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1. A BIOGRAPHICAL SKETCH

Czesław Ryll–Nardzewski, commonly and affectionately referred to as CRN
during his time in Wrocław (we will preserve this moniker in this article), was
born on October 7, 1926, in Wilno, then in Polish Lithuania, and died on Septem-
ber 18, 2015, in Wrocław, Poland, the city where he spent almost all of the last
65 years of his life. In 1948 he graduated from the Marie Curie-Skłodowska Uni-
versity in Lublin, and in 1949 defended his PhD dissertation Distribution Theory
and B0-Spaces written under the supervision of Mieczysław Biernacki. Shortly
thereafter he took a position at the University and Politechnic of Wrocław. When
the two schools separated in 1951, he settled at the University of Wrocław where,
following a brief stint at Warsaw University, he was promoted to full professorship
in 1964. In 1976 he moved across the street to the Wrocław University of Tech-
nology from which he retired in 2005. Since 1950 he has also held a secondary
position at the Mathematical Institute of the Polish Academy of Sciences; he was
first elected to membership of the Academy in 1967. Among his many activities in
the mathematical community we would like to mention his service on the editorial
boards of Studia Mathematica and Colloquium Mathematicum, and his significant
contribution as a co-founding editor of Probability and Mathematical Statistics. He
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also served a term (1964–1966) as Dean of the Fac-
ulty of Mathematics, Physics and Chemistry at the
University of Wrocław.

One of the most universal and versatile
mathematicians in postwar Poland, he was leg-
endary for his original insights and elegance of
his ideas, proofs, and discoveries. His research
ranged over many fields of mathematics, from
model theory, measure theory, probability, topology,
to functional and harmonic analysis, and foun-
dations of mathematics. In this article we re-
view only his work on probability theory including
topics in point processes, de Finetti sequences,
random functional series and ergodic theorems.
These superb contributions introduced novel ideas
and techniques that have stimulated new devel-

Czesław Ryll-Nardzewski in the 1970s.

opments. A list of selected CRN’s papers on probability theory is enclosed in Ref-
erences. It is only a part of his full set of publications, many of which constitute
outstanding and often pivotal contributions to different areas of mathematics.

In Wrocław, in the 1950s, it was Hugo Steinhaus’ and, partly, Edward Mar-
czewski’s influences that attracted CRN to probabilistic topics. The years from
1951 to 1953 were truly anni mirabiles for the young mathematician. Volume 12
(1951) of Studia Mathematica contains the following eight papers by CRN and his
coauthors :

• Sur les produit de composition (with J. Mikusiński),
• On the ergodic theorems. I (Generalized ergodic theorems),
• On the ergodic theorems. II (Ergodic theory of continued fractions),
• Sur les fonctions indépendantes. IX (Séries des fonctions positives) (with

H. Steinhaus),
• Sur les suites et les fonctions également réparties,
• Sur les séries de Taylor (with H. Steinhaus),
• Sur l’opérateur de translation (with J. Mikusiński),
• Certaines théorèmes des moments.

And this feat was then continued in the next volume, 13 (1953), with the ap-
pearance of another series of seven articles (the details are listed in the bibliogra-
phy, see [1]–[15]),

• D. Blackwell’s conjecture on power series with random coefficients,
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• Sur la convergence des séries de puissances de l’opérateur différentiel,
• Sur les séries de puissances dans le calcul opératoire,
• A theorem on bounded moments (with J. Mikusiński),
• Un théorème sur le produit de composition des fonctions de plusieurs vari-

ables (with J. Mikusiński),
• Remarks on the Poisson stochastic process. I (with K. Florek and E. Mar-

czewski),
• Théorèmes abstraits de Kronecker et les fonctions presque périodiques (with

S. Hartman).
In what follows we describe the main contributions of Czesław Ryll-Nardzew-

ski to probability theory and related fields, and discuss their influence on the work
of other mathematicians.

2. POINT PROCESSES AND RANDOM MEASURES

2.1. Poisson processes. Let us begin by recalling what is currently meant by a
Poisson process on (E, E), where (like in the book by Daley and Vere-Jones [34],
p. 34) E is a complete separable metric space, and E the Borel σ-field generated
by open balls of E. Denote by N the suitably topologized space of boundedly
finite counting measures, that is, measures taking values in the set of nonnegative
integers complemented by +∞, which take finite values on bounded sets.

DEFINITION. A measurable mapping N : (Ω,F , IP) →
(
N ,B(N )

)
is said

to be a point process. A point process is said to be a Poisson point process with
boundedly finite parameter measure m if

(PP1) for any family of disjoint bounded sets, Bj ∈ E (j = 1, . . . ,m), the
random variables N(B1), . . . , N(Bm) are independent, and

(PP2) for every B ∈ E , N(B) is a Poisson random variable with mean m(B).
The term “point processes” appeared for the first time in the 1940s, when

William Feller used it in a 1940 paper, and Ove Lundberg, and Conny Palm, em-
ployed it in their 1940, and 1943, respectively, PhD dissertations. For Palm, who
wrote in German, the term was “Punktprozesse”. For simple point processes, con-
dition (PP2) alone defines a Poisson process.

In the 1950s, in Wrocław, it was Edward Marczewski (see [15]), in collabo-
ration with Kazimierz Florek and CRN, who initiated a thorough study of Poisson
processes. In their work the space E = [0,∞), and the Poisson process {N(t)}
was an integer-valued, right-continuous, and non-decreasing stochastic process
with independent and stationary increments. Today, such a process is often called
the counting process, and the increments N(t + s) − N(t) are interpreted as a
number of random points in the interval (t, t + s]. In another paper from that pe-
riod Marczewski (see [52]), starting with the concept of the counting processN(t),
was able to extend the notion to the number of points N(B) in a Borel set B (see
also Cramér [33]).
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Then, in a pioneering 1954 Studia Mathematica paper, [17], Ryll-Nardzewski
introduced the notion of a non-homogeneous Poisson point process in the form
that is commonly used today. He considered a fixed Borel subset E of a finite-
dimensional Euclidean space and a countable field of its Borel subsets E0 generat-
ing the σ-field E of Borel subsets of E. Then, the probability space Ω was taken to
be the space of finite, real-valued set functions on E0 which are σ-additive, with a
probability measure IP defined on a σ-field of subsets of Ω. His assumptions were
as follows:
(1) E0 ∋ B 7→ ω(B) is IP-measurable, and
(2) ω(B1), . . . , ω(Bk) are independent, whenever Bj are disjoint sets belonging

to E0.
The paper called a point x0 ∈ E singular if

IP
(
ω({x0}) ̸= 0

)
> 0,

and defined what today is called the intensity measure, m(B) =
∫
ω(B) dIP. The

key assumption was that the point process is simple, that is, IP(Ω1) = 1, with
Ω1 ⊂ Ω consisting only of purely atomic set functions such that ω(x0) = 1 for
every atom x0. The main result was the following

THEOREM. Suppose that m is a finite measure on E . If x0 ∈ E is an atom of
m (or, in other words, if x0 is singular), then ω({x0}) assumes the value 1, or 0,
with probabilitym({x0}), or 1−m({x0}), respectively. IfB contains no singular
points, then ω(B) has the Poisson distribution

(2.1) IP
(
ω(B) = k

)
=
m(B)k

k!
e−m(B).

The remainder of the paper extended the theorem to the case when m is σ-
finite.

In his 1954 paper, [18], continuing the series of papers on Poisson processes,
CRN defined the point process by starting with a random countable set X of real
numbers, defined by a sequence {Xj} of random variables. Then, for each interval
I ⊂ IR he introduced the random variable

N(I) = the number of indices j such that Xj ∈ I,

and made the following assumptions:
(i) IP(Xj ̸= Xk) = 1 for j ̸= k,
(ii) IP(limj |Xj | =∞) = 1, and
(iii) IP(Xj = a) = 0 for every j, and real a.

If, for any disjoint intervals, I1, . . . , Ik, random variables N(I1), . . . , N(Ik) are
statistically independent, then it follows from an earlier CRN’s paper, [17], that the
distribution IP

(
N(I) = k

)
is Poissonian, that is, for some σ-finite measure m on

Probability and Mathematical Statistics 37, z. 1, 2017
© for this edition by CNS



Ryll-Nardzewski’s contributions 5

the line, equation (2.1) is satisfied. In [18], the special case of the homogeneous
(stationary) processes, with m(I) = λ|I|, was considered. It is interesting to note
that in the above paper CRN was probably the first who discovered what Kingman
[47] later called a characterization of Poisson processes by Bernoulli processes:

LEMMA. For a given interval I ⊂ IR, the conditional probability distribution,
given N(I) = k, of the set of k points of X belonging to I is the same as the
uniform distribution of k independent points belonging to I .

The paper also introduced the following transform,

ϕ(f) = IE
∏
j

(
1 + f(Xj)

)
,

for a complex-valued function f of a real variable such that
∫∞
−∞ |f(t)| dt < ∞.

The transform could be interpreted as a “characteristic functional”. Under the as-
sumption that X is a homogeneous Poisson process, employing the above Lemma,
he was able to prove that this characteristic functional is of the form

ϕ(f) = exp
(
λ
∞∫
−∞

f(t) dt
)
.

This result should be compared with more general theorems on probability gen-
erating functionals defined, for suitable test functions h (see [34], p. 15), by the
expression IE

∏
j h(xj), or results on the Laplace functional contained in Olav

Kallenberg’s book on random measures (see [42]).
Having established the tool described in the above Lemma, CRN was ready to

prove the main theorem of the paper:

THEOREM. If {Xj} is a homogeneous Poisson process, and {Yj} is an inde-
pendent sequence of exchangeable random variables, then the process with points
{Xj + Yj} is again a homogeneous Poisson process, with the same parameter λ
as {Xj}.

Recall that a sequence {Yi} of random variables is said to be exchangeable
(in the sense of de Finetti) if, for any k and any permutation i1, i2, . . . , ik of the
indices 1, 2, . . . , k, the joint distribution of Yi1 , Yi2 , . . . , Yik is independent of the
permutation. We will return to this notion in Section 5.

2.2. A new approach to point processes. In their 2003 monograph on point
processes, [34], Daley and Vere-Jones wrote that Ryll-Nardzewski’s 1961 Berkeley
Symposium contribution on processes of calls, [20], set out fundamental properties
of point processes, and provided a new and more general approach to the so-called
Palm probabilities. In the introduction to the Berkeley paper Ryll-Nardzewski
wrote: “The theory of processes of calls is highly developed. In this paper I am
going to consider some questions which, to my mind, have not yet been analyzed
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sufficiently from the measure theoretic point of view.” Then he cited the work of
two of his predecessors in the field: C. Palm and A. Ya. Khinchin. In particular,
for simple stationary point processes CRN gives a relationship between two prob-
ability measures: stationary and Palm. A particular case appeared earlier, known
as the Palm–Khinchin equation, but it was a relationship between two functions
(see [44]). In the case of renewal theory, the formula illuminates the so-called
Feller’s waiting time paradox (see [37], p. 12).

The paper clarified and completed his earlier ideas on point processes re-
viewed in the previous subsection. Here, Ω was the class of all countable subsets
of the real line, IR, which have a finite intersection with each bounded interval. For
each ω ∈ Ω, he defined

N(ω,B) := card(ω ∩B),

and selected as the class of measurable subsets F the σ-field generated by all the
functions N(·, B), where B is a Borel set. He observed that each N can also be
treated as a purely atomic measure, finite for bounded sets. This established the
modern approach to point processes, where by a point process one means a mea-
surable mapping to the space of atomic measures N . The next important remark
was that (Ω,F) can be one-to-one mapped to the unit interval I = [0, 1] and the
class of all Borel subsets of I , which made it possible to avoid the difficulties re-
lated to regular versions of conditional probabilities.

One of the fundamental questions in the theory of point processes of that pe-
riod was how to define the conditional probability of a point process under the
condition of zero probability. Ryll-Nardzewski’s approach to define what is today
called Palm distributions was as follows: Assume that, for a bounded B, the mean
measure satisfies the conditionm(B) = IEN(B) <∞, and for each eventA ∈ F ,
the integral ∫

A

N(ω,B) IP(dω),

treated as a function of the setB, is absolutely continuous with respect tom. Then,
by the Radon–Nikodym theorem, we can write

(2.2)
∫
A

N(ω,B) IP(dω) =
∫
B

Π(A|t)m(dt),

where Π(A|t) is an m-measurable function of t.
For each fixed A, the Radon–Nikodym derivative Π(A|t) is unique m-a.e.,

and we can always assume that it is a true probability measure over all sets A ∈ F .
The formula (2.2) can be generalized to the following equation,

(2.3)
∫
f(ω)N(ω,B) IP(dω) =

∫
B

m(dt)
∫
f(ω)Π(dω|t)

for functions f which are IP-integrable. The above arguments remain valid for an
arbitrary complete separable metric spaceE, and they became a standard technique
to define such conditional distributions for nonstationary point processes.
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For point processes on the real line, stationarity becomes an important issue.
Let us recall that a point process is said to be stationary if, for all t and A, we
have IP(A) = IP(At), where we define the shift by the formulas: ωt = ω + t, and
{ω ∈ At} = {ω−t ∈ A}. Under the assumption IP

(
N(IR) = 0

)
= 0, we obtain

m(dt) = λ dt, where λ is called the intensity of the point process. The following
CRN’s theorem established the existence of Palm distributions for such processes.

THEOREM. There exists one, and only one probability measure IPo defined
on (Ω,F), for which the measure,

Π(B|t) = IPo(B−t),

depending on parameter t, satisfies the condition (2.2) for all B and A.

In this situation, (2.3) is a special form of the so-called Campbell–Mecke equa-
tion,1 ∫

f(ω)N(ω,B) IP(dω) = λ
∫
IPo(dω)

∫
B

f(ωt) dt.

An important observation is that IPo(Ω0) = 1 for Ω0 = {ω : 0 ∈ ω}. Then one
can define random variables ηj , j ∈ ZZ, on (Ω0,Ω0 ∩ F , IPo) as distances between
points. Suppose that η0 is the distance from zero to the nearest point to the right.
CRN’s major result is given in the following theorem.

THEOREM. Under the above assumption we have
(i) ηj > 0,

(ii) IEoηj = λ−1,

(iii) {ηj} form a stationary sequence.
Conversely, each sequence of random variables {ηj} satisfying (i)–(iii) can be
obtained in this way. Moreover, the correspondence between IP and IPo is one-to-
one, and it is given by the equation∫

f(ω) IP(dω) = λ
∫
Ω0

IPo(ω)
η0∫
0

f(ω−t) dt.

2.3. The oldest individual and random measures on Boolean algebras. The
above fundamental work of Ryll-Nardzewski influenced the next generation of
probabilists. Kingman [46] writes: “The advantage of working directly in terms
of random measures becomes more obvious when the space involved is more com-
plicated than the real line. For example, a point process in several dimensions
. . . would be difficult to work with in terms of the analogue of X(t) [the counting

1See formula (12.1.11) in [55], and also compare with [28], where it is called the Campbell–
Mathes formula.
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process], but it seems easy and natural to consider a random measure Φ such that
Φ(B) is the number of points of the process in the set B.” Such an approach is im-
plicit in the work of Ryll-Nardzewski [20]2 on random measures, and Kallenberg
[42] gives ample credit to CRN’s influence on the theory.

CRN’s work on random measures also had a critical influence on the next
generation working in the area. Here, we shall give just two examples from our
own work. In 1970, Domokos Szász and Wojbor A. Woyczyński [57] proved the
following result:

THEOREM. If B is a Boolean σ-algebra, N denotes the space of nonnega-
tive integer-valued random variables, and X : B → N is a random measure with
independent values on disjoint elements, then, for every b ∈ B, with probability
one,

X(b) =
∑
ai¬b

X(ai) +
∞∑
m=1

mX(m)(b),

where X(m),m = 1, 2, . . . , are Poissonian random measures on B. Moreover, all
random variables X(ai) (atoms) and mappings X(m) are mutually independent.

This result was also motivated by the work of Khinchin [45], Rényi [54], and
Prékopa [53], but the proof technique was directly influenced by CRN’s work. The
authors thanked CRN personally for helping to improve the paper; as a member of
the Polish Academy of Sciences, he also submitted it to the Academy Bulletin.

And, in 1987, Tomasz Rolski published the paper [27] (coauthored with CRN)
which answered the intriguing question about probability of the death of the oldest
individual in a population. The problem was modeled by a stationary Poisson pro-
cess with intensity λ on IR which represented the birth instants. To all the points
were attached the life times which formed a sequence of independent, identically
distributed nonnegative random variables with distribution G, and independent of
the Poisson process. Calling the oldest individual at time t the senior, and denoting
its age by Y (t), the paper has shown that the probability of death of the oldest
individual is

p =
∞∫
0

e
−λ
∞∫
t

(1−G(u) du)

dG(t).

The paper also studied the senior process Y (t), and the proofs employed the con-
cept of a non-homogeneous Poisson process on IR× IR+.

2Although [20] only considered point processes defined on the real line, the setting was obvi-
ously applicable to the more general case of multidimensional point processes.
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3. RANDOM SERIES

3.1. Random power series and the natural boundary. CRN has contributed
a number of problems to the New Scottish Book (see [29]) that aroused interest
in the international mathematical community. Here, a good example (published in
Colloquium Mathematicum) is

PROBLEM 194 [July 2, 1952, Czesław Ryll-Nardzewski (Wrocław)]. If the co-
efficients of the expansion of a complex function f(x) =

∑∞
n=−∞ ane

int satisfy the
condition

∑∞
n=−∞ |an| <∞, is it true that |f(x)| has the absolutely convergent

Fourier series?
The answer turns out to be “No”, and the result was proven by a French math-

ematician Jean-Pierre Kahane in [40]. The paper launched Kahane’s distinguished
career in the theory of random functional series that culminated in publication of
his celebrated monograph [41].

The idea of studying random series of functions goes back to the 1896 Émile
Borel’s paper [31], but the first significant step in the theory was made by Hugo
Steinhaus who in 1930, in [56], proved the following result:

THEOREM. If {rn} is a sequence of positive numbers satisfying the condition

0 < lim sup r1/nn <∞,

and ωn are independent random variables uniformly distributed on [0, 1], then the
function

F (z) =
∞∑
n=0

rne
2πiωnzn

has, with probability one, its circle of convergence as a natural boundary.

Recall that if a power series has the radius of convergence r, and defines an
analytic function f inside the disc of that radius, then a point on the circle of
convergence for which there is a neighborhood on which f has an analytic exten-
sion is called regular, otherwise it is called singular. The circle is called a natural
boundary (of analyticity) if all its points are singular. A 1932 paper by Paley and
Zygmund extended Steinhaus’ result to random series of the form

F (z) =
∞∑
n=0

±rnzn,

where ± form the Rademacher sequence.
In 1947, in an oral communication to Hugo Steinhaus, David Blackwell con-

jectured that a random series
∞∑
n=0

Xnz
n,
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with independent coefficients Xn, can either have the circle of convergence as a
natural boundary, or one can add a deterministic Taylor series to it so that the
resulting random Taylor series has a strictly larger circle of convergence which is
its natural boundary. This is the case in the simple example of the random series

F (z) =
∞∑
n=0

(2n ± 1)zn,

which has the radius of convergence equal to 1/2. But, when one subtracts the
deterministic Taylor series

∑∞
n=0 2

nzn from F (z), the remaining power series,
with random independent symmetric Bernoulli coefficients ±1, has the radius of
convergence equal to one in view of the classical Kolmogorov’s inequality, see
[50]. In the 1953 paper, [10], CRN proved that Blackwell’s guess was correct.
More precisely, the Ryll-Nardzewski theorem (widely quoted and used in many
papers and monographs, e.g., Kahane [41]) can be stated as follows:

THEOREM. Given rF > 0, either |z| = rF is a.s. a natural boundary for
F (z) =

∑∞
n=0Xnz

n, or there exists a deterministic function f(z) =
∑∞

n=0 anz
n

such that |z| = rF−f > rF is a.s. a natural boundary for F (z)− f(z).
The ingenious method of proof introduced by CRN was then used to demon-

strate several other results in the area including the analogous result for random
Dirichlet series

∞∑
n=0

Xne
−λns,

where λ0 > λ1 > . . . > 0, Xn are independent complex-valued random variables,
and s is complex, and to prove the Cartan–Thullen theorem stating that a poly-
nomially convex open set is a domain of holomorphy. Recall that an open set H
in Cm is called polynomially convex if, given any point (a1, . . . , am) in the exte-
rior of H , there exists a polynomial P (z1, . . . , zm) such that |P | < 1 on H , and
|P (a1, . . . , am)| > 1 (see, e.g., [41], p. 37).

3.2. Convergence of vector random series in infinite-dimensional spaces. In
the middle of 1970s, in a series of papers [23], [25], [24] (see also the Appendix
in [50], which contains a systematic exposition of all the results described in this
subsection) CRN and his collaborators have returned to the problems involving
random series, but this time in the context of random variables with values in
infinite-dimensional spaces, such as Banach spaces. The results are summarized
below.

Consider a series
∑∞

k=1Xk of random variables X1, X2, . . . , defined on a
probability space (Ω,F , P ), and with values in a Banach space F. The following
facts are well known and elementary:

PROPOSITION. If
∑
Xk is considered as a series in a complete metric linear

space E (say, a subspace of L0(Ω,F , P ;F)), then the following conditions are
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equivalent:
(i) the series

∑
Xk converges unconditionally, i.e., the series converges in

E after arbitrary permutation of its terms;
(ii) all the series

∑
Xki of subsequencesXk1 , Xk2 , . . . (k1 < k2 < . . .) con-

verge in E;

(iii) for any sequence of numbers ε1, ε2, . . . = ±1, the series
∑
εkXk con-

verges in E.

If E is a Banach space (say, of random variables with values in F, e.g., E =
Lp(F), p  1), then, additionally, (i), (ii) and (iii) are equivalent to the condition

(iv) for any bounded sequence λ1, λ2, . . . ∈ IR, the series
∑
λkXk converges

in E.

Although, for a general metric linear space E, (i) does not necessarily imply
(iv), in the special case E = L0(Ω,F , P ;F) = L0(F) of the space of all random
variables with values in a Banach space F, equipped with convergence in proba-
bility, we still have the equivalence (i)⇔ (ii)⇔ (iii)⇔ (iv) which is implied by
the following

THEOREM. Let (Xk) be a sequence of elements of L0(F), where F is a Ba-
nach space. Then the series

∑
Xk converges unconditionally in L0(E) if, and

only if, for each bounded sequence λ1, λ2, . . . ∈ IR, the series
∑
λkXk converges

in L0(F).
The proof of the above theorem depends crucially on the following elegant

lemma, with striking universal constants, concerning generalized Bernoulli random
variables.

LEMMA. Let λ = (λ1, λ2, . . .) be a sequence of real numbers such that |λk|
¬ 1, and let ϖλ be a generalized Bernoulli probability distribution on {−1, 1}IN
such that random variables {−1, 1}IN ∋ (εk) 7→ εj = ±1, j = 1, 2, . . . , are inde-
pendent and such that

∫
{−1,1}IN εjdϖλ = λj . Then, for any sequence x1, x2, . . . of

elements of a Banach space F and for any n ∈ N ,

ϖ

{
(εk) :

∥∥ n∑
k=1

εkxk
∥∥  1

8

∥∥ n∑
k=1

λkxk
∥∥}  1

8
,

where ϖ = 1
2(ϖ0 +ϖλ).

Notice that the last inequality implies that, for each c > 0,{
c :

1

c
max
εk=±1

P
{
ω :
∥∥ n∑
k=1

εkXk(ω)
∥∥ > c

}
¬ 1

}
⊂
{
1

8
c :

1

c
P
{
ω :
∥∥ n∑
k=1

λkXk(ω)
∥∥ > c

}
¬ 1

}
,

Probability and Mathematical Statistics 37, z. 1, 2017
© for this edition by CNS



12 T. Rolski and W. A. Woyczyński

and that the above inclusion, and the definition of the quasi-norm

(3.1) ∥X∥• := min
{
c : c−1P{ω : ∥X(ω)∥ > c} ¬ 1

}
,

on L0(Ω,F , P ;F), give us also the following surprising quantitative result:

THEOREM. Let X1, X2, . . . ∈ L0(F) and let λ1, λ2, . . . ∈ IR be such that
|λk| ¬ 1 for k = 1, 2, . . . Then, for each n ∈ IN,

∥∥ n∑
k=1

λkXk

∥∥
• ¬ 8 max

εk=±1

∥∥ n∑
k=1

εkXk

∥∥
•.

The problem of almost sure convergence in the above setting has also been
studied in [23]. We shall say that the series of random variables

∑∞
k=1Xk con-

verges unconditionally a.s. if each permutation of (Xk) gives rise to an a.s. con-
vergent series.

For such a (non-metric!!!) convergence, the situation is quite different than the
one described at the beginning of this subsection. First of all, it turns out that the
a.s. convergence of all the series

∑∞
k=1 εkXk, where εk = ±1 for k = 1, 2, . . . ,

is not sufficient for the unconditional a.s. convergence of the series
∑
Xk (even

for real random variables Xk; see comments below). However, we still have the
following

THEOREM. If (Xk) ⊂ L0(Ω,F , P ;F) and if the series
∑
Xk(ω) converges

unconditionally a.s., then, for each bounded sequence (λk) ⊂ IR, the series∑
λkXk(ω) converges unconditionally a.s.

The proof follows directly from the following propositions and lemma. The
first one can be labeled as a kind of the ‘uniformity-of-the-a.s.-divergence’ result.

PROPOSITION. If the series
∑
Xk(ω) unconditionally converges a.s., then,

for each sequence ε1, ε2, . . . = ±1, the series
∑
εkXk(ω) converges uncondition-

ally a.s.

PROPOSITION. If the series
∑
εkXk(ω) converges a.s. for each ε1, ε2, . . .

= ±1, then the series
∑
λkXk(ω) converges a.s. for each bounded sequence

λ1, λ2, . . . ∈ IR.

LEMMA. Let λ1, λ2, . . . ∈ IR be a sequence such that |λk| ¬ 1 for k =
1, 2, . . . , and let x1, x2, . . . be a sequence of elements of a Banach space F. Then

ϖ

{
(εi) : lim

n→∞
sup
n¬p¬q

∥∥ q∑
k=p

εkxk
∥∥  1

8
lim
n→∞

sup
n¬p¬q

∥∥ q∑
k=p

λkxk
∥∥}  1

8
,

with ϖ as defined above.
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The above results have been employed in a variety of applications. As an ex-
ample we cite [39] where the authors used what they call the Ryll-Nardzewski–
Woyczyński theorem to establish the uniform weak law for tail series of weighted
sums of random elements in Banach spaces.

4. ERGODIC THEORY

Ryll-Nardzewski’s discoveries of ergodic behavior in different contexts have
been widely used and included in the canon of probability theory for a long time. In
Chapter IX of his 1955 celebrated monograph [51] Michel Loève extensively used
CRN’s, and his collaborators’ results contained in [2], [3], and [9]. And Patrick
Billingsley in his 1965 book on ergodic theory and information [30] provides the
detailed exposition of CRN’s ergodic theorem for continued fractions. Also, in
his often used probability textbook [32] (p. 128), Leo Breiman writes: “A good
development of point processes and proofs of more general versions of [ergodic
theorem for point processes] and the ergodic property of the recurrence times is
in Ryll-Nardzewski [20].” A more recent book by Richard Durrett [36] includes
CRN’s ergodic theorems for continued fractions, and Ulrich Krengel’s compre-
hensive monograph [49] on ergodic theorems also contains a coverage of CRN’s
work in the area. Throughout the remainder of the section we will briefly summa-
rize CRN’s work on ergodic theory contained in [2], [3].

Consider a set X with a σ-finite measure µ defined on a σ-fieldM of subsets
of X . By φ : X → X we will denote a transformation such that φ−1E ∈ M for
E ∈M, and µ(φ−1E) = 0 if µ(E) = 0.

The classical individual and mean ergodic theorems of Birkhoff and von Neu-
mann state that if φ is measure preserving (that is, µ(φ−1E) = µ(E)), then, for
each f ∈ L1(X ,M, µ), there exists a g ∈ L1(X ,M, µ) such that, as n→∞,

1

n

n−1∑
i=0

f
(
φi(x)

)
→ g(x),

on a set of full µ-measure and in L1(µ) (the latter holds under the extra condition
that the measure µ is finite).

In [2], CRN has demonstrated the following result:

THEOREM. The statement of Birkhoff’s individual ergodic theorem is equiv-
alent to each of the following three conditions:

(i) For each set A and each set Y with µ(Y ) <∞,

lim
n
Mn(A, Y ) ¬ Kµ(A),

where K is a constant number, and

Mn(A, Y ) :=
1

n

n−1∑
k=0

µ(Y ∩ φ−kA).
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14 T. Rolski and W. A. Woyczyński

(ii) For each set A and each set Y with µ(Y ) <∞,

lim sup
n

Mn(A, Y ) ¬ Kµ(A).

(iii) There is an ascending sequence {Yj} of sets such that X =
∪
j Yj , and

the condition

Mn(A, Y ) :=
1

n

n−1∑
k=0

µ(Y ∩ φ−kA)

holds for Y = Yj , j = 1, 2, . . . , and each set A.

In the context of the mean ergodic theorem he proves

THEOREM. The statement of von Neumann’s mean ergodic theorem is equiv-
alent to the following condition:

1

n

n−1∑
k=0

µ(φ−kE) ¬ Kµ(E)

for each E ∈M and n = 1, 2, . . .

On the following pages of Volume 12 of Studia Mathematica (see [3]) CRN
addresses the then novel problem of ergodic behavior of the transformation induced
by continued fractions which was suggested by Edward Marczewski.

Denoting by X the set of irrational numbers,

x =
1|
|c1

+
1|
|c2

+
1|
|c3

+ . . . ,

in the interval (0, 1), Marczewski defined the transformation

δ(x) :=
1

x
−
⌊
1

x

⌋
=

1|
|c2

+
1|
|c3

+
1|
|c4

+ . . .

The transformation is indecomposable with respect to the Lebesgue measure, that
is, all the invariant sets are either of measure zero or one, but it does not preserve
the Lebesgue measure. This nontrivial fact was stated in Theorem 1 of [3], which
was attributed to Knopp [48]. However, CRN’s proof was new. Surprisingly, Ryll-
Nardzewski found a measure invariant under δ, and proved the following ergodic
theorem for it:

THEOREM. The measure

ν(E) =
1

log 2

∫
E

dx

1 + x
,

defined on all Lebesgue measurable subsets of X , is invariant under the trans-
formation δ, and the classes of all sets of measure zero, and that of integrable
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functions, are the same for ν and for the Lebesgue measure. Moreover, for each
Lebesgue integrable function f,

1

n

[
f(x) + f

(
δ(x)

)
+ . . .+ f

(
δn−1(x)

)]
→ 1

log 2

1∫
0

f(x)
dx

1 + x
,

almost everywhere.

5. DE FINETTI’S EXCHANGEABLE SEQUENCES, SELECTORS,
AND CONDITIONAL DISTRIBUTIONS

In this final section we describe a few CRN’s results which, while not being the
constitutive part of several of his comprehensive theories, had a lasting influence
in several areas of mathematics and its applications.

5.1. De Finetti’s exchangeable sequences. The definition of exchangeable se-
quences in the sense of de Finetti has been recalled in Subsection 2.1. In the 1957
paper [19], CRN made a thorough study of different notions of symmetry, which
turn out to be equivalent to the notion of exchangeability.

He started out by considering the product space X = IR∞ of sequences x =
(x1, x2, . . .), with B denoting the σ-field of Borel subsets of X , andM standing
for the class of probability measures on (X,B).

In this setting ξ(x) = xn is a random variable and, for µ ∈M,

Fk(t1, . . . , tk) = µ(x1 < t1, . . . , xk < tk)

is the k-dimensional cumulative distribution function. Introducing the shift opera-
tor ϕ(x) := (x2, x3, . . .), one says that µ ∈M is stationary if

µ(E) = µ(ϕ−1E)

for any E ∈ B (we write then µ ∈ Mst). A set B is invariant (symbolically, B ∈
Binv) if B = ϕ−1B. A measure µ is indecomposable, in brief, µ ∈Mind (ergodic,
in the contemporary terminology) if µ(E) = 0 or 1 for all E ∈ Binv.

The following three different concepts of symmetry were considered in [19]:
(sym) A measure µ ∈ M is symmetric (µ ∈ Msym) if, for every increasing

sequence of integers n1 < n2 < . . ., and any µ-integrable function f ,∫
f(x1, x2, . . .) dµ =

∫
f(xn1 , xn2 , . . .) dµ.

(ssym) A measure µ ∈ M is strongly symmetric (µ ∈ Mssym) if, for every
sequence of (not necessarily increasing!) different positive integers n1, n2, . . ., and
any µ-integrable function f ,∫

f(x1, x2, . . .) dµ =
∫
f(xn1 , xn2 , . . .) dµ.
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16 T. Rolski and W. A. Woyczyński

(prod) µ is a product measure (µ ∈Mpr) if it is stationary and∫
f1(x1)f2(x2), . . .)fk(xk) dµ =

∫
f1(x1) dµ

∫
f2(x2) dµ . . .

∫
fk(xk) dµ

for all k = 1, 2, . . . and all sequences of µ-integrable functions fj , j = 1, 2, . . .

Product measures are indecomposable. They correspond to sequences of inde-
pendent and identically distributed random variables, and Lemma 1 in [19] shows
that every product measure is symmetric in the strong sense. Then Theorem 2 in
[19] proves that every symmetric and indecomposable measure is a product mea-
sure.

Finally, the paper introduces the concept of conditional measure µ(E|Binv)
with respect to Binv, defines the regular conditional probability µ(E|x), and estab-
lishes the following facts: if µ ∈ Msym, then µ(·|x) ∈ Msym; if µ ∈ Mst, then
µ(·|x) ∈Mst; and if µ ∈Mst, then µ(·|x) ∈Mind. The main result of the paper
is the following theorem.

THEOREM. Suppose that µ ∈ Msym, and let µ(E|x) denote the conditional
measure with respect Binv. Then,

(a) µ(·|x) is a product measure µ-a.e.;
(b) µ(E) =

∫
µ(E|x) dµ, E ∈ B;

(c) µ is symmetric in the strong sense.

The ideas developed in [19], and [20], had a broad influence on more recent
literature on the subject and, for example, were of crucial importance in Chapter 11
of the monograph on probability theory written by Olav Kallenberg, [43].

5.2. Conditional distributions. In 1963, CRN returned to the fundamental
problems related to conditional distributions in a joint paper with a Berkeley math-
ematician, David Blackwell. The set-up was as follows: Let Ω be a Borel subset
of a complete separable metric space, B the class of Borel subsets of Ω, and P a
probability measure on Ω. Let f be a real-valued random variable on Ω, and A
be the σ-field generated by f . In standard probability textbooks (see, e.g., Dur-
rett [36]) one can find theorems demonstrating the existence of regular conditional
probabilities Q(ω,B) given f , satisfying the following conditions:

• For each ω ∈ Ω, Q(ω, ·) is a probability measure on B.
• For each B ∈ B, Q(ω,B) is A-measurable.
• For every A ∈ A, B ∈ B,∫

A

Q(ω,B)P (dω) = P (A ∩B).

A conditional distribution Q is proper if Q(ω,A) = 1 for ω ∈ A ∈ A. It is well
known that conditional distribution, proper for almost all points of Ω, i.e. outside of
an exceptional set N , always exists. Blackwell and Ryll-Nardzewski [21] demon-
strated that, in general, the exceptional set cannot be removed. In particular, they
observed that this is a case if the range of f is not Borel.
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5.3. The theorem on selectors. One of the most frequently cited results of
CRN (according to the Mathematical Reviews) is the so-called Kuratowski–Ryll-
Nardzewski’s theorem on selectors proven in [22]. Although this theorem is not,
strictly speaking, a probabilistic result, it has found diverse applications in statis-
tics, stochastic geometry, stochastic games, stochastic control, and also in eco-
nomics, deterministic and stochastic dynamic optimization, and other areas (see,
e.g., [38]). This theorem is fundamental in the theory of multivalued functions, ran-
dom fixed point theorems for a multivalued contraction mappings, and the theory
of martingales in Banach spaces. It is basic in stochastic geometry as it allows to
define, for example, the expectation of a random set. An unexpected application
was found in the proof of an extension of the Choquet–Bishop–de Leeuw theorem
due to Gerry Edgar. Diestel and Uhl, describing his result in [35] (p. 145) write
“the proof is a beautiful mixture of martingale methods, . . . a selection theorem of
Kuratowski and Ryll-Nardzewski.”

The Kuratowski–Ryll-Nardzewski theorem about selectors considers two sets
X, Y , and a set-valued function F (x) ⊂ Y defined for each x ∈ X . A selector is
defined as any element of the Cartesian product

∏
x∈X F (x). Now, consider a field

L of subsets of X , and a countable additive family S generated by L.

THEOREM. Let Y be a complete separable metric space, and let F : X → 2Y

be such that {x : F (x) ∩G ̸= ∅} ∈ S, whenever G ⊂ Y is open. Then there is a
selector f : X → Y such that f−1(G) ∈ S, whenever G ⊂ Y is open.

Assuming that L is a countable additive field of subsets of X , a selector f :
X → Y is said to be L-measurable if, for any open G ⊂ Y , we have f−1(G) ∈ L.
In this context Kuratowski and CRN also proved the following result:

THEOREM. Let Y be a complete separable metric space, and let F : X → 2Y

be L-measurable. Then an L-measurable selector exists.

Acknowledgments. The authors thank Stanisław Kwapień for his suggestions
concerning the description of the Kuratowski–Ryll-Nardzewski theorem and, in
particular, for reference [35]. Jan Rosiński carefully reviewed the first draft of this
article and we appreciate his help in improving our presentation.

Note. The references listed below start with selected CRN’s papers in proba-
bility theory (in chronological order), and are followed by other relevant citations
(in alphabetical order).
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[25] C. Ryll-Nardzewski and W. A. Woyczyński, Bounded multiplier convergence in mea-
sure of random vector series, Proc. Amer. Math. Soc. 53 (1975), pp. 96–98.
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