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Abstract. Motivated by a web-server model, we present a queueing
network consisting of two layers. The first layer incorporates the arrival of
customers at a network of two single-server nodes. We assume that the in-
terarrival and the service times have general distributions. Customers are
served according to their arrival order at each node and after finishing their
service they can re-enter at nodes several times for another service. At the
second layer, active servers act as jobs that are served by a single server
working at speed one in a processor-sharing fashion. We further assume
that the degree of resource sharing is limited by choice, leading to a limited
processor-sharing discipline. Our main result is a diffusion approximation
for the process describing the number of customers in the system. Assum-
ing a single bottleneck node and studying the system as it approaches heavy
traffic, we prove a state-space collapse property.
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1. INTRODUCTION

We consider a network with a two-layered architecture. The first layer models
the processing of customers by a network of two nodes. Each node can have mul-
tiple (but finitely many) servers. Customers are served according to their order of
arrival and after finishing their service, they can re-enter at nodes several times for
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new services. The servers of the first layer act as jobs in the second layer, where
they are simultaneously served by a common server working at speed one accord-
ing to processor sharing with rates depending on the number of customers in the
system. Our goal is to derive an explicit approximation of the process describing
the number of customers in the system.

We analyze the system as it approaches heavy traffic. Under the assumption
that there is a single bottleneck, we derive explicit results for the joint distribution
of the number of customers in the system by proving a diffusion limit theorem.
To achieve this, we look at the system in the second layer. In this way, we can
aggregate the whole system since the total workload of the system (including the
future workload due to customers re-entering the queues) acts as if were that of a
single server queue with two independent renewal inputs.

To derive our diffusion limit theorem, we carry out a program inspired by the
work of Bramson [1] and Williams [14], which consists of two main steps. First,
we consider a critical fluid model, which can be thought of as a formal law of large
numbers approximation under appropriate scaling. We identify the invariant states
for the critical fluid model and we study the convergence to equilibrium of critical
fluid model solutions as time goes to infinity. Our analysis has some similarities
with the head-of-the-line processor-sharing discipline as studied in [1], but there
are differences. In particular, as the degree of resource sharing at each node is finite
in our case, we need to define appropriate spatial regions in which the fluid model
solutions have qualitatively different behavior. Our main result is to show that a
solution of the fluid model converges to equilibrium uniformly (in terms of the
initial condition) on compact sets. To achieve this, we perform a time change that
facilitates our analysis.

The second main step is to show a state-space collapse property for the joint
queue length vector process in heavy traffic. For an appropriately defined sequence
of stochastic processes, we show that the difference between this vector and an
appropriate deterministic mapping of the one-dimensional total workload process
vanishes. The latter process is shown to converge to a one-dimensional reflected
Brownian motion.

Our work can be seen as a partial network extension of the limited processor-
sharing queue of which fluid, diffusion, and steady-state heavy-traffic limit theo-
rems have been derived [18]–[20]. In our model, we assume that the inter-arrival
and the service times have general distributions, but we consider that only one cus-
tomer at each node can receive service at any time. In case that the inter-arrival and
the service times are exponential, the service discipline at each station becomes
irrelevant. An extension in the direction of general service times, using processor
sharing at each node would require measure valued processes and is beyond the
scope of the present paper. A mostly heuristic description of the results in this pa-
per has appeared in [11]. In the classical applied probability literature, a version
of our model has been investigated in a steady-state setting using boundary value
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techniques [6]; the solution in that paper may be used for numerical purposes, and
is complementary to our heavy-traffic limit, which yields explicit formulae, both
for time-dependent as well as steady-state results.

In addition, our work is a contribution to the performance analysis of layered
queueing networks. These are queueing networks where some entities in the sys-
tem have a dual role (e.g., servers become customers to a higher layer). In such
systems, the dynamics in layers are correlated and the service speeds vary over
time. Layered queueing networks can be characterized by separate layers (see [8]
and [15]) or simultaneous layers. In the first case, customers receive service with
some delay. An application where layered networks with separate layers appear
is the manufacturing systems, e.g., [3] and [4]. On the other hand, in layered net-
works with simultaneous layers, customers receive service from the different layers
simultaneously. Layered networks with simultaneous layers have applications in
communications networks. An application example where layered networks with
simultaneous layers (such as our model) appear naturally are web-based multi-
tiered system architectures. In such environments, different applications compete
for access to shared infrastructure resources, both at the software level (e.g., mu-
tex and database locks, thread-pools) and at the hardware level (e.g., bandwidth,
processing power, disk access). For background, see [9] and [10].

The paper is organized as follows. We provide a detailed model description
in Section 2 and introduce the systems dynamics. In Section 3, we derive the fluid
model and analyze it under the assumption of a single bottleneck and heavy traffic
in the network. As we see, the assumption of the single bottleneck allows us to
prove a state-space collapse (SSC) property. Then, we show that a fluid model so-
lution converges to equilibrium uniformly on compact sets. The main result of this
paper is contained in Section 4. Namely, we provide a diffusion limit theorem for
the joint customer population process for this two-layered queueing network. First,
we prove that the diffusion-scaled total workload process converges in distribution
to a reflected Brownian motion. This result together with results in [1] lead to the
main theorem.

2. MODEL

We assume a network with two layers. In layer 1, there are two single-server
nodes indexed by i. Customers arrive at node i ∈ {1, 2} randomly one by one and
have a random service requirement. A customer completing service at node i may
be routed at node l, l ∈ {1, 2}, for another service. It is assumed that customers are
served according to their arrival order at each node; i.e., first in, first out. Only the
first customer at each node can receive service at any time; i.e., the network is a
Head of the Line network (HL).

In layer 2, there is a single server working at speed one. The servers of layer 1
are served by this single server simultaneously and at a rate which depends on
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the number of customers in the system. The model is illustrated in Figure 1. In
Section 2.1, we give a formal description of the model, and in Section 2.2, we
introduce the dynamics describing the model. In the sequel, we use the subscript
i to refer to processes or quantities pertaining to each node, and, by convention,
we omit the subscript to denote the two-dimensional vector of these processes or
quantities.

Figure 1. A two-layered network with two single-server nodes and routing.

2.1. Preliminaries and model description. In this section, we give a formal
model description. Let (Ω,F ,P) be a probability space. For T > 0, let D[0, T ]2
be the Skorokhod space; i.e., the space of two-dimensional real-valued functions on
[0, T ] that are right continuous with left limits endowed with the J1-topology (as all
candidate limit objects we consider are continuous, we actually only need to work
with the uniform topology); cf. [2]. Denote by B(D[0, T ]2) the Borel σ-algebra of
D[0, T ]2. All the processes are defined from (Ω,F ,P) to

(
B(D[0, T ]2),D[0, T ]2

)
.

For a process X(t), let ∥X(t)∥T = sup06t6T |X(t)| denote the uniform norm,
where |X(·)| = maxi |Xi(·)|. We adopt the convention that all mentioned vectors
are two-dimensional columns, and use aT to denote the transpose of a vector or a
matrix a. We useA−1 to denote the inverse of a square matrixA,Ak its k-th power,
and ∥A∥ the maximum element ofA. Furthermore, I represents the identity matrix,
and e and e0 are the vectors consisting of 1’s and 0’s, respectively, the dimensions
of which are clear from the context. Also, ei is the vector whose i-th element is
1 and the rest are all 0. Last, for a real number x, its integer part is represented
by [x].

We start by describing the first layer. Let ui(j) for j = 2, 3, . . . be the time
between the (j − 1)-st and j-th external arrival at node i, and ui(1) > 0 be the
residual arrival time of the first customer entering at node i after time 0. We assume
that the sequence {ui(j)} for i = 1, 2 and j = 2, 3, . . . is a sequence of positive
i.i.d. random variables with mean 1/λi, λi > 0, and that ui(1) is independent of



Heavy-traffic approximations for a layered network 501

this sequence but sampled from an arbitrary distribution with the same mean. For
i = 1, 2, define the cumulative arrival time process Ui(·) as follows: Ui(0) := 0
and Ui(m) :=

∑m
j=1 ui(j) for m ∈ N. The number of the external arrivals at node

i until time t > 0 is given by the external arrival process

Ei(t) := max{m > 0 : Ui(m) 6 t}.

In order to be able to define the total workload process in the system, including
future service requirements due to routing, we need to introduce a sequence of ran-
dom variables for any customer j. For any fixed time t > 0 and j > 1, let v(1)ii (j)
be the immediate service requirement of the j-th customer (external or routed) at
node i.Also, we define v(k+1)

il (j) to be the service requirement of the j-th customer
(external or routed) at node i at the k-th future time he visits node l for i, l ∈ {1, 2}
and j, k ∈ N. The sequence {v(k)il (j)}, indexed by j, is a sequence of i.i.d. random
variables for any fixed i, l, k and for j > 1, and has mean βl := 1/µl, µl > 0. The
random variable v(1)ii (1) denotes the residual service time for the first customer
being served at node i at time 0; it is independent of the sequence {v(k)il (j)} but
sampled from an arbitrary distribution with the same mean. In addition, we assume
that all the above-mentioned random variables have finite second moments (more
precisely, we need a Lindeberg-type condition to hold to make sure that the exoge-
nous input processes satisfy a functional central limit theorem; see Section 4 for
more details). We define the cumulative service time process as Vi(0) := 0 and, for
m ∈ N,

Vi(m) :=
m∑
j=1

v
(1)
ii (j), i = 1, 2,

and the counting process

(2.1) Si(t) := max{m > 0 : Vi(m) 6 t}.

We shall use the random variables {v(k+1)
il (j)} to count the future workload in the

system at time t. For a fixed t > 0, v(k+1)
il (j) represents the k-th future service

requirement of the j-th customer waiting to being served at node i and routed at
node l. This event will occur after time t and after the completion of his service at
node i.

Customers can move between queues according to Markovian routing. To de-
scribe the routing process, we define the following quantities. Let P be the (square)
routing matrix of dimension two. It is assumed that it is substochastic with a spec-
tral radius less than one; i.e., its largest eigenvalue is less than one. In other words,
the network is open, so the following relations hold:

(I − P T )−1 = I +
∞∑
k=1

(P T )k and lim
k→∞

(P T )k = 0.
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For any customer j at node i (external or routed), we define the random vari-
ables φ(k)

il (j) = 1 if the j-th departing customer from node i is routed to node l in
k steps. The probability of this event is given by

P
(
φ
(k)
il (j) = 1

)
= p

(k)
il ,

where p(k)il denotes the (i, l)-th element of the matrix P k. For i = 1, 2, we define
the two-dimensional random vector

φ
(k)
i (j) :=

(
φ
(k)
i1 (j), φ

(k)
i2 (j)

)T
.

Note that φ(k)
i (j) can take values in the set {e0, e1, e2}, where φ(k)

i (j) = e0 means
that the j-th customer leaves the system. Let p̄(k)i be the i-th column of the matrix
(P T )k. The expectation and the covariance matrix of φ(k)

i (j), for i = 1, 2, are
given by

E
(
φ
(k)
i (j)

)
= p̄

(k)
i and C

(
φ
(k)
i (j)

)
=

[
p
(k)
i1 (1− p(k)i2 ) −p(k)i1 p

(k)
i2

−p(k)i1 p
(k)
i2 p

(k)
i2 (1− p(k)i1 )

]
.

Now, we can define the routing process, which counts the number of customers
who are routed from node l to node i, as

Φli(m) :=
m∑
j=1

φ
(1)
li (j), i, l = 1, 2, m ∈ N.

The total arrival rate at node i, γi, is given by the solution of the following traffic
equations:

γi = λi +
2∑
l=1

p
(1)
li γl, i = 1, 2.

In vector form, this can be written as

(2.2) γ = (I − P T )−1λ.

It is shown in [2], Theorem 7.3, that under the assumptions described above, (2.2)
has a unique solution γ = (γ1, γ2)

T . The traffic intensity of node i is ρi := γi/µi.
Now, we describe the service discipline at the second layer. Here, there is a sin-

gle server. The servers of layer 1 become jobs at layer 2 in the sense they are served
by the server of layer 2 simultaneously and at a rate that depends on the number of
customers in layer 1 (at any time). The rate that each node receives is given by the
service allocation function R(·) : R2

+ → R2
+, with R(·) :=

(
R1(·), R2(·)

)T and,
for i = 1, 2,

(2.3) Ri(q) :=

min{qi,Ki}/
2∑
j=1

min{qj ,Kj} if qi ̸= 0,

0 if qi = 0.
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The quantity qi represents the number of customers at node i. The two-dimensional
vector K = (K1,K2)

T is constant, and we call it the degree of resource sharing.
We assume that it is always finite and the user can choose it as a parameter of the
system. Observe that K in this service allocation function guarantees a minimum
service rate for each customer in the system. Also, note that the above function is
Lipschitz continuous for q ̸= (0, 0).

We make the additional assumption that there exists a unique bottleneck in
our system, which without loss of generality we let it be node 1. The definition of
bottleneck is the following.

DEFINITION 2.1 (Bottleneck). Node i is a bottleneck if i = argminj µjKj/γj
for i = 1, 2.

By the previous definition, a straightforward inequality follows:

(2.4)
ρ1
K1

>
ρ2
K2

.

Observe that, if K1 = K2, an intuitive explanation of the above definition is that
the average occupancy of the server at node 1 is strictly greater than that of the
server at node 2. In case of multiserver nodes, where Ki represents the number of
servers at node i, the fraction ρi/Ki is the average occupancy of a server at node i.

2.2. System dynamics. In this section, we introduce the dynamics that describe
our model. We denote by Qi(t) the number of customers at node i at time t. This
is given by

(2.5) Qi(t) = Qi(0) + Ei(t) +
2∑
l=1

Φli

(
Sl
(
Tl(t)

))
− Si

(
Ti(t)

)
,

where Qi(0) denotes the number of customers initially at node i. We define the
cumulative service time of the server at node i as

(2.6) Ti(t) =
t∫
0

Ri
(
Q(s)

)
ds.

This quantity can be viewed as the effort that the server of node i has put in pro-
cessing customers during [0, t]. Note that as the allocation function might be less
than one, the above process is not necessarily equal to the amount of time that the
server at node i is busy during [0, t]. In case the other node is empty during [0, t],
(2.6) coincides with the busy time at node i. Recall that Ei(t) is the number of
external arrivals at node i up to time t. Observe that Si

(
Ti(t)

)
, which is a compo-

sition of the renewal process (2.1) and the process Ti(t), represents the number of
departures at node i until time t. Furthermore, the total arrival process is given by

(2.7) Ai(t) = Ei(t) +
2∑
l=1

Φli

(
Sl
(
Tl(t)

))
.
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The amount of time that both servers at the nodes are idle during [0, t] is given by
the one-dimensional process

(2.8) YL2(t) = t−
2∑
i=1

Ti(t).

Alternatively, we can see this quantity as the idle time of the server in layer 2 during
[0, t]. Further, the immediate workload at node i at time t is defined as

(2.9) Wi(t) = Vi
(
Qi(0) +Ai(t)

)
− Ti(t).

Observe that Wi(t) is nonnegative for any t > 0. Last, due to the work-conserving
property in layer 2, the following relation holds:

(2.10) YL2(t) increases ⇒W1(t) +W2(t) = 0, t > 0, i = 1, 2.

Recall that when we omit the subscript i, we refer to the two-dimensional column
vector of the corresponding process/quantity; for example,A(·) =

(
A1(·), A2(·)

)T
and W (·) =

(
W1(·),W2(·)

)T
. All the essential information of the evolution of the

system is contained is the following six-tuple:

X(·) :=
(
A(·), S(·), Q(·), T (·), YL2(·),W (·)

)
.

In addition, the total (immediate and future) workload of the system plays a
key role in our analysis. First, we define the remaining service requirement of the
j-th customer waiting to be served at node i = 1, 2 as

(2.11) si(j) := v
(1)
ii (j) + s′i(j)

where

s′i(j) :=
2∑
l=1

∞∑
k=1

φ
(k)
il (j)v

(k+1)
il (j)

is the future service requirement of the above-mentioned customer. Observe that,
for an external arrival, si(j) is the total service requirement. The first and the sec-
ond moments of (2.11) are given (in the vector form) by

(2.12) τ := E
(
s(j)

)
= (I − P )−1β

and

(2.13) τ (2) := E
(
s2(j)

)
= (I − P )−1

(
E
(
v2(j)

)
+ 2β(Pτ)

)
.

Now, we can define the (one-dimensional) total workload of the system as

(2.14) WTot(t) :=
2∑
i=1

Wi(t) +
2∑
i=1

Qi(0)+Ai(t)∑
j=Si(Ti(t))+1

s′i(j).
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In case that Si
(
Ti(t)

)
= Qi(0) + Ai(t), i.e., there are no customers at node i,

we understand the second sum of the last equation as zero. Obviously, the total
workload is not a Markov process as it is dependent on future service requirements.
In Section 4.1, we shall see that under an appropriate scaling (i.e., the diffusion
scaling) the dependence of the total workload on the future vanishes.

Last, as our network is HL, only one customer can be in service at node i
at any time. This property gives an upper and a lower bound for the cumulative
service time (2.6) at node i, which is given in [1], Inequality 2.13, namely,

(2.15) Vi

(
Si
(
Ti(t)

))
6 Ti(t) < Vi

(
Si
(
Ti(t)

)
+ 1
)
.

We have so far defined the system dynamics for the above-mentioned two-
layered network and stated all the assumptions we need for our analysis. We are
now ready to study the fluid model of this network, which is the first essential step
to show an SSC property.

3. FLUID ANALYSIS

In this section, we study a critical fluid model, which is a deterministic model
and can be thought of as a formal law of large numbers approximation under ap-
propriate scaling. We shall give a rigorous proof of the last statement in the next
section.

The main goal is to prove uniform convergence (with respect to the initial con-
dition) on compact sets for the fluid model under the critical loading assumption;
i.e., the traffic intensity of the network is one. First, we find the invariant points
(or equilibrium states) and define an appropriate lifting map which describes these
points. Then, we define a time-changed version of the original fluid model and we
show that it is enough to prove the convergence for the time-changed function. As
the time-changed function is given by a piecewise linear ODE, we are able to find
the solution and to show the convergence. Because the degree of resource sharing
(the vector K) is finite, we need to separate the state space in suitable regions and
to distinguish cases depending on initial conditions.

3.1. Definition and invariant points. The traffic intensity of the network is
given by ρ := βTγ =

∑2
i=1 ρi. We make the critical loading assumption, i.e.,

(3.1) ρ = ρ1 + ρ2 = 1.

To derive the fluid model equations, we replace any random quantity in (2.5)–(2.10)
with its mean. The fluid model equations are given by

Q̄i(t) = Q̄i(0) + λit+
2∑
l=1

pliµlT̄l(t)− µiT̄i(t),(3.2)
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T̄i(t) =
t∫
0

Ri
(
Q̄(s)

)
ds,(3.3)

2∑
i=1

T̄i(t) + ȲL2(t) = t,(3.4)

W̄i(t) = βi
(
λit+

2∑
l=1

pliµlT̄l(t) + Q̄i(0)
)
− T̄i(t),(3.5)

ȲL2(t) increases ⇒ W̄1(t) + W̄2(t) = 0, t > 0, i = 1, 2.(3.6)

We can show that the immediate workload in the fluid model can be written as
W̄i(t) = βiQ̄i(t).

DEFINITION 3.1 (Fluid model). We say that a two-dimensional vector Q̄(·)
with nonnegative components is a solution of the fluid model if it is continuous and
satisfies the equations (3.2)–(3.6) for t ∈ [0, δ), and Q(t) = 0 for t > δ, with δ =
inf{t : Q(t) = 0}.

We define an auxiliary quantity which can be interpreted as the total workload
in the fluid model. It is defined by the function Q̄(·) as follows:

W̄Tot(t) = βT Q̄(t) +
∞∑
k=1

2∑
i=1

βT p̄
(k)
i Q̄i(t) = βT Q̄(t) +

∞∑
k=1

βT (P T )kQ̄(t)

= βT (I − P T )−1Q̄(t) = τT Q̄(t).

A useful result in our analysis is that the fluid total workload in the system remains
constant under the critical loading assumption.

PROPOSITION 3.1. For any fluid model solution Q̄(·), we have

W̄Tot(t) = βT (I − P T )−1Q̄(t) = W̄Tot(0).

P r o o f. If Q̄(0) = 0, then W̄Tot(t) ≡ 0 for t > 0. Let Q̄(0) > 0. Assume
now Q̄(0) = 0. By definition, Q̄(t) is continuous, so let t be such that Q̄(t) is
positive in a neighborhood of t. Calculating the derivative of the total workload at
time t, we derive

W̄ ′Tot(t) = βT (I − P T )−1Q̄′(t) = βT (I − P T )−1(λ− (I − P T )
(
µ ◦R

(
Q̄(t)

))
= βTγ − βT

(
µ ◦R

(
Q̄(t)

))
= βTγ −

2∑
i=1

Ri
(
Q̄(t)

)
= 0.

The last equation holds due to (3.1) and the property of the service allocation func-
tion; i.e.

∑2
i=1Ri

(
Q̄(t)

)
= 1. It follows that W̄Tot(t) = W̄Tot(0) for t > 0. Thus,

W̄Tot(t) is constant on [0, δ]. Combining this with the continuity of Q̄(t), we see
that, necessarily, δ =∞. Thus, the result extends to all positive t. �
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In the following lemma, we show that there exists a solution of the fluid model
equations for all non-zero initial states and it is unique.

LEMMA 3.1 (Existence and uniqueness). For any Q̄(0) ∈ R2
+\{0} there ex-

ists a unique solution of the fluid model equations.

P r o o f. Let Q̄(0) > 0. A by-product of the previous lemma is δ =∞. Thus,
we can discard the origin and define the function Ψ(·) : R2

+\{0} → R2
+ as

(3.7) Ψ(·) := λ− (I − P T )
(
µ ◦R(·)

)
,

where µ ◦R(·) indicates the Hadamard product; µ ◦R(·) =
(
µ1R1(·), µ2R2(·)

)T .
This function is Lipschitz continuous because such is R(·). Now, note that (3.2)
can be written as

(3.8) Q̄′(t) = Ψ
(
Q̄(t)

)
, t > 0,

where the prime denotes the derivative with respect to time. The existence and
uniqueness follow directly by [12], Section 10, Theorem IV. �

Now, we characterize the invariant points x ∈ R2
+ of the fluid model. Before

we state our result, we first proceed in an informal manner. Equate the total rate
into node i with the total rate out of node i. That is,

(3.9) γi = µiRi(x).

Thus, for the points on the invariant manifold (i.e. the set of the invariant points),
we have ρi = Ri(x). Using the definition of a bottleneck and keeping in mind that
we assume node 1 to be the bottleneck, we now describe the invariant points. We
know by (2.4) that ρ1/K1 > ρ2/K2, which yields

K1

K2
<
ρ1
ρ2

=
R1(x)

R2(x)
.

Thus, by combining the last inequality and the definition of the service allocation
function (2.3), we see that the following inequality holds:

min{x2,K2} <
K2

K1
min{x1,K1} 6 K2.

The last inequality implies that for all invariant points x = (x1, x2) of the fluid
model, we have x2 < K2. Thus, solving the equation (3.9) for x2 now yields x2 =
ρ2
ρ1

min{x1,K1}. The invariant manifold is thus given by

(3.10) I =
{
x ∈ R2

+ : x2 =
µ1
γ1

γ2
µ2

min{x1,K1}
}
.

We make the previous arguments rigorous by showing that a sufficient and nec-
essary condition of the fluid queue length to remain constant in time is the initial
state lies on the invariant manifold.
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PROPOSITION 3.2. Let Q̄(t) be a solution of (3.8). Then, Q̄(t) = Q̄(0) for
all t > 0 if and only if Q̄(0) ∈ I.

P r o o f. The definition of the invariant manifold of an ODE is the set of all
initial states such that the function remains constant; i.e., {Q̄(0) ∈ R2

+ : Q̄(t) =
Q̄(0), t > 0}. Suppose now that Q̄(0) ∈ I. In this case, by the definition of an
invariant point, Q̄(t) should be constant. So, Q̄(t) = Q̄(0) ∈ I.

Now, supposing that Q̄(t) = Q̄(0) ∈ R2
+ for all t > 0, it follows from the

previous discussion that Q̄(0) ∈ I. �

Having found the invariant (or equilibrium) points of the fluid model, we now
turn to its stability property, namely, the convergence of the solutions of fluid model
equations to the invariant manifold as time goes to infinity.

3.2. Convergence to the invariant manifold for the fluid model. Let x∗ be the
critical point in the invariant manifold where x∗1 = K1, which means that x∗2 =
µ1
γ1

γ2
µ2
K1. For this point, we define the critical workload as (cf. (3.1))

(3.11) w∗ := βT (I − P T )−1x∗ = τTx∗.

In order to prove an SSC property based on the critical workload level w∗, we
define a lifting map, ∆ : R+ → R2

+, as follows:

(3.12)
∆1(w) :=

min{w,w∗}
w∗

K1 +
max{w − w∗, 0}

τ1
,

∆2(w) :=
min{w,w∗}

w∗
ρ2K1

ρ1
.

Note that the lifting map is Lipschitz continuous with constant

C1 = max

{
2
K1

w∗
+ µ1, 2C2

}
, where C2 =

µ1K1

λ1w∗
max
i

λi
µi
.

In the sequel, we show that the fluid model solution converges to the invariant
manifold as t goes to infinity.

THEOREM 3.1 (Convergence to the invariant manifold for the fluid model).
If Q̄(0) =

(
Q̄1(0), Q̄2(0)

)
∈ [0,M ]2 for some M > 0, then for any ϵ > 0, there

exists a t0 > 0 (independent of M ) such that

(3.13) sup
Q̄(0)∈[0,M ]2

|Q̄(t)−∆W̄Tot(0)| 6 ϵ

for t > t0, and ∆W̄Tot(0) is an invariant state.
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P r o o f. Here, we give a sketch of the proof. The complete proof is extended
in the rest of this section. The first step is to define a function y(·) and a function
G(·), and to show that y(·) can be interpreted as a time-change of Q̄(t), namely
Q̄(t) = y

(
G(t)

)
. Then, we show that the convergence of the time-changed version

implies the convergence of the original function Q̄(·). To this end, let Ξ = {ξij},
i, j ∈ {1, 2}, be the matrix

Ξ =

[
λ1 + µ1p11 − µ1 λ1 + µ2p21
λ2 + µ1p12 λ2 + µ2p22 − µ2

]
.

Define a function y(·) : [0,∞)→ [0,∞)2 such that yi(0) = Q̄i(0) and

(3.14) y′(t) = Ξ
(
min{y1(t),K1},min{y2(t),K2}

)T
.

We shall show that the above-defined function can be interpreted as a time change
of Q̄(t). Let G(·) : [0,∞)→ [0,∞) be the solution of the equation

G′(t) =
1

2∑
i=1

min
{
yi
(
G(t)

)
,Ki

} .
Note that G(·) is continuous and that

G(t) =
t∫
0

1
2∑
i=1

min
{
yi
(
G(s)

)
,Ki

}ds > 1
2∑
i=1

Ki

t.

This means that the function G(·) is strictly increasing and unbounded in time,
which implies that G(·) is also invertible. The original function Q̄(t) can be inter-
preted as Q̄i(t) = yi

(
G(t)

)
for t > 0. To see this,

Q̄′(t) = y′
(
G(t)

)
G′(t) =

Ξ
(
min

{
y1
(
G(t)

)
,K1

}
,min

{
y2
(
G(t)

)
,K2

})T
2∑
i=1

min
{
yi
(
G(t)

)
,Ki

}
= Ξ

(
R1

(
Q̄(t)

)
, R2

(
Q̄(t)

))T
= Ψ

(
Q̄(t)

)
,

where the function Ψ(·) is defined in (3.7).
The idea now is to prove (3.13) by showing that y(t) converges as t→∞.We

will formally do so in the remainder of Section 3. Assuming that y(t) converges,
we now show that Q̄(t) converges. To see this, if for any ϵ > 0 there exists t0
(independent of M ) such that

(3.15) sup
y(0)∈[0,M ]2

|y(t)−∆W̄Tot(0)| 6 ϵ, t > t0,
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then

sup
Q̄(0)∈[0,M ]2

|Q̄(t)−∆W̄Tot(0)| = sup
y(0)∈[0,M ]2

∣∣y(G(t))−∆W̄Tot(0)
∣∣

= sup
y(0)∈[0,M ]2

|y(u)−∆W̄Tot(0)|,

where u = G(t). For u > G−1(t0), the last term becomes smaller that ϵ. �

The remainder of the current section is devoted to the proof of (3.15). To do
it, we first define appropriate spatial regions in which the fluid model solutions
have qualitatively different behavior and we solve (3.14) in these regions. This is
done in Section 3.3. In Section 3.4, these solutions are used to show that both y1(t)
and y2(t) are monotone in t. A crucial observation is that we only need to look
at y2(t) as τ1y1(t) + τ2y2(t) = W̄Tot(0), by Proposition 3.1. This paves the way
for a global convergence analysis of y(t), also establishing the desired uniformity.
This is done in Section 3.5.

3.3. Explicit local solutions of time-changed ODE. Because we assume that
the degree of resource sharing K is finite, the form of (3.14) depends on the
value of y(t). For this reason, we need to define the following regions. For x =
(x1, x2) ∈ R2

+, we define

Π1 = {x ∈ R2
+ : x1 6 K1, x2 > K2}, Π2 = {x ∈ R2

+ : x1 > K1, x2 > K2},
Π3 = {x ∈ R2

+ : x1 > K1, x2 6 K2}, Π4 = {x ∈ R2
+ : x1 6 K1, x2 6 K2}.

The following picture (Figure 2) shows these regions and the invariant manifold as
defined in (3.10).

Π1 Π2

Π3

K1

K2

ρ2

ρ1
K1

x1

x2

Π4

Invariant manifold

(0, 0)

Figure 2. The regions Πi and the invariant manifold.

Let y(0) =
(
y1(0), y2(0)

)T ∈ R2
+. We solve the time-changed ODE, which is

given by (3.14), in regions Π3 and Π4 (considering these two regions only is suffi-
cient for our purposes). It is useful to observe the relations between the coefficients
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of the matrix Ξ in (3.14), which will be used later. We know by the definition of
the total arrival rate that

(3.16) ρ2(1− p22) =
λ2
µ2

+
p12γ1
µ2

.

The constant ξ22 can be expressed as

(3.17) ξ22 = λ2 + µ2(p22 − 1)
(3.16)
= λ2 −

1

ρ2
(λ2 + p12γ1) = −

ρ1
ρ2
ξ21 < 0.

In a similar way, we can obtain

(3.18) ξ11 = −
ρ2
ρ1
ξ12 < 0.

By definition (2.12), τ2 can be written as τ2(1− p22) = β2 + p21τ1. Also, by (2.2)
and (2.12), we have τTλ = βT (I − P T )−1λ = βTγ = 1. Combining the previous
two equations, we get

ξ12 = −
τ2
τ1
ξ22.

Last, by (3.17) and (3.18) we have

ξ21 = −
τ1
τ2
ξ11.

3.3.1. Solution in region Π3. Assuming that y(s) is in region Π3 for s ∈ [0, t],
we can directly solve the second equation of the system (3.14) since it is indepen-
dent of y1(t):

y′2(t) = ξ21K1 + ξ22y2(t).

Then, by using (3.17), the solution is given by

y2(t) =

(
y2(0)−

ρ2
ρ1
K1

)
exp{ξ22t}+

ρ2
ρ1
K1.

Now, we can easily obtain the solution of the first equation of the system (3.14).
By the relations between the coefficients of (3.14), this solution is given by

(3.19) y1(t) = −
τ2
τ1

(
y2(0)−

ρ2
ρ1
K1

)
exp{ξ22t}+

W̄Tot(0)− w∗

τ1
+K1.

3.3.2. Solution in region Π4. Assuming that y(s) is in region Π4 for s ∈ [0, t],
we can write the system given by (3.14) as

(3.20) y′(t) = Ξy(t)T .
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The eigenvalues of Ξ are α1 = 0 and α2 = ξ11 + ξ22 = λ1 + µ1(p11 − 1) + λ2 +
µ2(p22 − 1) < 0. Let V1, V2 be the corresponding eigenvectors; i.e.,

V1 =

(
1

− ξ11ξ12

)
and V2 =

(
1

α2−ξ11
ξ12

)
=

(
1
ξ21
ξ11

)
.

Using the relations between the coefficients of the matrix Ξ, we obtain the solution
of (3.20) in the form

(3.21)
y1(t) = c2 + c′2 exp{α2t},

y2(t) = c2
ρ2
ρ1
− c′4

τ1
τ2

exp{α2t},

with

c2 =
W̄Tot(0)

w∗
K1 and c′2 = −

[
y2(0)−

ρ2
ρ1
y1(0)

][
τ2ρ1

τ1ρ1 + τ2ρ2

]
.

Having found the solution of (3.14) in each of the regions Π3 and Π4, we
observe that the two-dimensional equation can be reduced to a one-dimensional
equation since W̄Tot(0) = τ1y1(t) + τ2y2(t) for t > 0. Now, it is enough to show
the convergence of this equation. To see this, define x(·) as

(3.22) x(t) := y2(t) =
W̄Tot(0)

τ2
− τ1y1(t)

τ2
,

and its derivative as

(3.23) x′(t) = −τ1y
′
1(t)

τ2
.

Using the observation that we can reduce the dimension by one and the so-
lutions to system (3.14), we show that the fluid model solutions converge to an
equilibrium state uniformly for all initial states within a compact set. First, we find
the sign of the derivative of the above reduced equation. Then, as the limiting point
depends on the sign of the quantity W̄Tot(0)−w∗, we have to distinguish between
the following three cases: the total workload in the fluid model is (i) greater than,
(ii) less than or (iii) equal to the critical workload.

3.4. Local analysis: Establishing monotonicity. By (3.22), it is clear that we
need to study only the behavior of y1(t). In the sequel, we find the sign of (3.23)
in each region Πi for i = 1, . . . , 4.

In region Π1, we know that y1(t) 6 K1. By (3.14) and (3.18), we have

x′(t) = −τ1y
′
1(t)

τ2
= −τ1

τ2

(
ξ11y1(t) + ξ12K2

)
= −τ1

τ2
ξ12

(
− ρ2
ρ1
y1(t) +K2

)
6 −τ1

τ2
ξ12

(
− ρ2
ρ1
K1 +K2

)
= −ϵ1 < 0,
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where ϵ1 =
τ1
τ2
ξ12
(
− ρ1

ρ2
K1 +K2

)
, which is strictly positive by (2.4) and the fact

that ξ12 > 0. Therefore, we conclude that the derivative of x(t) is strictly negative
in region Π1.

In region Π2, by (3.14) and (3.18), we have

x′(t) = −τ1
τ2
(ξ11K1 + ξ12K2) = −

τ1ξ12
τ2

(
− ρ2
ρ1
K1 +K2

)
= −ϵ1 < 0.

Thus, the derivative of x(t) is strictly negative for all y1(0) in regions Π1 and Π2.
In other words, the trajectory of x(t) leaves regions Π1 and Π2 after a finite time.
Now, we move to the regions where the invariant points lie, i.e., Π3 and Π4.

In region Π3, by (3.11) and (3.19), we obtain

x′(t) =
τ1
τ2
ξ22

(
W̄Tot(0)

τ1
− y1(0)−

τ2
τ1

ρ2
ρ1
K1

)
exp{ξ22t}

=
τ1
τ2
ξ22

(
W̄Tot(0)− w∗

τ1
+K1 − y1(0)

)
exp{ξ22t}.

We saw in (3.17) that ξ22 < 0. We therefore infer that, in Π3,

(3.24) x′(t) =


> 0 if y1(0) >

W̄Tot(0)− w∗

τ1
+K1,

< 0 if y1(0) <
W̄Tot(0)− w∗

τ1
+K1,

and

x′(t) = 0 if y1(0) =
W̄Tot(0)− w∗

τ1
+K1.

In region Π4, by (3.11) and (3.21), we have

x′(t) = −τ1y
′
1(t)

τ2
= −τ1

τ2
c′4α2 exp{α2t},

where

c′4 = −
[
W̄Tot(0)

τ2
− τ1
τ2
y1(0)−

ρ2
ρ1
y1(0)

][
τ2ρ1

τ1ρ1 + τ2ρ2

]
= −

[
W̄Tot(0)

τ2
− τ1ρ1 + τ2ρ2

τ2ρ1
y1(0)

][
τ2ρ1

τ1ρ1 + τ2ρ2

]
= −

[
W̄Tot(0)−

w∗

K1
y1(0)

][
ρ1

τ1ρ1 + τ2ρ2

]
.

Recall that from Section 3.3.2 it follows that α2 < 0, and thus, in Π4,

(3.25) x′(t) =


> 0 if y1(0) >

W̄Tot(0)

w∗
K1,

< 0 if y1(0) <
W̄Tot(0)

w∗
K1,
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and

x′(t) = 0 if y1(0) =
W̄Tot(0)

w∗
K1.

Combining (3.24), (3.25), and keeping in mind that ∆1(w) =
min{w,w∗}

w∗ K1 +
max{w−w∗,0}

τ1
, we see that, in Π3 ∪Π4,

x′(t) =

{
> 0 if y1(0) > ∆1

(
W̄Tot(0)

)
,

< 0 if y1(0) < ∆1

(
W̄Tot(0)

)
,

and x′(t) = 0 if y1(0) = ∆1

(
W̄Tot(0)

)
.

3.5. Global analysis: Convergence to invariant manifold. We are now ready
to connect all pieces. From the previous section we know that x(t) = y2(t) must
be smaller than K2 after a finite time, thus exiting regions Π1 and Π2. Therefore,
we can focus on the remaining two regions. In order to do so, we need to consider
whether y1(t) will eventually be larger than, smaller than, or equal to K1. This
leads to three cases, treated separately in the remainder of this section.

C a s e 1: W̄Tot(0)− w∗ > 0. In this case the invariant point (limiting point)
lies in region Π3. If y1(0) ∈ Π3, then we know that y1(0) > K1. By (3.19), we
have

y1(t) = −
τ2
τ1

(
W̄Tot(0)

τ2
− τ1y1(0)

τ2
− ρ2
ρ1
K1

)
exp{ξ22t}+

W̄Tot(0)− w∗

τ1
+K1

>
(
− W̄Tot(0)

τ1
+K1 +

τ2ρ2
τ1ρ1

K1

)
exp{ξ22t}+

W̄Tot(0)− w∗

τ1
+K1

>
(
− W̄Tot(0)

τ1
+K1 +

w∗

τ1
−K1

)
exp{ξ22t}+

W̄Tot(0)− w∗

τ1
+K1

> W̄Tot(0)− w∗

τ1
(1− exp{ξ22t}) +K1 > K1.

If y1(0) ∈ Π4, then y1(0) 6 K1. Also, by the assumption that W̄Tot(0) −
w∗ > 0 and the definition of the lifting map (3.12), we infer that y1(0) 6 K1 <
∆1W̄Tot(0). This implies that x(0) > W̄Tot(0)/τ2 − τ1K1/τ2 and x(t) is strictly
decreasing. In the sequel, we show that there exists a time t∗ such that y1(t∗) = K1.
This means that the function x(t) lies in region Π3 after that time. It is enough to
prove that the equation y1(t) = K1 has a positive solution. Note that, by (3.21), we
have

y1(t) =
W̄Tot(0)

w∗
K1 −

[
W̄Tot(0)−

w∗

K1
y1(0)

][
ρ1

τ1ρ1 + τ2ρ2

]
exp{α2t}.

Now, setting y1(t) = K1, we see that the previous equation becomes

W̄Tot(0)

w∗
K1 −K1 =

[
W̄Tot(0)−

w∗

K1
y1(0)

][
ρ1

τ1ρ1 + τ2ρ2

]
exp{α2t}.(3.26)
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We argue that (3.26) is satisfied by a t > 0 as follows. Observe that by (3.11) the
quantity ρ1/(τ1ρ1 + τ2ρ2) is equal to K1/w

∗, and by the assumption that y1(0) ∈
Π4, we have y1(0) 6 K1. Now, we can obtain the inequality[

W̄Tot(0)−
w∗

K1
y1(0)

][
ρ1

τ1ρ1 + τ2ρ2

]
>
[
W̄Tot(0)

w∗
K1 −K1

]
,

which proves the statement. Note that if the total workload is equal to the critical
workload, then (3.26) does not have a positive solution since (3.26) would imply
that exp{α2t} = 0. It would only be satisfied by t = 0. This means that if y1(0) ∈
Π4 and W̄Tot(0)− w∗ = 0, then the function x(t) remains in region Π4 for ever.
Since in this first case W̄Tot(0) − w∗ > 0, we have W̄Tot(0)

w∗ K1 −K1 > 0. Thus,
by combining the fact that y1(0) 6 K1 and the previous display, we have shown
that W̄Tot(0)− w∗

K1
y1(0) > W̄Tot(0)−w∗ > 0. Combining these arguments leads

to the conclusion that the equation y1(t∗) = K1 has a (unique) positive solution,
say t∗. Therefore, y(t) ∈ Π3 for t > t∗. In other words, it is enough to prove that,
for W̄Tot(0)− w∗ > 0, the function x(t) converges to a point in region Π3.

We now show that it converges to the invariant manifold in region Π3. By
(3.12), we have ∆2W̄Tot(0) =

ρ2
ρ1
K1. By (3.19) and (3.22),

|x(t)−∆2W̄Tot(0)| 6
∣∣∣∣W̄Tot(0)

τ2
− τ1y1(0)

τ2
− ρ2
ρ1
K1

∣∣∣∣ exp{ξ22t},
and recall that ξ22 < 0. Also, for any closed and bounded interval of the form
[0,M ] for M > 0, the quantity

∣∣W̄Tot(0)
τ2
− τ1y1(0)

τ2
− ρ2

ρ1
K1

∣∣ is uniformly bounded

by supy1(0)∈[0,M ]

∣∣W̄Tot(0)
τ2
− τ1y1(0)

τ2
− ρ2

ρ1
K1

∣∣. That is, the convergence is uniform
for any initial state in a compact set.

C a s e 2: W̄Tot(0)− w∗ < 0. Adapting the previous case, we first show that
if W̄Tot(0) − w∗ < 0 and y1(0) ∈ Π4, then the function x(t) remains for ever in
region Π4. To see this, by (3.21) we have

y1(t) =
W̄Tot(0)

w∗
K1 −

[
W̄Tot(0)−

w∗

K1
y1(0)

]
K1

w∗
exp{α2t}.

Observing that y1(0) 6 K1 in Π4, we derive the following inequality:

y1(t) 6
W̄Tot(0)

w∗
K1 +

(
1− W̄Tot(0)

w∗

)
K1 exp{α2t}.

Note that the term
(
1− W̄Tot(0)

w∗

)
is positive by the assumption W̄Tot(0)− w∗ < 0

and the inequality exp{α2t}61. Combining these three facts, we have y1(t)6K1.
Now, we show that if the process starts in region Π3 and W̄Tot(0)− w∗ < 0,

then there exists a finite time t∗∗ such that x(t) ∈ Π4 after that time. Again, here
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we prove that the equation y1(t∗) = K1 has a positive solution. Then, the result
follows by observing that y1(0) > K1 > ∆1W̄Tot(0), and in that case x(t) is an
increasing function. By (3.19), we have

y1(t) = −
τ2
τ1

(
W̄Tot(0)

τ2
− τ1y1(0)

τ2
− ρ2
ρ1
K1

)
exp{ξ22t}+

W̄Tot(0)− w∗

τ1
+K1

= −
(
W̄Tot(0)− w∗

τ1
+K1 − y1(0)

)
exp{ξ22t}+

W̄Tot(0)− w∗

τ1
+K1.

Setting y1(t) = K1, we obtain

(3.27)
W̄Tot(0)− w∗

τ1
=

(
W̄Tot(0)− w∗

τ1
+K1 − y1(0)

)
exp{ξ22t}.

To show that the previous equation has a positive solution, it is enough to prove
that

τ1
W̄Tot(0)− w∗

(
W̄Tot(0)− w∗

τ1
+K1 − y1(0)

)
> 1.

Recall that y1(0) > K1 and that W̄Tot(0)−w∗ < 0. We can now derive the previ-
ous inequality by observing that

τ1
W̄Tot(0)− w∗

(
W̄Tot(0)− w∗

τ1
+K1 −K1

)
> 1.

Analogously with the previous case, we note that if the total workload is equal to
the critical workload, (3.27) does not have a positive solution. This means that if
y1(0) ∈ Π3 and W̄Tot(0) − w∗ = 0, then the function x(t) remains in region Π3

for ever.
For the convergence to the invariant manifold, it follows that ∆2W̄Tot(0) =

ρ2
ρ1

W̄Tot(0)
w∗ K1 by (3.12). Moreover, (3.21) and (3.22) lead to

|x(t)−∆2W̄Tot(0)| 6
∣∣∣∣τ1τ2
(
W̄Tot(0)w

∗

w∗K1
− y1(0)

)∣∣∣∣ exp{α2t},

and recall that α2 < 0. The uniform convergence in a compact set for any initial
state follows for the same reason as in the previous case.

C a s e 3: W̄Tot(0) − w∗ = 0. In this case, the convergence follows from the
comments we made in the previous two cases. If W̄Tot(0)−w∗ = 0, then the func-
tion x(·) always stays in the region where y1(0) lies (see comments after (3.26) and
(3.27)). As we see, the function converges in regions Π3 and Π4.

This concludes the proof of Theorem 3.1, which will be applied to prove a
diffusion theorem for the queue length process in the next section.
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4. DIFFUSION APPROXIMATIONS

The main objective in this section is to show a state-space collapse (SSC)
property for the diffusion queue length process. This yields a diffusion limit theo-
rem for the diffusion-scaled process. To do it, we follow the strategy set up in [1].
Let us consider a family of single-server systems indexed by n ∈ N, where n tends
to infinity, with the same basic structure as that of the network described in Sec-
tion 2. To indicate the position in the sequence of networks, a superscript n will be
appended to the network parameters and processes. Diffusion (or central limit the-
orem) scaling is indicated by placing a hat over a process. Thus, the well-known
diffusion scaling is given by X̂n(·) = 1

nX
n(n2·). Let ρn =

∑2
i=1 ρ

n
i = (γn)Tβ.

We set γn = (I − P T )−1λn, λn = λ
(
1− θ

n

)
, µn ≡ µ, Pn ≡ P , and Kn

i = nKi,

where θ is a positive real number. Thus, we have ρn = 1− θ
n . It is clear that under

the critical loading assumption, λn → λ and n(1− ρn)→ θ as n→∞. These are
our heavy-traffic assumptions. Furthermore, we assume that Q̄n(0) = 1

nQ
n(0)→

Q̄(0), where Q̄(0) is a positive constant. The service allocation function for the
n-th model is given by

Rni (q) =

mini{qi, nKi}/
I∑
j=1

min{qj , nKj} if qi ̸= 0,

0 if qi = 0,

where we observe that R1
i (·) = Ri(·). Recall that R(·) is a Lipschitz-continuous

function on R2
+\{0} and note that the following scaling property holds: Rn(n·) =

R(·). In the sequel, we state the technical assumptions that allow us to apply the
functional central limit theorem and Bramson’s weak law estimates. We assume
that, for i = 1, 2,

uni (1)

n
→ 0 and

v
(1),n
ii (1)

n
→ 0,

in probability as n→∞. In addition, we assume that there exists a function η(·),
with zero limit at infinity, such that, for j > 1, i, l ∈ {1, 2} and k ∈ N,

E
(
uni (j)

2
1{uni (j)>a}

)
6 η(a) and E

(
v
(k),n
il (j)21{v(k),nil (j)>a}

)
6 η(a).

More details about these assumptions can be found in [1] and [17]. In the rest of this
section, we assume that the previous assumptions are satisfied without referring to
them again. The main result in this section is the following

THEOREM 4.1. Assume that the diffusion-scaled initial state converges in dis-
tribution as n→∞, i.e. Q̂n(0) d→ ∆ŴTot(0),where “ d→” denotes convergence in
distribution. Then, the diffusion-scaled stochastic process converges in distribution
as n→∞, i.e.

Q̂n(·) d→ ∆ŴTot(·),
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where ŴTot(t) is a one-dimensional Brownian motion with drift −θ and variance
σ2 =

∑2
i=1 λiσ

2
si + τ2i λic

2
ui , where σ2si denotes the variance of si(j), and cui de-

notes the coefficient of variation of ui(j).

The proof of this theorem is given at the end of this section. This theorem
can be applied to develop heavy-traffic approximations for the joint queue length
process, as they are both a piecewise linear function of a one-dimensional RBM,
of which the time-dependent distribution can be expressed in closed form (in terms
of the Gaussian cdf and pdf); cf. [2]. To see this, note that the functions ∆1 and ∆2

are invertible with inverses

∆−11 (w) =

{
ww∗/K1 if w < w∗,

τ1(w −K1) + w∗ if w > w∗,

∆−12 (w) =

{
ρ1ww

∗/(ρ2K1) if w < w∗,

∞ if w > w∗.

We know that ŴTot(t) is an RBM(−θ, σ2). Let Q̂(·) be the diffusion limit. We
have, for x, y > 0,

P
(
Q̂1(t) > x, Q̂2(t) > y

)
= P

(
∆1ŴTot(t) > x,∆2ŴTot(t) > y

)
= P

(
ŴTot(t) > ∆−11 (x), ŴTot(t) > ∆−12 (y)

)
= P

(
ŴTot(t) > z

)
,

where z = max{∆−11 (x),∆−12 (y)}. The last expression can be written in terms
of the Gaussian cdf and pdf; cf. [2]. Also, using a similar coupling argument as
in [20], it can be shown that one can interchange the steady-state and heavy-traffic
limits in this case. For space considerations we will leave this as detail to the reader.

The rest of this section is devoted to a proof of Theorem 4.1. It is organized as
follows.

1. We first prove a heavy-traffic limit theorem for the total workload process.
2. After that, we define a family of shifted fluid-scaled processes in Sec-

tion 4.2 and we show that they are stochastically bounded in Section 4.3.
3. In Section 4.4, we establish some technical auxiliary estimates and tight-

ness of these families. Moreover, we establish that limit points of these fluid-scaled
processes, which are called fluid limits, are in fact fluid model solutions as defined
in Section 3. The development in this section is very similar to those in Bramson
[1] and is therefore kept concise.

4. In Section 4.5, we establish a similar tightness property for a family of
shifted fluid-scaled workload processes.

5. The proof is then completed by showing a state-space collapse result in
Section 4.6.
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4.1. Convergence of the total workload.

LEMMA 4.1. Under the critical loading assumption, the diffusion-scaled total
workload, Ŵn

Tot(t) =
1
nŴ

n
Tot(n

2t), converges in distribution to an RBM(−θ, σ2).

P r o o f. By (2.11) for i, l = 1, 2 and i ̸= l, we know that the total service
requirement of the j-th external customer (including customers who are already in
queue i at time zero) who enters queue i is given by

si(j) = v
(1)
ii (j) +

∞∑
k=1

φ
(k)
ii (j)v

(k+1)
ii (j) + φ

(k)
il (j)v

(k+1)
il (j).

We define the following process:

(4.1) WG(t) :=
2∑
i=1

Qi(0)+Ei(t)∑
j=1

si(j)−
t∫
0

1{WG(s)>0}ds.

We recall that Ei(·) denotes the external arrivals at queue i, and, by construc-
tion of the model, {si(j)}∞j=1 is a sequence of positive i.i.d. random variables for
i = 1, 2. The process given in (4.1) represents the workload of a single queue with
input given by two independent renewal processes that have independent service
requirements of each other. The busy time of this system is

∫ t
0
1{WG(s)>0}ds =

T1(t) + T2(t), and it represents the busy time of server in layer 2. Note that the
busy time is zero if and only if both queues are empty. The diffusion-scaled pro-
cess (after subtracting and adding the means of the random quantities in (4.1)) is
given by

Ŵn
G(t) =

2∑
i=1

1

n

( n2(Q̄n
i (0)+Ē

n
i (t))∑

j=1

sni (j)− τin2
(
Q̄ni (0) + Ēni (t)

))
+ τi

(
Êni (t)− λni nt

)
+ τiQ̄

n
i (0) + τiλ

n
i nt− nt+ Ŷ n(t),

where Ŷ n(t)=
∫ t
0
1{Ŵn

G(s)=0}ds. By the time change theorem in [13] and the func-

tional central limit theorem (see also [2], Theorem 6.8), we have Ŵn
G(·)

d→ ŴG(·)
as n→∞. Furthermore, the limit can be described as

ŴG(t) =
2∑
i=1

τiQ̄i(0)− θt+
√
λ1σ2s1W1(t) +

√
λ2σ2s2W2(t)

+ τ1

√
λ1c2u1W3(t) + τ2

√
λ2c2u2W4(t) + Ŷ (t),

whereWi(t), 1 6 i 6 4, are independent one-dimensional standard Brownian mo-
tions, and Ŷ (t) can be increased only if ŴG(t) = 0. Thus, the process ŴG(t) satis-
fies a one-dimensional Skorokhod problem. That is, ŴG(t) is a reflected Brownian
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motion starting at point
∑2

i=1 τiQ̄i(0) with drift−θ and variance σ2 which is given
by σ2 =

∑2
i=1 λiσ

2
si + τ2i λic

2
ui , where σ2si denotes the variance of si(j), and cui

denotes the coefficient of variation of ui(j). The second moment of the random
variables si(j) is given by (2.13). In case of Poisson external arrivals, this result is
reduced to the well-known heavy-traffic limit (see, e.g., [7], Theorem 2.3).

Now, we shall prove that

(4.2) WTot(t) =WG(t), t > 0.

We do it by showing that we can change the label of how we count the service
requirements of the customers in the system. Counting the total service require-
ments of the external arrivals until time t is the same as counting the immediate
and remaining service requirements of the total arrivals in the system until time t.
Recall that si(j) = v

(1)
ii (j) + s′i(j) for i = 1, 2, where s′i(j) are the future service

requirements. If t = 0, then we have nothing to prove as Ei(0) = Ai(0) = 0. If
t > 0 and Φli

(
Sl
(
Tl(t)

))
= 0 for l, i ∈ {1, 2}, then (4.2) holds as all the depar-

tures until time t leave the system, and so s′i(j) = 0 for j = 1, . . . , Si
(
Ti(t)

)
and

Ei(t) = Ai(t).
For the general case, we first assume that all customers are routed only one

time until the time t. The right-hand side in (4.1) can be written as

2∑
i=1

Qi(0)+Ei(t)∑
j=1

v
(1)
ii (j) +

Qi(0)+Ei(t)∑
j=Si(µiTi(t))+1

s′i(j) +
Si(Ti(t))∑
j=1

s′i(j).(4.3)

In order to separate the customers who depart from node i (if they are routed or
leave the system), we define for i, l ∈ {1, 2} and i ̸= l the following set: Ai ={
j : 16j6Si

(
Ti(t)

)}
, which includes all the customers who depart from node i.

Customers can be routed at the same node, and we denote this set by Ai1 = {j ∈
Ai : φii(j) = 1}, or to the other node, and we denote this set by Ai2 = {j ∈ Ai :
φil(j) = 1}. Last, we define the set Ai3 = Ai \ (Ai1 ∪ Ai2), which represents all
customers who leave the system. If j ∈ Ai1, then there exist natural numbers kij
such that Si

(
Ti(t)

)
6 kij 6 Ai(t)− 1 and

s′i(j) = v
(1)
ii (kij + 1) + s′i(k

i
j + 1).

Similarly, if j ∈ Ai2, then for i ̸= l there exist hij such that Sl
(
Tl(t)

)
6 hij 6

Al(t)− 1 and

s′i(j) = v
(1)
ll (hij + 1) + s′l(h

i
j + 1).

Last, j ∈ Ai3 means that the j-th customer leaves the system after his first service,
and so s′i(j) = 0. The quantities kij and hij denote the number of customers in
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node i = 1, 2 (including that one in service) who the j-th customer meets after his
departure from node l = 1, 2. Therefore, (4.3) can be written as

2∑
i=1

Qi(0)+Ai(t)∑
j=1

v
(1)
ii (j) +

Qi(0)+Ai(t)∑
j=Si(Ti(t))+1

s′i(j).

Now, let ki0(j) be the number of routes at node i, for 1 6 j 6 Qi(0) +Ei(t), until
time t. Also, we define the number ki0 = maxj k

i
0(j), and the number of maxi-

mum routes for any external arrival in the system until time t, k0 = maxi=1,2{ki0}.
Observe that, for any t > 0, k0 ∈ N and it is finite because we assume Markov
routing. Take the partition [0, t] =

∪k0
m=0[tm, tm+1], where t0 = 0 and tk0+1 = t,

so that in each interval [tm, tm+1] any customer in the system can be routed only
one time and so that in the interval [tk0 , t] there is no routing. Now, we can write
the right-hand side of (4.1) as

2∑
i=1

Qi(0)+Ei(t)∑
j=1

v
(1)
ii (j) +

Qi(0)+Ei(t)∑
j=Si(Ti(t1))+1

s′i(j) +
Si(Ti(t1))∑
j=1

s′i(j).

Applying the previous idea where customers are routed only one time per interval,
we see that the above quantity can be written as

2∑
i=1

Qi(0)+Ei(t)+
2∑

l=1
Φli(Sl(Tl(t1)))∑

j=1

v
(1)
ii (j) +

Qi(0)+Ei(t)+
2∑

l=1
Φli(Sl(Tl(t1)))∑

j=Si(Ti(t1))+1

s′i(j).

Split again the last term of the previous quantity until time t2, and apply the previ-
ous idea when customers are routed only one time to obtain

2∑
i=1

Qi(0)+Ei(t)+
2∑

l=1
Φli(Sl(Tl(t2)))∑

j=1

v
(1)
ii (j) +

Qi(0)+Ei(t)+
2∑

l=1
Φli(Sl(Tl(t2)))∑

j=Si(Ti(t2))+1

s′i(j).

Adapting the previous steps until time tk0 , and recalling that the total arrival pro-
cess is given by (2.7), we derive (4.2). �

In the sequel, this result plays a key role. The next step is to define the so-called
shifted fluid-scaled processes and to show that they are stochastically bounded.

4.2. Shifted fluid-scaled processes. We introduce the shifted fluid scaling,
which is an extension of the classical fluid scaling. Let T > 0 and m 6 nT . We
define

Ān,mi (t) =
1

n

(
Ani (nm+ nt)−Ani (nm)

)
,
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and the analogous scaling for the processes T (·), YL2(·), and E(·). For the de-
parture process, the cumulative service time process, and the routing process we
have

S̄n,mi (t) =
1

n

(
Sni
(
nt+ Tni (nm)

)
− Sni

(
Tni (nm)

))
,

V̄ n,m
i (k) =

1

n

[
V n
i

(
nk + Sni

(
Tni (nm)

))
− Tni (nm)

]
,

Φ̄n,mli (k) =
1

n
Φnli

(
nk + Snl

(
Tnl (nm)

))
− 1

n
Φnli

(
Snl
(
Tnl (nm)

))
.

Last, the queue length process is scaled as follows: Q̄n,mi (t) = 1
nQ

n
i (nm + nt),

and analogously for the scaling of the immediate and total workload. The system
dynamics (2.5)–(2.10) under the shifted fluid scaling become

Q̄n,mi (t) = Q̄n,mi (0) + Ēn,mi (t)(4.4)

+
2∑
l=1

Φ̄n,mli

(
S̄n,ml

(
T̄n,ml (t)

))
− S̄n,mi

(
T̄n,mi (t)

)
,

(4.5) T̄n,mi (t) =
t∫
0

Rni
(
nQ̄n,m(s)

)
ds =

t∫
0

Ri
(
Q̄n,m(s)

)
ds,

(4.6) W̄n,m
i (t) = V̄ n,m

i

[
Q̄n,mi (0) + Ēn,mi (t)

+
2∑
l=1

Φ̄n,mli

(
S̄n,ml

(
T̄n,ml (t)

))]
− T̄n,mi (t),

(4.7)
2∑
i=1

T̄n,mi (t) + Ȳ n,m
L2

(t) = t,

Ȳ n,m
L2

(t) increases ⇒ W̄n,m
1 (t) + W̄n,m

2 (t) = 0, t > 0, i = 1, 2.

In the sequel, we shall be referring to shifted fluid scaling, and shifted fluid process
as shifted scaling, and shifted process, for simplicity. The main step of the SSC
property is to show that the shifted process can be approximated by a solution
of the fluid model. This is done in Section 4.4. We first need to prove that the
shifted workload and shifted queue length are bounded at zero, which we do in
the following section. Using these bounds and some properties of the cumulative
service time (2.6), we can apply the results of [1], Sections 4 and 5.
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4.3. Bounding the shifted processes. First, we find the relation between the
diffusion scaling and the shifted scaling. Although this relation is easily obtained
and is already known in the literature (e.g., [19]), we provide it here for com-
pleteness. Fix L > 1 and define the shifted fluid processes on [0, L]. The inter-
val [0, n2T ] can be covered by [nt] + 1 overlapping intervals as follows. For t ∈
[0, n2T ], there exist s ∈ [0, L] and m ∈ {0, 1, . . . , [nt]} such that

n2t = nm+ ns.

We can write the relation between the diffusion scaling and the shifted scaling as
follows. For s 6 L,

Q̄n,m(s) = Q̂n
(
nm+ ns

n2

)
,(4.8)

W̄n,m
Tot (s) = Ŵn

Tot

(
nm+ ns

n2

)
.(4.9)

By Lemma 4.1 and (4.9), it follows that for any ϵ > 0 there exists a constant
B1 > 0 such that

(4.10) lim inf
n→∞

P
(
max
m6nT

W̄n,m
Tot (0) 6 B1

)
> 1− ϵ.

We denote the event {ω ∈ Ω : maxm6nT W̄
n,m
Tot (0) 6 B1} by Gn1 (B1). Using now

(4.10), it can be shown that the shifted queue length process is stochastically
bounded at zero.

LEMMA 4.2. Let T > 0. For any ϵ > 0 there exists a constant B2 > 0 such
that

(4.11) lim inf
n→∞

P
(
max
m6nT

Q̄n,mi (0) 6 B2

)
> 1− ϵ, i = 1, 2.

We denote the event {ω ∈ Ω : maxm6nT Q̄
n,m
i (0) 6 B2} by Gn2 (B2).

P r o o f. We prove the result by deriving a contradiction, so suppose that
(4.11) does not hold. Thus, assume there exists at least one i such that Qn,mi (0)
is not stochastically bounded. In other words, there exists a δ > 0 such that, for
any B > 0,

(4.12) lim inf
n→∞

P
(
max
m6nT

Qni (nm) > Bn
)
> δ.

Suppose that mn is such that it optimizes the quantity maxm6nT Qni (nm). We
can choose in (4.10), ϵ = δ

3 and a (large enough) constant B1. Also, we choose a
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constant B such that B > 2
B1

βi
. By the definition of the total workload (2.14) and

(2.15), we have

max
m6nT

Wn
Tot(nm) >

Sn
i (T

n
i (nmn))+1∑
j=1

v
(1)
ii (j)− Tni (nmn)

+
Sn
i (T

n
i (nmn))+Qn

i (nmn)∑
j=Sn

i (T
n
i (nmn))+2

v
(1)
ii (j) >

Sn
i (T

n
i (nmn))+Qn

i (nmn)∑
j=Sn

i (T
n
i (nmn))+2

v
(1)
ii (j).

We know that v(1)ii (j) are i.i.d. with mean βi. Also, in the previous summation we
have j > Sni

(
Tni (nmn)

)
, which means that v(1)ii (j) are independent of the process

Sni
(
Tni (nmn)

)
. Define the following event:

(4.13) Gn =

{
ω ∈ Ω :

∣∣∣∣ 1

Bn

Sn
i (T

n
i (nmn))+Bn∑

j=Sn
i (T

n
i (nmn))+2

v
(1)
ii (j)− βi

∣∣∣∣ < βi
2

}
.

By the weak law of large numbers (which we can apply due to the indepen-
dence of the v(1)ii (j) and Sni

(
Tni (nmn)

)
), we have, for large n, P(Gn) > 1 − δ

3 .
In the sequel, we assume that ω ∈ Gn ∩ Gn1 (B1) ∩

(
Gn2 (B)

)c, and observe that
P
(
Gn ∩ Gn1 (B1) ∩

(
Gn2 (B)

)c) > δ
3 . Applying (4.12) and dividing by n, we derive

B1 > max
m6nT

W̄n,m
Tot (0) >

B

Bn

Sn
i (T

n
i (nmn))+Bn∑

j=Sn
i (T

n
i (nmn))+2

v
(1)
ii (j).

By (4.13) and the last inequality, we obtain for sufficiently large n the relation
B1 > B

(
βi − βi

2

)
> 2

B1

2 . This yields a contradiction. �

Having proved that the shifted processes are bounded, we can show that the
shifted processes can be approximated by a solution of the fluid model. This is
the topic of the next section, in which we use a very similar approach to that in
Bramson [1], Sections 4 and 5.

4.4. Uniform fluid approximation. By Proposition 5.1 in [1], we have, for any
ϵ > 0,

(4.14) P
(
max
m<nT

∥Ēn,m(·)− λn · ∥L > ϵ
)
6 ϵ.

Also, by Proposition 5.2 in [1] it is known that the shifted arrival process is almost
Lipschitz continuous, which means that, for some N1 > 0,

P
(

sup
t1,t2∈[0,L]

|Ēn,m(t2)− Ēn,m(t1)| > N1|t2 − t1|+ ϵ for some m < nT
)
6 ϵ.
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Furthermore, using the definition of the cumulative service time (2.6), the property∑2
i=1R

n
i (q) = 1, and the observation that Y n

L2
(·) and Tn(·) are increasing func-

tions in time, we conclude that the shifted process, Tn,m(·), and the shifted idle
time are Lipschitz continuous with constant equal to one.

PROPOSITION 4.1. Let ϵ > 0. Then, for an appropriate large n and for i =
1, 2, we have

(4.15) P
(
max
m<nT

∥∥S̄n,mi (
T̄n,mi (·)

)
− µiT̄n,mi (·)

∥∥
L
> ϵ
)
< ϵ,

(4.16) P
(
max
m<nT

∥∥∥ 2∑
l=1

Φ̄n,mli

(
S̄n,ml

(
T̄n,ml (·)

))
−

2∑
l=1

µlpliT̄
n,m
l (·)

∥∥∥
L
> ϵ
)
< ϵ,

(4.17) P
(

max
m<nT

∥∥∥∥V̄ n,m
i

(
Q̄n,mi (0) + Ēn,mi (·) +

2∑
l=1

Φ̄n,mli

(
S̄n,ml

(
T̄n,ml (·)

)))
− βi

(
Q̄n,mi (0) + (λni ·) +

2∑
l=1

pliT̄
n,m
l (·)

)∥∥∥∥
L

> ϵ

)
< ϵ.

P r o o f. It is shown in [1] that, for a renewal process S(·),

P
(

sup
m6nT

sup
t6L

∣∣∣∣ 1n(Sni ((nm+ nt)
)
− Sni (nm)

)
− µt

∣∣∣∣
L

> ϵ

)
< ϵ,

which is equivalent to (the process can start anywhere in the interval [0, n2T ])

(4.18) P
(

sup
u∈[0,n2T ]

sup
t6L

∣∣∣∣ 1n(Sni ((u+ nt)
)
− Sni (u)

)
− µit

∣∣∣∣ > ϵ

)
< ϵ.

Let t′ = T̄n,mi (t) = 1
n

(
Tni (nm + nt) − Tni (nm)

)
∈ [0, L] and u = Tni (nm) 6

n2T for m 6 nT . By (4.18) we obtain

P
(

sup
u∈[0,n2T ]

sup
t′6L

∣∣∣∣ 1n(Sni ((u+ nt′)
)
− Sni (u)

)
− µit′

∣∣∣∣ > ϵ

)
< ϵ

for each i = 1, 2. Then, (4.15) follows.
By the Lipschitz continuity of the departure process in Proposition 4.2 below,

which we can prove only using (4.15), we know that
∥∥Si(Ti(·))∥∥L 6 N2Ln. Using

Proposition 4.2 of [1], we derive

P
(

max
m<nT

∥∥∥ 2∑
l=1

Φ̄n,0li

(
S̄n,0l

(
T̄n,0l (·)

))
−

2∑
l=1

pliS̄
n,0
l

(
T̄n,0(·)

)∥∥∥
L
> N2Lϵ

)
<
ϵ

n
.
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Furthermore, using the conclusion of the proof of Proposition 5.19 in [1], we obtain

P
(

max
m<nT

∥∥∥ 2∑
l=1

Φ̄n,mli

(
S̄n,ml

(
T̄n,ml (·)

))
−

2∑
l=1

pliS̄
n,m
l

(
T̄n,m(·)

)∥∥∥
L
> N2Lϵ

)
<
ϵ

n
.

Applying (4.15) to the last inequality, we obtain (4.16).
To prove (4.17), we know by Lemma 4.2 that, for some B2 > 0, |Qn(0)| 6

B2n. Using (4.14), (4.17), and applying Proposition 4.2 of [1], we obtain the
result. �

In the following proposition, we show that all the shifted processes are almost
Lipschitz continuous.

PROPOSITION 4.2. Let X̄n,m(·) be any of the processes S̄n,m(·), Q̄n,m(·) and
W̄n,m(·). Then, for large n, for ϵ > 0 and some N > 0, we have
(4.19)

P
(

sup
t1,t2∈[0,L]

|X̄n,m(t2)− X̄n,m(t1)| > N |t2 − t1|+ ϵ for some m < nT
)
6 ϵ.

P r o o f. For the departure process and by using (4.15), we have for i = 1, 2
the relations∣∣S̄in,m(Tn,mi (t2)

)
− S̄in,m

(
T̄n,mi (t1)

)∣∣ 6 ∣∣S̄in,m(T̄n,mi (t2)
)
− µiT̄n,mi (t2)

∣∣
+
∣∣S̄in,m(T̄n,mi (t1)

)
− µiT̄n,mi (t1)

∣∣
+ |µiT̄n,mi (t2)− µiT̄n,mi (t1)|

6 N2|t2 − t1|+ 2ϵ,

where N2 = maxi µi. Using (4.14), (4.17), and the Lipschitz continuity of the
cumulative service time (2.6), T (·), it is easy to show that the shifted total arrival
process, Ān,m(·), is almost Lipschitz continuous with N3 = N1 + ∥P∥N2, where
N1 = maxi λi.

By combining the almost Lipschitz continuity for the shifted arrival and shifted
departure process, Ān,m(·), S̄n,m

(
T (·)

)
, the result for the shifted queue length

process, Q̄n,m(·), follows with the constant N4 = N3 +N2. Using the same idea
and (4.17), we obtain the same result for the shifted immediate workload process,
W̄n,m(·), with N5 =

N1
mini µi

+ ∥P∥. �

REMARK 4.1. Adapting the techniques in [1], we can replace ϵ in the propo-
sitions above by ϵ(n) such that ϵ(n)→ 0. Let Gni ⊆ Ω, 1 6 i 6 5, be the “good
events” such that the complements of inequalities (4.14)–(4.17) and (4.19) hold if
we replace ϵ by ϵ(n). Also, let Gn1 (B) and Gn2 (B) be as in (4.10) and (4.11) with
B = max{B1, B2}. Denote by Gn0 (B) the intersection of the previous events. Be-
cause ω ∈ Gn0 (B), we know that |X̄n,m(t2) − X̄n,m(t1)| 6 N |t2 − t1| + ϵ. Also,
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by Lemmas 4.1, 4.2, and by the definition of the shifted processes (4.4)–(4.7), we
have |X̄n,m(0)| 6 B for some positive constant B. In addition, if we replace the
bound in Inequality 4.6 of [1] by a general real number, we can again show that
the set of Lipschitz functions with this property is compact; see [16], Lemma 6.3.

By Remark 4.1, all the requirements in Section 4.1 of [1] hold. Thus, we can
find a Lipschitz-continuous function X̃(·) such that, for ϵ(n)→ 0,

(4.20) ∥X̄n,m(·, ω)− X̃(·)∥L 6 ϵ(n), ∀ ω ∈ Gn0 (B), ∀m 6 nT.

PROPOSITION 4.3. The function X̃(·) is a solution of the fluid model equa-
tions on [0, L].

P r o o f. We shall show that the function X̃(·) verifies the fluid model equa-
tions (3.2)–(3.6). To do this, let δ > 0. As ϵ(n) → 0, we can find a large n such
that ϵ(n) < δ. It is known by (4.20) that, for large n,

∥X̄n,m(·)− X̃(·)∥L < δ.

Thus, from the heavy-traffic assumption we conclude that |λn − λ| < δ. Using
the above inequalities, (4.14), Proposition 4.1, and the triangle inequality, it can
be proved in the same way as in [1], Proposition 6.2, that all the functions X̃(·),
except for T̃ (·), verify the fluid model equations. To prove that T̃ (·) satisfies (3.3),
we need to use the following two properties of the service allocation function:
(i) Rn(nq) = R(q) and (ii) R(·) is a Lipschitz-continuous function on R2

+\{0};
i.e., there exists a constant C such that for q1, q2 ∈ R2

+\{0}

|R(q2)−R(q1)| 6 C|q2 − q1|.

Now, using (4.5) and the above properties of the service allocation function, we
can show that T̃ (·) satisfies (3.3), and thus is a solution of the fluid model:

∣∣T̃ (t)− t∫
0

R
(
Q̃(s)

)
ds
∣∣ = ∣∣T̃ (t)− T̄n,m(t)+ t∫

0

R
(
Q̄n,m(s)

)
ds−

t∫
0

R
(
Q̃(s)

)
ds
∣∣

6 |T̃ (t)− T̄n,m(t)|+
t∫
0

∣∣R(Q̄n,m(s))−R(Q̃(s)
)∣∣ds

6 δ +
t∫
0

C|Q̄n,m(s)− Q̃(s)| 6 δ+
t∫
0

Cδ 6 δ+CLδ. �

4.5. The scaled shifted total workload process. In this section, we see that we
can approximate the scaled shifted total workload process by a solution of the fluid
model. We begin with a preliminary result.
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PROPOSITION 4.4. For appropriately large n ∈ N and ϵ > 0, we have

(4.21) P
(

max
m<nT

∥∥∥∥ 2∑
i=1

1

n

Bn,m
i (·)∑

j=Zn,m
i (·)

s′i(j)−
∞∑
k=1

βT (P T )kQ̄n,m(·)
∥∥∥∥
L

> ϵ

)
< ϵ,

where
Zn,mi (·) = nS̄n,mi

(
T̄n,mi (·)

)
+ Sni

(
Tni (nm)

)
+ 1,

Bn,m
i (·) = Qni (0) + nĀn,mi (·) +Ani (nm).

P r o o f. The random variables s′i(j) depend on n, but to keep the notation
simple we omit the index n. Note that (4.21) can be written as

P
(

max
m<nT

∥∥∥∥ 2∑
i=1

1

n

Bn,m
i (·)∑

j=Zn,m
i (·)

s′i(j)−
∞∑
k=1

βT p̄
(k)
i Q̄n,mi (·)

∥∥∥∥
L

> ϵ

)
< ϵ,

where βT p̄(k)i = β1p
(k)
i1 + β2p

(k)
i2 . We have

P
(

max
m<nT

∥∥∥∥ 2∑
i=1

1

n

Bn,m
i (·)∑

j=Zn,m
i (·)

s′i(j)−
∞∑
k=1

βT p̄
(k)
i Q̄n,mi (·)

∥∥∥∥
L

> ϵ

)

6
2∑
i=1

P
(

max
m<nT

∥∥∥∥ 1n
Bn,m

i (·)∑
j=Zn,m

i (·)
s′i(j)−

∞∑
k=1

βT p̄
(k)
i Q̄n,mi (·)

∥∥∥∥
L

>
ϵ

2

)
,

so it is enough to show that the last term is sufficiently small for i = 1, 2. First,
we shall prove it for m = 0. We know by Proposition 4.2 that the shifted queue
length process is Lipschitz continuous and that the shifted queue length process at
zero is stochastically bounded; i.e., for t 6 L, |Qni (t)| 6 (N4 + B2)Ln. By [1],
Proposition 4.2, we derive

P
(∥∥Qn

i (0)+A
n
i (·)∑

j=Sn
i (T

n
i (·))

s′i(j)−
∞∑
k=1

βT p̄
(k)
i Qni (·)

∥∥
N4Ln

>
ϵ(N4 +B2)Ln

2

)
6 ϵ

2(N4 +B2)Ln
,

which leads to

P
(∥∥∥∥ 1n

Bn,0
i (·)∑

j=Zn,0
i (·)

s′i(j)−
∞∑
k=1

βT p̄
(k)
i Q̄n,0i (·)

∥∥∥∥
L

>
ϵ(N4 +B2)L

2

)
6 ϵ

2(N4 +B2)n
,



Heavy-traffic approximations for a layered network 529

where Bn,0
i (·)− Zn,0i (·) = Q̄n,0i (·). Multipling the error bounds by the number of

processes [nT ] + 1 and choosing a suitable ϵ, we derive

P
(∥∥∥∥ 1n

Bn,m
i (·)∑

j=Zn,0
i (·)

s′i(j)−
∞∑
k=1

βT p̄
(k)
i Q̄n,mi (·)

∥∥∥∥
L

>
ϵ

2

)
6 ϵ

2
. �

Adapting Remark 4.1, we can replace ϵ in the proposition above by ϵ(n) such
that ϵ(n)→ 0 as n→∞. This will be done in the next result, where we combine
all technical estimates so far to construct a “good” event.

PROPOSITION 4.5. Let ϵ > 0 and Gn0 ⊆ Ω be as in Remark 4.1. Let Gn6 ⊆ Ω
be the event such that the complement of (4.21) holds if we replace ϵ by ϵ(n).
Define the event Gn(B) = Gn0 (B) ∩ Gn6 . Then

lim
n→∞

P
(
Gn(B)

)
> 1− ϵ.

P r o o f. Note that Gn(B) =
∩6
i=1 G

n
i ∩Gn1 (B)∩Gn2 (B).We denote by (Gi)c

the complement of the event Gi. For 1 6 i 6 6, it follows by construction that
P
(
(Gni )c

)
6 ϵ(n). Also, by (4.10) and (4.11) we can choose a constant B such

that, for i = 1, 2,

lim
n→∞

P
(
Gni (B)

)
> 1− ϵ

2
.

Combining the above inequalities, we obtain, as n→∞,

P
(
Gn(B)

)
= P

(( 6∪
i=1

(Gni )c ∪
(
Gn1 (B)

)c ∪ (Gn2 (B)
)c)c)

= 1− P
( 6∪
i=1

(Gni )c ∪
(
Gn1 (B)

)c ∪ (Gn2 (B)
)c)

> 1− 6ϵ(n)− ϵ→ 1− ϵ. �

In the sequel, we assume that ω ∈ Gn(B). In other words, Proposition 4.5
allows us to use a sample-path approach. As a final step towards proving the state-
space collapse property, we use this approach to show that there exists a fluid ap-
proximation for the total workload of the system.

PROPOSITION 4.6. For all ω ∈ Gn(B) there exists a solution of the fluid
model equations, W̃Tot(·), such that for m 6 nT

∥W̄n,m
Tot (·, ω)− W̃Tot(·)∥L 6 ϵ(n).

P r o o f. Take ϵ > 0 and let ω ∈ Gn(B) as defined in Proposition 4.5. Assume
that the functions Q̃(t) and W̃ (t) satisfy (4.20). Define the function

W̃Tot(t) = βT (I − P T )−1Q̃(t),
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which is a solution of the fluid model equations because so is Q̃(t). Omitting again
the index n in the quantity s′i(j), by the definition of the total workload, we obtain

W̄n,m
Tot (t) =

2∑
i=1

W̄n,m
i (t) +

2∑
i=1

1

n

Bn,m
i (t)∑

j=Zn,m
i (t)

s′i(j),

where the quantities Zn,mi (t) and Bn,m
i (t) are defined in Proposition 4.4. Using

the triangle inequality, we thus have

∥W̄n,m
Tot (·)− W̃Tot(·)∥L 6

∥∥∥∥ 2∑
i=1

1

n

Bi(·)∑
j=Zi(·)

s′i(j)−
∞∑
k=1

βT (P T )kQ̄n,m(·)
∥∥∥∥
L

+
∥∥ ∞∑
k=1

βT (P T )k
(
Q̄n,m(·)− Q̃(·)

)∥∥
L
+

2∑
i=1

∥W̄n,m
i (·)− W̃i(·)∥L.

By (4.20) and (4.21), ∥W̄n,m
Tot (·)− W̃Tot(·)∥L 6

(
2 + 1+maxi (τi − βi)

)
ϵ(n). �

4.6. State-space collapse. Now, we can state and prove the SSC property for
the diffusion queue length process.

THEOREM 4.2 (SSC). Assume that

(4.22) |Q̂n(0)−∆Ŵn
Tot(0)| → 0 in probability as n→∞.

Then, for any T > 0,

(4.23) ∥Q̂n(·)−∆Ŵn
Tot(·)∥T → 0 in probability as n→∞.

P r o o f. Take ϵ > 0 and let ω ∈ Gn(B) as defined in Proposition 4.5. By
Theorem 3.1, we know that there exists a constant L∗ such that, for t > L∗,

(4.24) |Q̃(t)−∆W̃Tot(t)| 6 ϵ.

Fix L > L∗ + 1. It is known that

[0, n2T ] ⊆ [0, nL∗]
[nT ]∪
m=0

[n(m+ L∗), n(m+ L)].

So, it suffices to show that

(4.25) max
m6nT

sup
t∈[L∗,L]

|Q̄n,m(t)−∆W̄n,m
Tot (t)| < ϵ

and

(4.26) sup
t∈[0,L∗]

|Q̄n,0(t)−∆W̄n,0
Tot(t)| < ϵ.
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Then, by using (4.8) and (4.9), we derive (4.23). To prove (4.25), we know that by
(4.20) and Proposition 4.6, for t 6 L,

(4.27) |Q̄n,m(t)− Q̃(t)| < ϵ

and
(4.28) |W̄n,m

Tot (t)− W̃Tot(t)| < ϵ.

Recall that the lifting map is Lipschitz continuous with constant C1. Combining
this with (4.24), (4.27), and (4.28), we get (4.25).

To prove (4.26), we infer by (4.20) that, for t 6 L,

|Q̄n,0(t)− Q̃(t)| < ϵ and |W̄n,0
Tot(t)− W̃Tot(t)| < ϵ.

Also, by the assumption (4.22) we obtain |Q̄n,0(0)−∆W̄n,0
Tot(0)| < ϵ. By the last

three inequalities and Proposition 3.2, we can apply Lemma 6.1 of [1] and derive
|Q̃(t) − ∆W̃Tot(t)| < ϵ for 0 6 t 6 L∗. In a similar way as before, we get the
inequality (4.26). �

Now, we are ready to prove Theorem 4.1, which is a result of Lemma 4.1,
Theorem 4.2, and the continuous mapping theorem.

P r o o f o f T h e o r e m 4.1. By Lemma 4.1, we have Ŵn(·) d→ ŴTot(·).
Also, the lifting map ∆ is continuous. Applying the continuous mapping theorem
(Theorem 1.2 in [5]), we have Ŵn(·) d→ ∆ŴTot(·). Now, the result follows by our
Theorem 4.2 and Lemma 1.3 in [5]. �
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