i(v, θi)

t∫
0

1
(
Re,i(u) > v

)
du

+
∑

i∈Js(v)
γs,i(v, θi)

t∫
0

1
(
Rs,i(u) > v

)
du
)
,

and define the new measure P̃(J(v),θ)
ν . Since θ ∈ ΓIN

A implies that γ(θ) < 0, there
is a sufficiently large v such that γJ(v)(θ) < 0. We choose this v; then it follows
from its conditional expectation version (3.4) that

Eν−A

(
e
wJ(v)(θ,R(τ IN

B(x)
))
1
(
σx(t) <∞

)∣∣Fτ IN
B(x)

)
(4.17)

= Ẽ(J(v),θ)

ν−A

[
e
⟨θ,H(τ IN

B(x)
)⟩−w(θ,R(τ IN

B(x)
))

e⟨θ,H(σx)⟩−w(θ,R(σx))
1
(
σx(t) <∞

)
× exp

(
wJ(v)

(
θ,R(τ IN

B(x))
)
+ γJ(v)(θ)

(
σx(t)− τ IN

B(x)

)
−

∑
i∈Je(v)

γe,i(v, θi)
σx(t)∫
τ IN
B(x)

1
(
Re,i(u) > v

)
du

−
∑

i∈Js(v)
γs,i(v, θi)

σx(t)∫
τ IN
B(x)

1
(
Rs,i(u) > v

)
du

−
∑

i∈J\A
γs,i(θ)

σx(t)∫
τ IN
B(x)

1
(
Hi(u) = 0

)
du
)∣∣∣Fτ IN

B(x)

]
¬ Ẽ(J(v),θ)

ν−A

(
e
−⟨θ,H(σx(t))⟩+⟨θ,H(τ IN

B(x)
)⟩

× ewJ(v)(θ,R(σx(t)))+γJ(v)(θ)t1
(
σx(t) <∞

)∣∣Fτ IN
B(x)

)
¬ Ẽ(J(v),θ)

ν−A

(
e
−⟨θ,H(σx(t))⟩+⟨θ,H(τ IN

B(x)
)⟩
)

× exp
( ∑
i∈Je(v)

γe,i(v, θi)v +
∑

i∈Js(v)
γs,i(v, θi)v + γJ(v)(θ)t

)
,
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since σx(t) − τ IN
B(x))  t on {σx(t) < ∞}; γe,i(θ) > 0 if and only if i ∈ Je(v);

γs,j(θ) > 0 if and only if j ∈ Js(v); and γs,i(θ) > 0 for i ∈ J \ A by θ ∈ ΓIN
A.

We note here that the condition (4.14) implies

−
⟨
θ,H

(
σx(t)

)⟩
+ ⟨θ,H(τ IN

B(x))⟩ ¬ ∥θ∥c0,(4.18)

from which the last term in (4.17) is bounded by

c(v)eγJ(v)(θ)t, t  0, v > 0,

where

c(v) = exp
(
c0∥θ∥+

∑
i∈Je(v)

γe,i(v, θi)v +
∑

i∈Js(v)
γs,i(v, θi)v

)
.

Hence, the last term in (4.15) is bounded by
∞∫
0

c(v)eγJ(v)(θ)tdt = − 1

γJ(v)(θ)
c(v) <∞.

This proves the lemma. �

In the proof of Lemma 4.1, the condition (4.14) may be weakened as long
as (4.18) holds. However, we also require the conditions (4.3) and (4.6) for τx =
τ IN
B(x) to get an upper bound. In the view of these conditions, (4.14) is close to be

necessary.

LEMMA 4.2. Assume that θ ∈ ΓIN
A. Then we have Ẽ(θ)

ν−A

(
fθ
(
X(0)

))
<∞ for

A = {k} for each k ∈ J if φk(θ) <∞ and θ ∈ Θk, where we recall that Θk ={
θ ∈ Rd; θi  0, ∀i ∈ J \ {k}

}
∪
{
θ ∈ Rd; θi < 0,∀i ∈ J \ {k}

}
.

P r o o f. Since Pν−k is identical with P̃(θ)

ν−k
on F0, it is enough to show that

Eν−k

(
fθ
(
X(0)

))
= Eν−k (e

⟨θ,L(0)⟩−⟨γe(θ),Re(0)⟩−⟨γs(θ),Rs(0)⟩) <∞.(4.19)

We first show that φk(θ) ≡ E
(
e⟨θ,L⟩1(Lk = 0)

)
<∞ implies Eν−k (e

⟨θ,L⟩) <∞.
To see this, let Ne,i(·) be the counting process for the exogenous arrivals at station
i, and letNd,j,i(·) be the counting process for the customers who completed service
at station j and routed to station i. Then the Palm formulas for stationary point
processes yield

(4.20) Eν−k (e
⟨θ,L⟩) ¬ 1(k ∈ E)λkEν

( 1∫
0

e⟨θ,L(t−)⟩1
(
L(t−) ∈ ∂kSL

)
Ne,k(dt)

)
+

∑
j∈J\{k}

αjpjkEν
( 1∫

0

e⟨θ,L(t−)⟩1
(
L(t−) ∈ ∂kSL

)
Nd,j,k(dt)

)
,
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where ∂kSL = ∂{k}SL, and the inequality becomes equality if point processes
Ne,k, Nd,j,k have no common point. Let Ne,i ≡ 0 for i ∈ J \ E for convenience.
Then

max
t∈(0,1]

(
Li(t)− Li(0)

)
¬ d+ 1 +Ne,i

((
te,i(1), 1

])
+

∑
j∈J

Ns,j,i

((
ts,j(1), 1

])
, i ∈ J ,

where Ns,j,i(·) is the stationary counting process for the number of service com-
pletions routed to station i when the server at station j is always busy. Since L(0)
is independent of Ne,i

(
(te,i(1), 1]

)
and Ns,j

(
(ts,j(1), 1]

)
for i ∈ E , j ∈ J , (4.20)

implies

Eν−k (e
⟨θ,L⟩) ¬ φk(θ)

(
λk +

∑
j′∈J\{k}

α̃j′pj′k
)

× Eν
(
exp

(∑
i∈E
|θi|
(
d+ 1 +Ne,i

(
(0, 1]

))
+

∑
j∈J

Ns,j,i

(
(0, 1]

)))
.

This proves the claim that Eν−k (e
⟨θ,L⟩) < ∞ since Ne,i

(
(0, 1]

)
and Ns,j

(
(0, 1]

)
for i ∈ E , j ∈ J are independent and have super-exponential distributions, that is,
their tails are asymptotically faster than any exponential function (see, e.g., Lem-
ma 4.1 of [18]).

We now prove (4.19). Note that its terms multiplied by γe,i(θi)  0, which
is equivalent to θi  0, and γs,i(θ) for i ∈ J \ {k} can be dropped to bound the
second expectation term in (4.19) because θ ∈ ΓIN

k . Furthermore, Rs,k(0) = Ts,k
under the distribution ν−k . Let K−(k,θ) =

{
i ∈ E \ {k}; θi < 0

}
. Thus, it follows

from the equation in (4.19) that
(4.21)
Eν−k

(
fθ
(
X(0)

))
¬ Eν−k

(
exp

( ∑
i∈J\{k}

θiLi(0)−
∑

i∈K−(k,θ)
γe,i(θi)Re,i(0)

))
eθk .

Thus, (4.19) is immediate if θi  0, equivalently, γe,i(θi)  0, for all i ∈ J \ {k}
since θk  0 and φk(θ) <∞. Hence, it remains to prove (4.19) when θi < 0 for
all i ∈ J \ {k}. In this case, (4.19) is obtained from the relation

Eν−k
(
e
−We,K−(k,θ)(θ,t)

)
<∞,(4.22)

where We,K−(k,θ)(θ, t) =
∑

i∈K−(k,θ) γe,i(θi)Re,i(t). Let Ee,i and Ed,j represent
the expectations concerning the stationary embedded distributions at exogenous
arrivals at station i and at departure instants at station j, respectively. Then, they
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are known as Palm distributions (e.g., see [3]), and obtained as

Ee,i
(
exp

(
−

∑
i∈K−(A,θ)

γe,i(θi)Re,i(0)
))

= λiEν
( 1∫

0

e
−We,K−(A,θ)(θ,t)Ne,i(dt)

)
,

Ed,j
(
exp

(
−

∑
i∈K−(A,θ)

γe,i(θi)Re,i(0)
))

= αjEν
( 1∫

0

e
−We,K−(A,θ)(θ,t)Nd,j(dt)

)
,

where Nd,j(t) =
∑

i∈J Nd,j,i(t). From a similar bound in (4.20), the inequality
(4.22) is obtained by using

Ee,i
(
exp

(
−

∑
i∈K−(A,θ)

γe,i(θi)Re,i(0)
))
<∞, i ∈ A ∩ E ,(4.23)

Ed,j
(
exp

(
−

∑
i∈K−(A,θ)

γe,i(θi)Re,i(0)
))

<∞, j ∈ J .(4.24)

Both can be proved similarly to Lemma 4.8 of [18] (see Section S2 of its supple-
mented version for its proof), which is originally in Lemma 4.2 of [21]. �

LEMMA 4.3. For d = 2, k = 1, 2 and a compact set B0 ⊂ R2
+, let Bk(x) =

xek +B0, and let

(4.25) θ(CPk) = arg sup
θ∈ΓIN

k

θk, k = 1, 2.

Then lim infx→∞ P̃(θ)

ν−{k}
(τ IN
Bk(x)

<∞) > 0 if ∥θ − θ(CPk)∥ is sufficiently small and

θj < θ
(CPk)
j for j ̸= k and j ∈ {1, 2}.

P r o o f. For notational symmetry, we consider only the case for k=1. Clearly,
the lemma is obtained if lim infx→∞ P̃(θ)

ν−{k}

(
L(0) = z, τ IN

Bk(x)
<∞

)
> 0. It is not

hard to see that this is proved if station 1 is unstable and station 2 is stable under
P̃(θ)

ν−{k}

(
· |L(0) = z

)
. By Lemma 2.9 and (3.12), this holds if

[∇γ(θ)]2 < 0, ⟨∇γ(θ), t(θ)1 ⟩ < 0.

The inequalities above are satisfied if θ is chosen so that ∥θ− θ(CP1)∥ is sufficiently
small, θ2 < θ

(CP1)
2 and

[∇γ(θ(CP1))]2 ¬ 0, ⟨∇γ(θ(CP1)), t
(θ(CP1))
1 ⟩ < 0,(4.26)

where we recall that t(θ)1 is defined in Lemma 3.2. The first inequality follows
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θ1

θ2

θ
(2,max)

θ
(1,max)

θ
(1,c)=θ

(1,r)

θ
(2,c)=θ

(2,r)

γs,2(θ) = 0

γs,1(θ) = 0

γ(θ) = 0

t1

n
(θ)

2

n
(θ)

1

n
(θ)

0
θ1

θ2
θ
(2,max)

θ
(1,max)

θ
(2,c)=θ

(2,r)

γ(θ) = 0

t1

γs,2(θ) = 0

γs,1(θ) = 0

n
(θ)

2

n
(θ)

1

n
(θ)

Figure 3. Geometric objects for d = 2, where n(θ) = ∇γ(θ), n(θ)
i = ∇γi(θ) for i = 1, 2.

from the convexity of ΓIN and the definition (4.25) (see Figure 3). For the second
inequality, let

θ(1,max) = arg sup
θ∈ΓIN

θ1.

If θ(θ(CP1)) = θ(1,max), then the second inequality of (4.26) is immediate because

∇γ(θθ(1,max)

) is proportional to e1 ≡ (1, 0) while t
(θ(CP1))
1 < 0 by Lemma 3.2.

Otherwise, assume that θ(θ(CP1)) ̸= θ(1,max), and let f be a function from R to R
such that θ2 = f(θ1) is determined by γs,2(θ) = 0. We then observe that f(θ1) is
increasing convex in θ1, and its derivative is smaller than that of the curve γ(θ) = 0
at θ = θ(CPk) because θ(CPk) is only one cross point of those two curves for θ1 > 0

and ΓIN is not empty. Again the tangent vector t(θ
(CP1))

1 < 0 by Lemma 3.2, and
therefore the second inequality of (4.26) must hold. �

LEMMA 4.4. Under P̃(θ), all stations of the GJN are weakly unstable if
∇γ(θ)  0 for θ ∈ Rd.

P r o o f. By (3.12) and the choice of θ, γ(θ)(0)  0, and therefore (c) of
Lemma 2.7 proves this lemma. �

4.3. Proofs of the main results. In this subsection, we prove Theorems 2.1
and 2.2 and Corollary 2.1.

P r o o f o f T h e o r e m 2.1. We apply the procedure from Section 4.1.
(a) Fix k ∈ J , put B(x) = xek +B0, and let τx = τ IN

B(x). Since B0 is a com-
pact set, (4.14) is satisfied. Hence, Steps 1–5 are verified by Lemmas 4.1 and 4.2.

(b) We first prove (2.38). To use similar arguments to those in (a), we put
B(x) = xc+B0, and let τx = τ IN

B(x). We first prove, for each A ̸= ∅,

lim sup
x→∞

1

x
logP(L ∈ xc+B0) ¬ −rA(c).(4.27)
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We only need to verify Step 3, that is, Eν−i
(
fθ
(
X(0)

))
<∞ for all i ∈ A because

Lemma 4.2 cannot be used. We use here the assumption (A1); then it is not hard to
see that, for i ∈ A, φi(θ) <∞ implies Eνi

(
fθ
(
X(0)

))
<∞. The latter finiteness

implies that Eν−i
(
fθ
(
X(0)

))
< ∞, as shown in the proof of Lemma 4.2. Thus,

Step 3 is verified, and (4.27) is obtained. Taking the minimum of the right-hand
side of (4.27) for A ⊂ J and A ̸= ∅, we obtain (2.38).

We next prove (2.39). Let θ = uc for u > 0 for an arbitrarily chosen c ∈
←−
U d,

and put

B(x) = {z ∈ Zd+;x < ⟨uc, z⟩ ¬ x+ 1};

then (4.14) is satisfied, and therefore we can use Lemma 4.2. By (A1), Step 3
works as shown in (a). For Step 4, we put a0(θ) = 0 and a1(θ) = u; then (4.6) is
satisfied. Thus, if we choose uc ∈ ΓA, all the steps work, and we have

lim sup
x→∞

1

x
logP(x < ⟨c,L⟩ ¬ x+ 1) ¬ −u.

This obviously implies that

lim sup
x→∞

1

x
logP(⟨c,L⟩ > x) ¬ −u

for uc ∈
←−
Γ IN
A as long as φi(θ) <∞ for all i ∈ A. Hence, we have

lim sup
x→∞

1

x
logP(⟨c,L⟩ > x) ¬ −mA(c).

Thus, we complete the proof by taking the minimum of the right-hand side of the
above inequality over A ⊂ J \ ∅. �

P r o o f o f T h e o r e m 2.2. We apply the lower bound procedure 1′–5′.
(a) Because of symmetry, it suffices to prove for k = 1. Put A = {1}, and let

B(x)=xe1+B0 and τx=τ IN
B(x). We choose θ such that γ(θ)>0 and γs,2(θ)<0;

then Step 1′ works. Step 2′ is obviously verified because Y (τx) does not decrease
as x gets large. Step 3′ is also obvious because B0 is compact. For Step 4′, we
can take any bounded set for U ⊂ ∂ASL. Then, if we take θ which is sufficiently
close to θ(CPk), then (4.12) holds by Lemma 4.3, while (4.13) obviously holds. This
completes the procedure, and (2.40) is obtained.

(b) We restrict the initial state in a bounded set C so that C ⊂ ∂JSL × SR and

E
(
f
(
X(0)

)
1
(
X(0) ∈ C

))
> 0.
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Let c∈Corn(
←−
Γ IN∩∂ΓIN), which implies ∇g(uc)0 for uc∈Corn(

←−
Γ IN∩∂ΓIN)

by the convexity of ΓIN. Let is choose z0 such that x ≡ (z,y) ∈ C implies that
maxi∈J zi < z0. We let

B(x) = {z ∈ Zd+; ⟨c, z⟩ > x}, x > z0,

and let τx = τ IN
B(x). Then, Step 2′ is obviously valid. Because the initial state is in

C, we have

ux < ⟨uc,L(τx)⟩ ¬ ux+ 1.

Hence, the condition (4.11) in Step 3′ is satisfied for x  z0. Furthermore, if we
take θ = uc for the change of measure, then all the stations are weakly unstable
by Lemma 4.4, which implies that

E
(
f
(
X(0)

)
1
(
X(0) ∈ C, τx <∞

))
= E

(
f
(
X(0)

)
1
(
X(0) ∈ C

))
> 0,(4.28)

and therefore (4.12) is satisfied for A = J . Thus, all the steps work well, and the
proof is completed.

(c) We take the same B(x), τx and C as in (a). Let Corn(a, b) = {x ∈ R2
+;

sa+ tb, s, t  0} for a, b ∈ R2
+. For c ∈ Corn(

←−
Γ IN ∩ ∂ΓIN

1 ), we separately con-
sider the two cases where c ∈ Corn(e1,θ

(CP1)) or not. If c ̸∈ Corn(e1,θ
(CP1)),

the asymptotic is covered by (2.41). Thus, we assume that c ∈ Corn(e1,θ
(CP1)).

We first choose u > 0 and c ∈
−→
U 2 such that uc = θ(CP1), and make the change

of measure for θ = θ(CP1). Then, we have (4.28) by Lemma 4.3. Hence, we have
(2.42). We next let u = θ

(CP1)
1 and let c = e1. In this case, we also have (2.42) by

(2.40). We finally consider the case where uc = se1 + tθ(CP1) ∈
←−
Γ IN ∩ ∂ΓIN

1 . Let
u = θ

(CP1)
1 /c1, s = θ

(CP1)
1 and t = θ

(CP1)
1 c2/θ

(CP1)
2 ; then uc = (θ

(CP1)
1 , θ

(CP1)
1 c2/c1)

is on
←−
Γ IN ∩ ∂ΓIN

1 . Hence, we have (2.42). �

P r o o f o f C o r o l l a r y 2.1. (a) For d = 2, by Theorems 2.1 and 2.2, we
have

lim
x→∞

1

x
logP(L ∈ xek +B0) = −r{k}(ek), k = 1, 2.(4.29)

Then, we can apply the same algorithm as in Theorem 4.1 of [15] to find r{k}(ek),
which shows that the equations (2.43) and (2.44) have a unique solution δ ≡
(δ1, δ2), and r{k}(ek) = δk. This proves (2.45).

(b) The inequality (2.46) is immediate from (b) of Theorem 2.1 for A = J .
It remains to prove (2.47). We first consider the marginal distributions in the coor-
dinate directions. By (2.39) of Theorem 2.1 for d = 2, it follows from φ1(0) ¬ 1
that

lim sup
x→∞

1

x
logP(⟨e1,L⟩ > x) ¬ −m{1}(e1) = − sup{u;ue1 ∈

←−
Γ IN

1 }.



Tail asymptotics in generalized Jackson network 429

This together with (2.42) concludes that

lim sup
x→∞

1

x
logP(⟨e1,L⟩ > x) = − sup{u;ue1 ∈

←−
Γ IN

1 } = −δ1,

and therefore φ(θ1, 0) is finite for θ1 < δ1 and diverges for θ1 > δ1. Similarly,
φ(0, θ2) is finite for θ2 < δ2. Since φ2(θ1) ¬ φ(θ1, 0) and φ1(θ2) ¬ φ(θ2, 0), it
follows again from (2.39) that

lim sup
x→∞

1

x
logP(⟨c,L⟩ > x) ¬ −m{1,2}(c)

= − sup{u;uc ∈
←−
Γ IN, φ1(θ2), φ2(θ1) <∞}

¬ − sup{u;uc ∈
←−
Γ IN, θi < δi, i = 1, 2}

= − sup{u;uc ∈ D2}.

Thus, we got the upper bound. By (2.41) and (2.42) of Theorem 2.2, this upper
bound becomes a lower bound. Hence, we have (2.47). �
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