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Abstract. Starting with an integro-differential operator (L,C2
∞(Rn)),

we prove that its C∞(Rn)-closure is the generator of a Feller process X,
which admits a transition probability density. To construct this transition
probability density, we develop a version of the parametrix method and
a verification procedure, which proves that the constructed object is the
claimed one. As a part of the construction, we prove the intrinsic upper
and lower estimates on the density. As an application of the constructed es-
timates we state the necessary and (separately) sufficient conditions under
which a given Borel measure belongs to the Kato and Dynkin classes with
respect to the constructed transition probability density.
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1. INTRODUCTION

A Markov process X = (Xt)t0 with values in Rn is called a Lévy-type pro-
cess if its generator A is well defined on the space C2

∞(R
n) of twice continuously

differentiable functions, vanishing at infinity together with their derivatives, and on
this space A coincides with a Lévy-type operator

Lf(x) = a(x) · ∇f(x) +
n∑

j,k=1

Qjk(x)
∂2f(x)

∂xj∂xk

+
∫

Rn\{0}

(
f(x+ u)− f(x)−∇f(x) · u1{∥u∥¬1}

)
µ(x, du),

(1.1)
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where a(x) ∈ Rn, Q(x) ≡
(
Qjk(x)

)n
j,k=1

is a symmetric positive semidefinite
matrix, and µ(x, ·) is a positive Borel measure, such that∫

Rn\{0}
(1 ∧ ∥u∥2)µ(x, du) <∞

for any x ∈ Rn. For an extensive survey on Lévy-type processes and Lévy-type
operators we refer to [39]–[41] and [13]; here we briefly outline the items important
for the exposition below.

In the “constant coefficients case”, where a,Q, µ do not depend on x, (1.1)
is just an expression for the generator of the semigroup of probability measures,
which corresponds to a Lévy process. Hence, a Lévy-type process has a natural
interpretation as a “process with locally independent increments” whose character-
istic triplet depends on the spatial variable. This justifies the names “a Lévy-type
process” and “a Lévy-type operator”. On the other hand, let a Markov process X
be Feller, that is, the respective semigroup (St)t0,

(1.2) Stf(x) := Exf(Xt),

maps the space C∞(Rn) of continuous functions vanishing at infinity into itself.
The Courrège–Waldenfels theorem (cf. [39], Theorem 4.5.21, and [13], Theo-
rem 2.21) states that if for a Feller process the generator of (St)t0 is well de-
fined on C∞c (Rn) (the space of compactly supported infinitely differentiable func-
tions), then on C∞c (Rn) this generator admits representation (1.1). Heuristically,
this means that a Lévy-type process is a generic form for a Feller process on Rn,
and a Feller process on Rn naturally gives rise to an integral-differential operator
of the form (1.1).

The converse problem, i.e., how to show that an operator of the form (1.1)
gives rise to a Feller process and, moreover, to investigate the distribution prop-
erties of this process, is highly non-trivial; this is the topic the current paper is
focused on. Heuristically, the relation between Lévy-type processes and Lévy pro-
cesses is similar to that between diffusions and the Brownian motion. Hence, the
problem how to construct a Lévy-type process given a Lévy-type operator is sim-
ilar (but technically is much more involved) to the problem of construction of a
diffusion process with given coefficients.

There are several ways how to associate a Lévy-type operator (1.1) with a
Markov process. One way is to solve the martingale problem for

(
L,C2

∞(R
n)
)
,

that is, to find a family of probability measures Px, x ∈ Rn, such that Px(X0 = x)
= 1 and the process

f(Xt)− f(X0)−
t∫
0

Lf(Xs)ds

is a Px-martingale for any f ∈ C2
∞(R

n), x ∈ Rn. The difficult part in this prob-
lem is to show that the martingale problem is well posed, i.e., that the family Px,
x ∈ Rn, is unique. See [69], [70], [53], [4], [34], [35], as well as the survey paper
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[5] and the monograph [41]. Note that although the martingale problem approach
is an efficient tool for constructing the process, typically it does not give much
information about its intrinsic distribution properties.

Another natural way is based on the general fact that at least in the simplest
cases the transition probability density pt(x, y) of the process X is a fundamental
solution to the Cauchy problem associated with the operator

(1.3) ∂t − L,

see Section 2.1 below for the definition. In the parabolic case, i.e., when the inte-
gral part in (1.1) is absent, the classical parametrix method makes it possible both
to construct the fundamental solution pt(x, y) to (1.3), and to give the explicit up-
per and lower bounds for pt(x, y); see the monograph by Friedman [29] for details.
We also refer to the original paper by Levi [59] and to the paper by Feller [27], in
which the parametrix construction of the transition probability density is given for
continuous, purely discontinuous, and mixed processes. Since for L the positive
maximum principle holds true, we can conclude that pt(x, y) is the transition prob-
ability density of a Feller process, and this process is the unique one associated
with the generator A = L. We omit the details, since the same procedure will be
discussed in detail below in a much more complicated setting.

The goal of our investigation is to extend the approach outlined above to the
genuinely “Lévy type” case, where the diffusion part in (1.1) is absent, but instead
the jump part is present: Q ≡ 0, µ(x, du) is non-trivial. In this case, the struc-
tural assumptions on the Lévy kernel µ(x, du) appear to be substantial. The case
of µ(x, du) being comparable, in a sense, to the Lévy measure of an α-stable pro-
cess µ(du) = c|u|−α−ndu is well studied, see [22], [23], [51], [52], [19], and an
extensive overview in the monograph [25]. Extending these results to more general
classes of Lévy measures meets new serious difficulties, which we discuss in detail
below.

Following the line of the classical “parabolic” parametrix method (cf. [59],
[29]), in which the Gaussian kernel is taken as the zero order approximation of
the solution to the respective Cauchy problem, the natural idea to develop a “Lévy
type” parametrix method is to take as the zero order approximation p0t (x, y) for
the candidate for being the fundamental solution to (1.3) the transition probability
density of some Lévy process. An important feature used in all the aforementioned
papers is that the fundamental solution gt(x, y) to the respective constant coeffi-
cient Cauchy problem satisfies the upper estimate

(1.4) gt(x, y) ¬ Cρnt f
(
ρt(y − x)

)
,

where ρ : (0, 1] → (0,∞) and f ∈ L1(R
n) has the meaning of a “scaling func-

tion” and a “shape function”, respectively (namely, one has ρt = t−1/2, f(x) =
exp

(
− ∥x∥2/(2c)

)
in the diffusive case, and ρt = t−1/α, f(x) = 1 ∧ ∥x∥−α−n in

the symmetric α-stable case).
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However, for general Lévy processes the estimate (1.4) does not hold, see
[47] for a counterexample. In [47] and [46] it is shown that a natural analogue of
(1.4) is the so-called compound kernel upper bound, see Proposition 3.4 below. An
important ingredient in the approach which will be developed in the current paper
is that in the parametrix construction of the kernel pt(x, y), the single kernel-type
upper bound (1.4) can be successfully replaced by a compound kernel upper bound,
valid under more mild structural assumptions on the model.

Our construction consists of the following three principal steps. First, we con-
struct the kernel pt(x, y), which is a candidate for being the fundamental solution
to the Cauchy problem associated with the operator (1.3) represented in the form of
convergent series (2.4)–(2.7); see the detailed discussion in Section 3. We empha-
size that in our case the verification of the fact that the constructed kernel pt(x, y)
is indeed the fundamental solution hardly could be performed in the classical way
described in [29]. The reason for this is that the space derivatives of the zero order
approximation p0t (x, y) have stronger singularity at t = 0, and one cannot prove
directly that pt(·, y) belongs to C2

∞(R
n), which is the domain of L.

Our second step is to prove that the constructed kernel pt(x, y) is the transition
probability density of some Markov process, and the restriction of the generator of
this process toC2

∞(R
n) equals L. The method we use to do this is described in [49]

(see also [56]), and is based on the auxiliary notion of the approximate fundamental
solution; see Section 4.

The final step is to identify uniquely the Markov process X obtained before
in terms of the initial operator L. While spatial derivatives of pt(x, y) are hardly
controllable, the time derivative is more manageable, which makes it possible to
prove that the generator

(
A,D(A)

)
of the C∞(Rn)-semigroup of X is the closure

of
(
L,C2

∞(R
n)
)
. This yields that the martingale problem for

(
L,C2

∞(R
n)
)

is well
posed, and shows the uniqueness of the Markov process X constructed in the first
two steps. Also, we are able to show that pt(·, y) belongs to the domain of the
generator A (⇔ the closure of L), and that pt(x, y) is indeed the fundamental
solution to the Cauchy problem for

(1.5) ∂t −A,

which justifies our parametrix construction. Thus, starting with the Cauchy prob-
lem for (1.3), we construct the fundamental solution for (1.5), where A is the clo-
sure of L.

As an application of the estimates constructed for the kernel, we give the nec-
essary and (separately) sufficient conditions for a finite Borel measure to belong to
the Kato and Dynkin classes with respect to pt(x, y).

Let us give a brief overview of other existing results.
In the Lévy case the transition probability density is just the inverse Fourier

transform of the characteristic function. This allows a lot of possibilities to estimate
this transition probability density, see, for example, [64], [32], [33], [72] for the
asymptotic behavior of an α-stable transition probability density, and [54], [42]–
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[44], [61], [6], [47], [46], [65]–[68], [20] for the Lévy case. Of course, this list of
publications is far from being complete.

In [7] the case of the fractional Laplacian perturbed by a gradient is treated, see
also [8], [10] for the kernel estimates. The verification procedure presented in [7]
shows that the integro-differential operator is the weak generator of the respective
semigroup. In [45] the case of a singular perturbation of the fractional Laplacian
is considered, and a different approach is used for the verification; see also [18]
for an approach which relies on [7] and the martingale problem, as well as [19]
and the references therein. In [63] and [62] the authors constructed the transition
probability density of the process which is the weak solution to the SDE driven
by a symmetric α-stable process with a drift. We refer to [28], [21], and [49], in
which the gradient perturbations of an α-stable like operator with 0 < α < 1 are
investigated.

Another approach to study the fundamental solution to the respective Cauchy
problem relies on a different version of the parametrix method and the symbolic
calculus technique, which allows us to prove the existence of the fundamental so-
lution, and to construct it in the form of converging in a certain sense series. This
approach uses the Hilbert space methods, and is developed in [71], [38], [57], [36],
[37], [40], [11], and [12].

There is a large group of results devoted to the estimation of the transition
probability density of a Markov process, associated with a Dirichlet form of a
certain type. Under the assumption that the jump intensity measure of a Markov
process is absolutely continuous and has certain regularity properties, estimates on
the transition probability density are obtained in [14]–[17], [2], [3], [60]; of course,
this list is far from being complete. The approach used in the above papers relies on
the Dirichlet form technique and the Harnack principle. Note that in these papers
the initially given object is a regular Dirichlet form, which already assumes the
existence of the related Markov process.

The paper is organized as follows. In Section 2 we set the notation, outline
the method, and formulate the results. The construction of the parametrix series is
performed in Sections 3.1–3.4. Proofs of the continuity and smoothness properties
are given in Section 3.5. Section 4 is devoted to the verification procedure. The
uniqueness is studied in Section 6. Diagonal and lower bounds for the constructed
fundamental solution are given in Section 7. Finally, Section 8 is devoted to the
proof of the application result, that is, using the structure of the upper and lower
bounds on pt(x, y), we provide the necessary and (separately) sufficient conditions
for a measure to be in the Kato and Dynkin classes.

2. THE MAIN RESULTS: OUTLINE AND FORMULATION

Notation. For functions f , g we mean by f ≍ g that there exist some constants
c1, c2 > 0 such that c1f(x) ¬ g(x) ¬ c2f(x) for all x ∈ Rn. By x · y and ∥x∥ we
denote, respectively, the scalar product and the norm in Rn; Sn denotes a unit
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sphere in Rn. We denote by ci, c, C, etc., arbitrary positive constants. Denote
by (f ∗ g)(t, x, y), (f ~ g)(t, x, y), (F ∗ G)t(du), (F ~ G)t(du) the respective
convolutions of functions f(t, x, y), g(t, x, y), and of kernels Ft(du) and Gt(dv):

(f ∗ g)(t, x, y) :=
∫
Rn

f(t, x, z)g(t, z, y)dz,

(f ~ g)(t, x, y) :=
t∫
0

∫
Rn

f(t− s, x, z)g(s, z, y)dzds,

(F ∗G)t(du) =
∫
Rn

Ft(du− z)Gt(dz),

(F ~G)t(du) =
t∫
0

∫
Rn

Ft−s(du− z)Gs(dz)ds.

By Bb(Rn) and Ck∞(R
n) we denote, respectively, the set of bounded Borel func-

tions and the set of k-times differentiable functions, vanishing at infinity together
with their derivatives. By ∥ · ∥∞ we define the sup-norm in C∞.

2.1. The model and the outline of the method. In this section we describe in
detail three steps of our approach, indicated in the Introduction.

Let L be an operator of the form (1.1) but with Q ≡ 0. Below we specify the
assumptions on the drift and the kernel. In the first part we construct a candidate
for the fundamental solution to the Cauchy problem

(2.1) ∂t − L,

i.e. a function pt(x, y) such that

(2.2) pt(x, ·)→ δx as t→ 0+, x ∈ Rn,

and

(2.3) (∂t − L)pt(x, y) = 0, t > 0, x, y ∈ Rn.

In order to simplify the further exposition, let us briefly outline the parametrix
construction, see [29], pp. 310–311, or [40], pp. 144–145, for more information.

Consider some approximation p0t (x, y) of pt(x, y), and denote by rt(x, y) the
residue with respect to this approximation, that is,

(2.4) pt(x, y) = p0t (x, y) + rt(x, y).

Define

(2.5) Φt(x, y) := (L− ∂t)p0t (x, y), t > 0, x, y ∈ Rn.
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Observe that since pt(x, y) is aimed to be the fundamental solution to the Cauchy
problem for the operator (2.1), we should have

(∂t − L)rt(x, y) = Φt(x, y).

Therefore,
rt(x, y) = (p~ Φ)t(x, y),

which by (2.4) allows us to write the equation for rt(x, y):

rt(x, y) = (p0 ~ Φ)t(x, y) + (r ~ Φ)t(x, y).

The formal solution to this equation is given by the convolution

(2.6) r = p0 ~Ψ,

where

(2.7) Ψt(x, y) =
∞∑
k=1

Φ~k
t (x, y).

We can choose the zero order approximation p0t (x, y) in the following way.
Consider the operator

(2.8)

Lzf(x) := a(z) · ∇f(x) +
∫
Rn

(
f(x+ u)− f(x)− u · ∇f(x)1{∥u∥¬1}

)
µ(z, du),

where f ∈ C2
∞(R

n). It is known that
(
Lz, C2

∞(R
n)
)

extends to the generator of
a semigroup corresponding to a Lévy process, which under the condition A1 (see
below) has the transition probability density pzt (x). Note that pzt (y − x) is the fun-
damental solution to a Cauchy problem for the operator

∂t − Lz,

see [40], Example 2.7.14. Put

(2.9) p0t (x, y) := pzt (y − x)
∣∣
z=y

.

We prove that under such a choice of the zero order approximation p0t (x, y), the
series in (2.7) indeed converges, and that the expression (2.4) is well defined.

In the second step we associate with the constructed kernel pt(x, y) a Markov
process. The keystone in this step is the usage of an auxiliary object, called the
approximate fundamental solution, which is a certain approximation pt,ϵ(x, y) of
the constructed kernel pt(x, y). Using the expression for pt(x, y) and the estimates
on Φt(x, y) and Ψt(x, y), obtained in the first step, we show that for the operators
St,ε with kernel pt,ε(x, y) the following statements (a)–(d) hold true:
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(a) For f ∈ C∞(Rn),

lim
ε→0
∥St,εf − Stf∥∞ = 0,

uniformly on compact subsets of (0,∞).

(b) For St,εf , f ∈ C∞(Rn), ε > 0, the identity (2.3) turns into the approxi-
mate identity (∂t − L)St,εf , and

lim
t,ε→0
∥St,εf − Stf∥∞ = 0;

here

(2.10) Stf(x) :=
∫
Rn

f(y)pt(x, y)dy, t > 0, x ∈ Rn.

These properties of St,ε allow us to develop a version of the positive maxi-
mum principle (see [26], p. 165, or [39], Corollary 4.5.14, for the classical positive
maximum principle). This in turn enables us to show that pt(x, y) is the transi-
tion probability density of a Markov process, which is a solution to the martingale
problem for

(
L,C2

∞(R
n)
)
. In particular, the family of operators (St)t0 forms a

semigroup related to X by

Stf(x) = Exf(Xt), f ∈ C2
∞(R

n).

The third step is devoted to the uniqueness problem for the constructed pro-
cess. We show that the generatorA of the semigroup (St)t0 coincides onC2

∞(R
n)

with L. Further, we employ the properties of the derivative ∂tSt,εf :
(c) For any f ∈ C∞(Rn),

lim
ε→0
∥∂tSt,ϵf − ∂tStf∥∞ = 0,

uniformly on compact subsets of (0,∞).
This property together with (b) allows us to controlL on St,εf , f ∈ D(A), and

show that A is the closure of L in C∞. Consequently, the process X constructed in
the previous step is the unique solution to the above martingale problem.

Finally, the property similar to (c) holds also for the kernels pt,ε(x, y) and
pt(x, y):

(d) ∂tpt,ε(x, y) approximates ∂tpt(x, y) as ε→ 0, uniformly on compact sub-
sets of (0,∞)×Rn ×Rn.

Therefore, in a similar way we show that pt(·, y) ∈ D(A) for any fixed y, and
that pt(x, y) is the fundamental solution to the Cauchy problem for ∂t −A.
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2.2. Main results. Consider

(2.11) q(ξ) :=
∫
Rn

(
1− cos(ξ · u)

)
µ(du),

where µ(du) is a Lévy measure, i.e., a Borel measure satisfying∫
Rn

(∥u∥2 ∧ 1)µ(du) <∞,

and define

(2.12) qU (ξ) :=
∫
Rn

[(ξ · u)2 ∧ 1]µ(du), qL(ξ) :=
∫

|u·ξ|¬1
(ξ · u)2µ(du).

The function q(ξ) has the Lévy–Khinchin representation, and thus is the character-
istic exponent of a Lévy process. It can be shown (cf. [47]) that the functions qL(ξ)
and qU (ξ) satisfy

(2.13) (1− cos 1)qL(ξ) ¬ q(ξ) ¬ 2qU (ξ).

Note that in (2.11) and (2.12) we do not assume µ to be symmetric. Suppose that
the measure µ satisfies the regularity assumption given below.

A1. There exists β > 1 such that

sup
l∈Sn

qU (rl) ¬ β inf
l∈Sn

qL(rl) for all r > 0 large enough.

In what follows, we put

(2.14) α := 2/β.

This notation is motivated by the particularly important example of a symmetric
α-stable Lévy measure µ(du) := c(α)∥u∥−n−αdu, α ∈ (0, 2): direct calculations
show that in this case A1 holds true with β = 2/α. Note also that for any Lévy
measure µ satisfying A1 the respective Lévy exponent q admits a polynomial lower
bound (see (2.19) below) which for the symmetric α-stable Lévy measure becomes
an identity.

Throughout the paper we assume that the kernel µ(x, du) is of the form

(2.15) µ(x, du) = m(x, u)µ(du),

where m(x, u) is some positive measurable function. We assume that the function
m(x, u) and the drift coefficient a(x) satisfy the assumptions below.

A2. The functions m(x, u) and a(x) are measurable and satisfy with some
constants b1, b2, b3 > 0 the inequalities

b1 ¬ m(x, u) ¬ b2, |a(x)| ¬ b3, x, u ∈ Rn.
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A3. There exist constants γ ∈ (0, 1] and b4 > 0 such that
(2.16)
|m(x, u)−m(y, u)|+ ∥a(x)− a(y)∥ ¬ b4(∥x− y∥γ ∧ 1), u, x, y ∈ Rn.

A4. In the case α ∈ (0, 1] we assume that a(x) = 0 and the kernel µ(x, du)
is symmetric with respect to u for all x ∈ Rn.

Below we state the first main result of our paper.

THEOREM 2.1. Suppose that assumptions A1–A4 are satisfied, and the func-
tion p0t (x, y) is given by (2.9). Then:

(a) The function pt(x, y) introduced in (2.4)–(2.7) is well defined in the sense
that the series (2.7) and (2.6) converge absolutely for any t > 0, x, y ∈ Rn, uni-
formly on compact subsets of (0,∞)×Rn ×Rn.

(b) The function pt(x, y) is continuous on (0,∞)×Rn ×Rn.

Next we associate the constructed function pt(x, y) with the initial operator L.
To make the structure the most transparent, we do this in two steps: we prove that
pt(x, y) is a transition probability density of some Markov process, and then show
that the C∞(Rn)-generator of this process is an extension of

(
L,C2

∞(R
n)
)
. The

second statement means that the semigroup (2.10) with pt(x, y) defined by (2.4) is
in fact a unique Feller semigroup associated with the operator L.

THEOREM 2.2. The family of operators (2.10) forms a strongly continuous
conservative semigroup of nonnegative operators on C∞(Rn), which in turn de-
fines a (strong) Feller Markov process X . Further, the set C2

∞(R
n) belongs to the

domain D(A) of the generator A of this semigroup, and

Af(x) = Lf(x) for f ∈ C2
∞(R

n),

that is,
(
A,D(A)

)
is an extension of

(
L,C2

∞(R
n)
)
.

THEOREM 2.3. (a) The generator
(
A,D(A)

)
is the closure of

(
L,C2

∞(R
n)
)
.

(b) The function pt(·, y) belongs to the domain D(A) of A, and is the funda-
mental solution to the Cauchy problem for the operator ∂t −A.

The first statement of Theorem 2.3 allows us to show the uniqueness of the
solution to the martingale problem for

(
L,C2

∞(R
n)
)
.

THEOREM 2.4. The Markov process X constructed in Theorem 2.3 is the
unique solution to the martingale problem for

(
L,C2

∞(R
n)
)
.

Finally, we give the upper and lower estimates for the constructed function
pt(x, y) and its time derivative.

Let

(2.17) q∗(r) := sup
l∈Sn

qU (rl), r > 0,
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and define

(2.18) ρt := inf{r : q∗(r) = 1/t}, t ∈ (0, T ].

Since the function q∗(r) is continuous and limr→∞ q
∗(r) = ∞, the function ρt,

t ∈ (0, T ], is well defined for any T > 0.
In [46], see also [47], we show that condition A1 implies for r large enough

the lower estimate

(2.19) q∗(r)  c0rα,

which in turn implies for any T > 0 the upper bound

(2.20) ρt ¬ c1t−1/α, t ∈ (0, T ].

Note that for any c > 1 we have qU (cξ) ¬ (c2 ∧ 1)qU (ξ), implying q∗(r) ¬ c2r2,
r  1; then ρt  c3t−1/2, t ∈ (0, T ]. Denote by σ ∈ [α, 2] the minimal value for
which there exists c4 > 0 such that

(2.21) ρt  c4t−1/σ, t ∈ (0, T ].

Denote by fup and flow the functions of the form

(2.22) fup(x) := d1e
−d2∥x∥, flow(x) := d3(1− d4∥x∥)+, x ∈ Rn,

where di > 0, 1 ¬ i ¬ 4, are some constants which are yet to be chosen.

THEOREM 2.5. For any T > 0 there exist constants di > 0, 1 ¬ i ¬ 4, and
a family of subprobability measures {Qt, t  0} such that pt(x, y) satisfies the
upper and lower estimates

(2.23)
ρnt flow

(
ρt(y − x)

)
¬pt(x, y)¬ρnt

(
fup(ρt·) ∗Qt

)
(y − x), t ∈ (0, T ], x, y ∈ Rn,

where flow and fup are of the form (2.22) with constants di, 1 ¬ i ¬ 4.

THEOREM 2.6. (1) There exists ∂tpt(x, y) which is continuous in (t, x, y) ∈
(0,∞)×Rn ×Rn.

(2) For any T > 0 there exist constants d̃1, d̃2 > 0 and a family of subproba-
bility measures {Q̃t, t  0} such that

|∂tpt(x, y)| ¬ t−1ρnt
(
fup(ρt·) ∗ Q̃t

)
(y − x), t ∈ (0, T ], x, y ∈ Rn,

where fup is of the form (2.22) with constants d̃1, d̃2.
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To demonstrate an application of the above results, we need a bit more prepa-
rations.

Recall that a functional φt of a strong Markov process X is called a W -
functional if it is additive, positive, continuous, almost surely homogeneous, and

vt(x) := Exφt <∞;

in this case the function vt(x) is called the characteristic of φt, see [24], §6.11. By
[24], Theorem 6.3, the characteristic determines the W -functional uniquely up to
equivalence. On the other hand, Theorem 6.3 of [24] gives a way how to check that
a given function is a characteristic of some W -functional.

Recall (cf. [58], [1]) that a Borel measure ϖ is said to belong to
(i) the Kato class SK with respect to pt(x, y) if

(2.24) lim
t→0

sup
x∈Rn

t∫
0

∫
Rn

ps(x, y)ϖ(dy)ds = 0;

(ii) the Dynkin class SD with respect to pt(x, y) if there exists t > 0 such that

(2.25) sup
x∈Rn

t∫
0

∫
Rn

ps(x, y)ϖ(dy)ds <∞.

Clearly, SK ⊂ SD. By [24], Theorem 6.6, the condition ϖ ∈ SK implies that the
function

(2.26) χt(x) :=
t∫
0

∫
Rn

ps(x, y)ϖ(dy)ds

is the characteristic of some W -functional φt provided that the mapping x 7→
χt(x) is measurable for each t  0. Thus, to prove that χt(x) is the characteristic
of some W -functional of X , we need to check whether the measure ϖ from (2.26)
belongs to the Kato class with respect to pt(x, y). As an accompanying result, we
get the condition under which ϖ belongs to the respective Dynkin class.

REMARK 2.1. Up to our knowledge there are not many results on the neces-
sary and sufficient conditions when a measure is in the Kato class. In the case of a
symmetric α-stable process, α ∈ (0, 2), and a relativistic 1/2-stable process, these
conditions are stated in [73] (see also [30]). In the case of n-dimensional Brownian
motion there is a one-to-one correspondence between the class ofW -functions and
so-calledW -measures (see [24], Theorem 8.4); in our notation this theorem means
that every measure from the Dynkin class is in one-to-one correspondence with a
W -functional. An example of a measure which for a Brownian motion belongs to
the class SD but not to the SK can be found, e.g., in [55].
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In the theorem below we present the necessary and (separately) sufficient con-
ditions when a measure belongs to the Kato and Dynkin classes with respect to
pt(x, y).

THEOREM 2.7. Let ϖ be a finite Borel measure on Rn.
(a) For ϖ ∈ SD with respect to pt(x, y) it is sufficient that

(2.27)
δ∫
0

supx∈Rn ϖ{y : ∥x− y∥ ¬ s}
sn+1q∗(1/s)

ds <∞ for some δ > 0,

and necessary that

(2.28) sup
x∈Rn

δ∫
0

ϖ{y : ∥x− y∥ ¬ s}
sn+1q∗(1/s)

ds <∞ for some δ > 0.

(b) For ϖ ∈ SK with respect to pt(x, y) it is sufficient that (2.27) holds true,
and necessary that

(2.29) lim
δ→0

sup
x∈Rn

δ∫
0

ϖ{y : ∥x− y∥ ¬ s}
sn+1q∗(1/s)

ds = 0.

3. CONSTRUCTION OF THE PARAMETRIX SERIES. PROOF OF THEOREM 2.1

3.1. Well-definiteness of p0t (x, y). It is known that for any fixed z ∈ Rn the
operator

(
Lz, C2

∞(R
n)
)

(see (2.8)) extends to the C∞- generator of a Feller semi-
group which corresponds to the Lévy process Xz

t with characteristic function

Eeiξ·X
z
t = e−tq(z,ξ),

where

(3.1) q(z, ξ) := −ia(z) · ξ +
∫
Rn

(1− eiξ·u + iξ · u1{∥u∥¬1})µ(z, du).

Note that due to the condition A2 the kernels {µ(z, du), z ∈ Rn} are comparable
in the sense that for any z, y ∈ Rn and any Borel subset A ⊂ Rn\{0} we have
µ(z,A) ≍ µ(y,A), implying that

(3.2) Re q(z, ξ) ≍ Re q(y, ξ) for all z, y, ξ ∈ Rn.

Condition A3 implies that Re q(z, ξ) is continuous in z. Condition A1 together
with A2 implies (cf. [47], [46]) that

(3.3) min
z

Re q(z, ξ)  c∥ξ∥α for large ∥ξ∥,
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where α = 2/β. Thus, for any fixed z the process Xz
t admits a transition prob-

ability density, which will be denoted by pzt (x). Note that by (3.3) we can write
pzt (x) as

(3.4) pzt (x) = (2π)−n
∫
Rn

e−ix·ξ−tq(z,ξ)dξ.

Thus, the function p0t (x, y) given by (2.9) is well defined, and p0t (·, y) ∈ C∞b (Rn).

3.2. Estimate for Φt(x, y). In this subsection we derive the upper bound for
Φt(x, y), see Lemma 3.1. In order to do this, we introduce some notation and state
the auxiliary propositions, the proofs of which are deferred to Appendix A.

Let

(3.5) Λt(du) := tµ(du)1{ρt∥u∥>1}.

PROPOSITION 3.1. For any T > 0 we have Λt(R
n) ¬ n2, t ∈ [0, T ].

PROPOSITION 3.2. For any λ ∈ [0, α), T > 0, we have

(3.6) ρλt
∫
Rn

(∥u∥λ ∧ 1)Λt(du) ¬ C, t ∈ [0, T ].

Define the probability measure

(3.7) Pt(du) := e−Λt(Rn)
∞∑
k=0

1

k!
Λ∗kt (du).

Let α be the parameter defined in (2.14), and let γ ∈ (0, 1] be the parameter of
Hölder continuity from A3. Fix some ϵ ∈ (0, α), and put

(3.8) κ :=

{
γ if γ ∈ (0, α),

α− ϵ if γ  α.

Note that, by definition, κ > 0. Put

(3.9) Pt,κ(du) :=
(
1 + ρκt (∥u∥κ ∧ 1)

)
Pt(du).

PROPOSITION 3.3. For any T > 0 there exists a constant C ∈ (0,∞) such
that Pt,κ(Rn) ¬ C, t ∈ [0, T ].

Finally, define

(3.10) Gt(du) := c0
(
Pt,κ(du) + Pt ∗ Pt,κ(du)

)
,

where the constant c0 > 0 is chosen in such a way that Gt(Rn) ¬ 1 for all t ∈
[0, T ]. Such a choice of c0 is possible due to Proposition 3.3.

Now we are ready to state the main result of this section. Recall that the pa-
rameter σ was defined in (2.21).
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LEMMA 3.1. For any T > 0 there exist constants C, b > 0 such that

(3.11) |Φt(x, y)| ¬ Ct−1+η(gt ∗Gt)(y − x), t ∈ (0, T ], x, y ∈ Rn,

where η = κ
σ ∧

(
1 + κ−1

α

)
,

(3.12) gt(x) := ρnt e
−bρt∥x∥

with some b > 0, and {Gt(·), t > 0} is the family of subprobability measures given
by (3.10).

In the proof of this lemma we use several auxiliary statements which will be
formulated below.

Take fup of the form (2.22), and put

(3.13) ft(x) := ρnt
(
fup(ρt·) ∗ Pt

)
(x).

PROPOSITION 3.4. Suppose that conditions A1, A2 and A4 hold true.
Then for any k = k1 + . . .+ kn  0, T > 0, there exist constantsAk, ak > 0,

such that

(3.14)
∣∣∣∣ ∂k

∂xk11 . . . ∂xknn
pzt (x)

∣∣∣∣ ¬ ρkt ft(x), t ∈ (0, T ], x, z ∈ Rn,

where ft(x) is the function of the form (3.13), and the function fup in the definition
of ft is of the form (2.22), with constants Ak, ak in place of d1, d2, respectively.

In particular,

(3.15)
∣∣∣∣ ∂k

∂xk11 . . . ∂xknn
p0t (x, y)

∣∣∣∣ ¬ ρkt ft(y − x), t ∈ (0, T ], x, y ∈ Rn.

PROPOSITION 3.5. Suppose that conditions A1, A2 and A4 hold true. For
T > 0 there exist d3, d4 > 0 such that

pzt (x)  ρnt flow(∥x∥ρt), x, z ∈ Rn, t ∈ (0, T ],

where flow is of the form (2.22) with these constants d3 and d4. In particular,

p0t (x, y)  ρnt flow(∥y − x∥ρt), x ∈ Rn, t ∈ (0, T ].

REMARK 3.1. Proceeding as in [46] and [47] one can show that it follows
that 0 < ak ¬ ak−1, k  1.

The proof of this proposition repeats line by line the proof of a similar state-
ment in [46], see also [47]. The only difference is that we need to check, using
conditions A1, A2 and A4, that the required estimates obtained in [46] hold true
uniformly in z. We omit the details.
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PROPOSITION 3.6. For any θ ∈ (0, 1), T > 0, we have

(3.16) (∥x∥κ ∧ 1)ft(x) ¬ Cρ−κt (gt,θ ∗ Pt,κ)(x), t ∈ (0, T ], x ∈ Rn,

where κ is defined in (3.8), Pt,κ(dw) is defined in (3.9), ft is of the form (3.13)
with some fup, and

(3.17) gt,θ(x) = ρnt fup(θρtx).

P r o o f o f L e m m a 3.1. By the definition of p0t (x, y), for any y ∈ Rn we
have

[∂t − Lyx(D)]p0t (x, y) = 0.

Then

(3.18) Φt(x, y) = [L(x,D)− Lyx(D)]p0t (x, y)

=
(
a(x)− a(y)

)
· ∇p0t (x, y)

+
∫
Rn

[p0t (x+ u, y)− p0t (x, y)− u · ∇p0t (x, y)1{∥u∥¬1}]

× [m(x, u)−m(y, u)]µ(du)

=
(
a(x)− a(y)

)
· ∇p0t (x, y)

+
[ ∫
ρt∥u∥¬1

+
∫

ρt∥u∥>1

]
[p0t (x+ u, y)− p0t (x, y)− u · ∇p0t (x, y)1{∥u∥¬1}]

× [m(x, u)−m(y, u)]µ(du) =: J1 + J2 + J3.

We estimate the terms Ji, i = 1, 2, 3, separately. In what follows, ft and gt,θ are
the functions appearing in Propositions 3.4 and 3.6.

Note that by A4 we have J1 = 0 for α ∈ (0, 1]. For α ∈ (1, 2), by (3.15) and
A3 we have the estimates

|J1| ¬
√
n∥a(x)− a(y)∥ρtft(y − x) ¬ c1(∥y − x∥γ ∧ 1)ρtft(y − x).(3.19)

Using Proposition 3.6, we obtain

(∥y − x∥γ ∧ 1)ft(y − x)¬(∥y − x∥κ ∧ 1)ft(y − x)¬c2ρ−κt (gt,θ ∗ Pt,κ)(y − x),

where κ is defined in (3.8), the semigroup Pt,κ(dw) is defined in (3.9), and θ ∈
(0, 1) is some constant. Note that since α ∈ (1, 2), we have κ = γ ¬ 1. Using
(2.20), we get

ρ1−κt ¬ ct−(1−κ)/α = ct−1+δ1 ,

where

(3.20) δ1 := 1 +
κ− 1

α
.
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Note that since α ∈ (1, 2), we have α+ κ− 1 > 0, which implies δ1 > 0. Thus,

(3.21) |J1| ¬ c3t−1+δ1(gt,θ ∗ Pt,κ)(y − x).

To estimate J2 recall that by the Taylor expansion we have

(3.22) p0t (x+ u, y)− p0t (x, y)− u · ∇p0t (x, y)

=
∑

1¬i,j¬n
uiuj

1∫
0

(1− ϑ) ∂2

∂xi∂xj
p0t (x+ ϑu, y)dϑ.

Using (3.15), (3.22), and the definition of ft, we obtain the estimates

(3.23) |p0t (x+ u, y)− p0t (x, y)− u · ∇p0t (x, y)|

¬ c1
∣∣ ∑
1¬i,j¬n

uiuj
∣∣ρ2t 1∫

0

(1− ϑ)ft(y − x− ϑu)dϑ

¬ n2c1∥u∥2ρ2t
1∫
0

ft(y − x− ϑu)dϑ

¬ n2c1∥u∥2ρ2t
[ 1∫

0

ec2ϑρt∥u∥dϑ
]
ft(y − x)

¬ c3∥u∥2ρ2t ft(y − x),

where to get the last line we used the fact that in J2 we have ρt∥u∥ ¬ 1. Observe
that for any r > 0

∫
r∥u∥¬1

(r∥u∥)2µ(du) =
1∫
0

µ{u : v ¬ (r∥u∥)2 ¬ 1}dv

¬
n∑
i=1

1∫
0

µ{u : v/n ¬ |rui|2 ¬ 1}dv

¬ n2 max
1¬i¬n

1/n∫
0

µ{u : z ¬ |rui|2 ¬ 1}dz

¬ n2 max
1¬i¬n

1∫
0

µ{u : z ¬ |rui|2 ¬ 1}dz

= n2 max
1¬i¬n

qL(rℓi) ¬ n2 max
1¬i¬n

qU (rℓi)

¬ n2q∗(r),

where ℓi := (0, . . . , 1
i
, . . . , 0) ∈ Sn.
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Thus, using A3, the above calculation and the equality q∗(ρt) = 1/t, we can
estimate J2 as follows:

|J2| ¬ c1(∥y − x∥γ ∧ 1)ft(y − x)
∫

ρt∥u∥¬1
(∥u∥ρt)2µ(du)

¬ c2(∥y − x∥γ ∧ 1)ft(y − x)q∗(ρt) ¬ c2t−1(∥y − x∥κ ∧ 1)ft(y − x).

Moreover, by Proposition 3.6 and (2.21), we get

(3.24) |J2| ¬ c3t−1+δ2(gt,θ ∗ Pt,κ)(y − x), where δ2 := κ/σ.

Let us estimate J3. We have

|J3| ¬
∫

ρt∥u∥>1

(
p0t (x+ u, y) + p0t (x, y)

)
|m(y, u)−m(x, u)|µ(du)

+
∣∣ ∫
1/ρt<∥u∥<1

u · ∇p0t (x, y) [m(y, u)−m(x, u)]µ(du)
∣∣

=: J31 + J32.

(3.25)

For J31, by A3, (3.15) and Proposition 3.6 we get the estimates

J31 ¬ b4t−1(∥y − x∥γ ∧ 1)
{ ∫

Rn

p0t (x+ u, y)Λt(du) + p0t (x, y)Λt(R
n)
}

¬ c1t−1(∥y − x∥γ ∧ 1)
(
(ft ∗ Λt)(y − x) + n2ft(y − x)

)
¬ c2t−1(∥y − x∥κ ∧ 1)[(ft ∗ Λt)(y − x) + ft(y − x)]
¬ c2t−1

{ ∫
Rn

(∥y − x− u∥κ ∧ 1)ft(y − x− u)Λt(du)

+
∫
Rn

ft(y − x− u)(∥u∥κ ∧ 1)Λt(du) + (∥x− y∥κ ∧ 1)ft(y − x)
}

¬ c3t−1+δ2{(gt,θ ∗ Pt,κ ∗ Λt)(y − x)+(ft ∗ Pt,κ)(y − x)+(gt,θ ∗ Pt,κ)(y − x)}
¬ c4t−1+δ2

(
gt,θ ∗ (Pt ∗ Pt,κ + Pt,κ)

)
(y − x),

where in the last line we used the relation ft(x) ¬ c(gt,θ ∗ Pt)(x), and the fact that
Λt(du) is dominated by Pt(du).

Finally, we estimate J32. By A4, J32 = 0 in the case α ∈ (0, 1]. Assume that
α ∈ (1, 2). In this case, by A3, (3.15), Proposition 3.2 with λ = 1, and Proposi-
tion 3.6, we get

|J32| ¬ c1t−1(∥y − x∥γ ∧ 1)ρtft(y − x)
( ∫
Rn

(∥u∥ ∧ 1)Λt(du)
)

¬ c2t−1(∥y − x∥κ ∧ 1)ft(y − x) ¬ c3t−1ρ−κt (gt,θ ∗ Pt,κ)(y − x)
¬ c3t−1+δ2(gt,θ ∗ Pt,κ)(y − x),

where in the last line we used (2.21).
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Thus, we arrive at

(3.26) J3 ¬ c4t−1+δ2(gt,θ ∗Gt)(y − x).

Put

η := δ1 ∧ δ2 =
κ

σ
∧
(
1 +

κ− 1

α

)
.

Thus, combining the estimates for J1, J2 and J3, we obtain (3.11) with some
constantC > 0, η, and b = θa2, where θ ∈ (0, 1) is arbitrary, and a2 is the constant
from Proposition 3.4 (cf. Remark 3.1). �

3.3. Generic calculation. Let us rewrite the statement of Lemma 3.1 a bit
differently. Although it might be seen as just some technical modification, it will
become clear later that this new form allows us to write the estimate in a rather
transparent way.

Put

(3.27) δ := η/2,

and

(3.28) g̃t(x) := tδgt(x).

Then the estimate (3.11) can be written as

(3.29) |Φt(x, y)| ¬ Ct−1+δ(g̃t ∗Gt)(y − x), t ∈ (0, T ], x, y ∈ Rn.

The next important step is to estimate iteratively the convolution powers Φ~k,
and this is the place where we encounter essential new difficulties. Below we ex-
plain this problem in detail, and give the generic calculation, which allows us to
overcome these difficulties.

Let us define

(3.30) Ht(x, y) := (g̃t ∗Gt)(y − x).

Observe that if this kernel would satisfy the following subconvolution property

(3.31) (Ht−s ∗Hs)(x, y) ¬ cHt(x, y), 0 < s < t, x, y ∈ Rn,

then the iterative estimation of the convolution powers Φ~k would be simple. For
example, this is true for a perturbed α-stable noise: in this case we have

|Φt(x, y)| ¬ Ct−1+δHt(x, y), t ∈ (0, T ], x, y ∈ Rn,

with
Ht(x, y) = t−n/α(1 + ∥y − x∥/t1/α)−n−α,
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see [51], [52] and [7]; see also [49] for more involved kernels which appear for the
gradient perturbations of an α-stable noise with α < 1.

In our situation the kernel Ht(x, y) has the more complicated structure: it is
formed by the convolution of the function gt and some measureGt, which seems to
be inevitable because of the “compound kernel” structure of the first approximation
p0t (x, y) given by (2.9). Moreover, in this case we cannot in general expect (3.31)
to hold true.

To show what is going on, we give a calculation of the upper bound for the
convolution of two “compound kernels”.

LEMMA 3.2. Suppose that the functions Φi, i = 1, 2, satisfy for any T > 0
the inequalities

(3.32) |Φit(x, y)| ¬ Cit−1+δi(hit ∗Git)(y − x), t ∈ (0, T ], x, y ∈ Rn,

with constants Ci > 0, δi > 0, some nonnegative and integrable functions hi, and
some subprobability measures Git, respectively. Then F := Φ1 ~ Φ2 satisfies

(3.33) |Ft(x, y)| ¬ Ct−1+δ(ht ∗Gt)(y − x), t ∈ (0, T ], x, y ∈ Rn,

with
ht(x) = sup

s<t
(h1t−s ∗ h2s)(x),

δ = δ1 + δ2, C = C1C2B(δ1, δ2),

where B(·, ·) is the beta function, and

Gt(dw) :=
1

B(δ1, δ2)

1∫
0

∫
Rn

(1− r)−1+δ1r−1+δ2G1
t(1−r)(dw − u)G

2
tr(du)dr.

Moreover, Gt(dw) is the subprobability measure, i.e., Gt(R
n) ¬ 1, t ∈ [0, T ].

P r o o f. Making the change of variables, we have

|Ft(x, y)| ¬ C1C2

t∫
0

∫
R3n

h1t−s(z − w1 − x)h2s(y − w2 − z)

×
G1
t−s(dw1)G

2
s(dw2)

(t− s)1−δ1s1−δ2
dzds

¬ C1C2B(δ1, δ2)t
−1+δ1+δ2

×
∫
Rn

ht(y − x− w)
[ 1∫

0

∫
Rn

G1
t(1−r)(dw − u)G

2
tr(du)

B(δ1, δ2)(1− r)1−δ1r1−δ2
dr

]
,

which gives (3.33). Further, since Git(R
n) ¬ 1, i = 1, 2, we get Gt(R

n) ¬ 1. �

Probability and Mathematical Statistics 37, z. 1, 2017
© for this edition by CNS



Intrinsic compound kernel estimates 73

By Lemma 3.2, we have the following estimates for the convolution powers
of Φ:

(3.34) |Φ~k
t (x, y)| ¬ CkΓk(δ)

Γ(kδ)
t−1+δk(h

(k)
t ∗G

(k)
t )(y − x), t ∈ (0, T ],

where x, y ∈ Rn, k  1, the constant C > 0 comes from (3.29), h(1) ≡ g̃,

h
(k+1)
t (x) = sup

s<t
(h

(k)
t−s ∗ h(1)s )(x), k  1,

and

(3.35) G
(k)
t (du)

:=


Gt(du), k = 1,

1

B
(
δ, (k − 1)δ

) 1∫
0

∫
Rn

(1− r)−1+(k−1)δr−1+δG
(k−1)
t(1−r)(dw − u)Gtr(du)dr,

k  2,

Hence, to guarantee the convergence of the series of convolution powers (2.7), it is
enough to derive a proper upper bound on the sequence of functions h(k)t . For this
reason, we give the following lemma.

LEMMA 3.3. Let gt(x) be defined in (3.12). Then for any θ ∈ (0, 1), T > 0,
we have

(3.36) (gt−s ∗ gs)(x) ¬ C0(θ)gt(θx), 0 < s < t, x ∈ Rn, t ∈ (0, T ],

where C0(θ) = c(1− θ)−n, and c > 0 is some constant.

P r o o f. Consider the integral

(3.37) I(t, x) :=
∫
Rn

gt−s(x− z)gs(z)dz.

Suppose that 0 < s ¬ t/2. Note that for s < t/2 we infer by the monotonicity of
ρt that ρt−s ¬ ρt/2. Further, for c1  1 we have q∗(r) ¬ q∗(c1r) ¬ c21q∗(r) for all
r  1, which implies ρt ≍ ρc1t for all t ∈ (0, T ]. Therefore,

ρt/2 ¬ c2ρt, t ∈ (0, T ].

Since ρt is decreasing, the triangle inequality

∥x− z∥ρt−s + ∥z∥ρs  ∥x∥ρt
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gives

I(t, x) ¬ e−bθ∥x∥ρt
∫
Rn

ρnt−sρ
n
s e
−b(1−θ)[ρt−s∥x−z∥+ρs∥z∥]dz

¬ ρnt/2e
−bθρt∥x∥

∫
Rn

ρns e
−b(1−θ)ρs∥z∥dz

= C(θ)gt(θx),

(3.38)

where C(θ) := cn2c0[b(1− θ)]−n, c0 :=
∫
Rn e

−∥z∥dz. �

LEMMA 3.4. For any T > 0 and any sequence (θk)k1 such that

θ1 = 1, and θk+1 < θk, θk > 0, k  1,

we have for k  2 the estimate

(3.39) |Φ~k
t (x, y)| ¬ Ckt−1+δk(g

(k)
t ∗G

(k)
t )(y − x), t ∈ (0, T ], x, y ∈ Rn,

where the subprobability measures (G(k))k1 are defined in (3.35),

(3.40) g
(k)
t (x) := tδkgt(θkx), k  1,

and

Ck :=
Ckck−1Γk(δ)

Γ(kδ)

k∏
j=2

(
1

θj−1 − θj

)n
, k  2,

with the positive constants C and c coming from (3.29) and Lemma 3.3, respec-
tively.

P r o o f. By the monotonicity of gt(x) in xwe have gt(x) ¬ gt(θk−1x). There-
fore, using Lemma 3.3 with θ = θk/θk−1, we get

(g
(k−1)
t−s ∗ g(1)s )(x) ¬ tδk

∫
Rn

gt−s(θk−1x− θk−1y)gs(θk−1y) dy

= tδkθ−nk−1
∫
Rn

gt−s(θk−1x− y′)gs(y′) dy′

¬ Dkt
δkgt(θkx)

= Dkg
(k)
t (x),

where

Dk = (θk−1)
−nC0(θk/θk−1) =

c(
θk−1(1− θk/θk−1)

)n =
c(

θk−1 − θk
)n .

Then (3.39) follows from (3.34). �
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The estimate (3.39) is still hardly applicable to verifying the convergence of
the series of convolution powers (2.7): to keep this sequence of estimates consis-
tent, one should choose the sequence {θk} such that infk θk > 0, and then it is
difficult to bound properly the values of the constants Ck. In order to illustrate this,
take, e.g., θk := 1/2 + 1/(2k). Then

k∏
j=2

(
1

θj−1 − θj

)n
=

k∏
j=2

(
2j(j − 1)

)n
=
(
2kk!(k − 1)!

)n
,

which increases faster than Γ(kδ) in the denominator in the definition of Ck.
In order to overcome this problem, we change after a finite number of steps

the sequence g(k)t (x). This change finally allows us to prove the convergence of the
series (2.7).

Let

(3.41) k0 =
[ n
αδ

]
+ 1.

Note that for such k0 we have tδk0ρnt ¬ c(k0) for t ∈ (0, T ]. Then

(g
(k0)
t−s ∗ g(1)s )(x) ¬ c(k0)

∫
Rn

sδρns e
−bθk0ρt−s∥x−z∥−bρs∥z∥dz

¬ c(k0)Me−bζρt∥x∥ = c(k0)Mρ−nt gt,ζ(x), 0 < s < t,

where ζ = θk0 , gt,ζ(x) is of the form (3.17), and

(3.42) M := T δ
∫
Rn

e−b(1−ζ)∥z∥dz.

By induction, we get
(3.43)
ḡ
(k0+ℓ+1)
t (x) := sup

0<s<t
(ḡ

(k0+ℓ)
t−s ∗ g(1)s )(x) ¬ c(k0)M ℓ+1ρ−nt gt,ζ(x), ℓ  0.

LEMMA 3.5. For any T > 0 we have for ℓ  1, t ∈ (0, T ], x, y ∈ Rn,

(3.44) |Φ~(k0+ℓ)
t (x, y)| ¬ Dℓt

−1+δ(k0+ℓ)ρ−nt (gt,ζ ∗G
(k0+ℓ)
t )(y − x),

where k0 is given by (3.41), the family of subprobability measures {G(k)
t , t > 0,

k  1} is defined in (3.35),

(3.45) Dℓ :=
C(k0)(CM)ℓΓk0+ℓ(δ)

Γ
(
(k0 + ℓ)δ

) ,

C(k0) > 0 being some constant, and C,M > 0 coming from (3.29) and (3.42),
respectively.

The proof follows by induction; we omit the details.
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3.4. Proof of Theorem 2.1. (a) Using the relations (3.39), (3.44) and the in-
equality g(k)t (x) ¬ T kδgt,ζ(x), 1 ¬ k ¬ k0, we get for t ∈ (0, T ]

(3.46) |Ψt(x, y)|

¬
∞∑
k=1

|Φ~k
t (x, y)| ¬

k0∑
k=1

Ckt
−1+kδ(g

(k)
t ∗G

(k)
t )(y − x)

+
∞∑
ℓ=1

Dℓt
−1+δ(k0+ℓ)ρ−nt (gt,ζ ∗G

(k0+ℓ)
t )(y − x)

¬ t−1+δ
(
gt,ζ ∗

( k0∑
k=1

T δ(k−1)CkG
(k)
t +

∞∑
ℓ=1

T δ(k0+ℓ−1)DℓG
(k0+ℓ)
t

))
(y − x)

¬
( k0∑
k=1

T δ(k−1)Ck +
∞∑
ℓ=1

T δ(k0+ℓ−1)Dℓ

)
t−1+δ(gt,ζ ∗Πt)(y − x),

(3.47)

Πt(du) :=

k0∑
k=1

T δ(k−1)CkG
(k)
t (du)+

∞∑
ℓ=1

T δ(k0+ℓ−1)DℓG
(k0+ℓ)
t (du)

k0∑
k=1

T δ(k−1)Ck +
∞∑
ℓ=1

T δ(k0+ℓ−1)Dℓ

, t∈(0, T ].

Since G(k)
t , k  1, are the subprobability measures, we have

(3.48) Πt(R
n) ¬ 1, t ∈ (0, T ].

Thus, we proved that the series Ψt(x, y) =
∑∞

k=1Φ
~k
t (x, y) converges for any

t ∈ (0, T ] , x, y ∈ Rn, uniformly on compact subsets of (0,∞)×Rn ×Rn.
Finally, let us show that (p0~Ψ)t(x, y) is well defined. Using the upper bound

for p0 (cf. (3.15) with k = 0) and the estimate for Ψ (cf. (3.46)), by Lemmas 3.2
and 3.3 we get

(3.49) |(p0 ~Ψ)t(x, y)| ¬ tδ(gt,χ ∗ Π̃t)(y − x), t ∈ (0, T ], x, y ∈ Rn,

where χ ∈ (0, ζ), ζ comes from (3.46), gt,κ(x) is of the form (3.17), and

(3.50) Π̃t(dw) := δ
1∫
0

∫
Rn

(1− r)−1+δΠt(1−r)(dw − u)Ptr(du)dr.

By the definition of Πt and Pt, Π̃t(Rn) ¬ 1. Thus, the expression (2.4) is well
defined, and the series involved in this expression converges absolutely, uniformly
on compact sets of (0,∞)×Rn ×Rn.

(b) By assumption A2 we have

∥ξ∥k|eiξ(x−y)−tq(y,ξ)| ¬ e−ct0q(ξ), x, y ∈ Rn, t ∈ [t0,∞),
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for any t0 > 0 and k  0. Therefore, since the function |eiξ(x−y)−tq(y,ξ)| is con-
tinuous, has continuous derivatives, and q(ξ)  c∥ξ∥α for ∥ξ∥  1 (see (2.13) and
(2.19)), it follows by the dominated convergence theorem that the function

p0t (x, y) = (2π)−n
∫
Rn

eiξ(x−y)−tq(y,ξ)dξ

has continuous derivatives in (t, x) ∈ (0,∞)×Rn.
Next we prove that the functions Φ~k

t (x, y), k  0, are continuous in (t, x, y)
on (0,∞) × Rn × Rn. Let us show that Φt(x, y) is continuous. As we have just
shown, for any t0 > 0

|∂2xixjp
0
t (x, y)| ¬ c, t  t0, x, y ∈ Rn, 1 ¬ i, j ¬ n,

we get

|p0t (x+ u, y)− p0t (x, y)−∇xp0t (x, y) · u1{∥u∥¬1}| ¬ C(∥u∥2 ∧ 1),

where t > t0, x, y ∈ Rn. Therefore, from the dominated convergence theorem we
derive that Lxp0t (x, y) is continuous in (t, x, y) on [t0,∞)×Rn ×Rn. Therefore,
since ∂tp0t (x, y) is continuous in (t, x, y) on [t0,∞) × Rn × Rn and t0 > 0 is
arbitrary, we obtain the desired continuity of Φt(x, y).

To show that the convolutions Φ~k
t (x, y) are continuous, we use induction.

Suppose that Φ~(k−1)
t (x, y) is continuous. Let t0 > ε > 0, and suppose that

t ∈ [t0,∞). Write

Φ~k
t (x, y) =

t−ε∫
0

[ ∫
Rn

Φ
~(k−1)
t−s (x, z)Φs(z, y)dz

]
ds

+
t∫
t−ε

[ ∫
Rn

Φ
~(k−1)
t−s (x, z)Φs(z, y)dz

]
ds

=
t−ε∫
0

[ ∫
Rn

Φ
~(k−1)
t−s (x, y − z)Φs(y − z, y)dz

]
ds

+
ε∫
0

[ ∫
Rn

Φ~(k−1)
s (x, x− z)Φt−s(x− z, y)dz

]
ds

=: I1(t, x, y) + I2(t, x, y).

(3.51)

We prove the continuity of I1(t, x, y); the continuity of I2(t, x, y) follows by the
same argument.

By the induction assumption, the function Φ
~(k−1)
t−s (x, z)Φs(z, y) is contin-

uous in s ∈ (0, t − ε], t ∈ [t0,∞), (x, y) ∈ Rn × Rn. Moreover, by (3.39) and
(3.11) we obtain

|Φ~(k−1)
t−s (x, y − w)Φs(y − w, y)| ¬ C(t− s)−1+2δ(k−1)s−1+ηρnt−s(gs ∗Gs)(w)

¬ C(ε)s−1+η(gs ∗Gs)(w).
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Since the right-hand side of the above inequality is integrable on [0, t − ε] ×Rn,
we infer by the dominated convergence theorem that I1(t, x, y) is continuous in
(t, x, y) ∈ [t0,∞) × Rn × Rn. Finally, since t0 and ε are arbitrary, we get the
continuity in (t, x, y) on (0,∞)×Rn ×Rn.

Since the series
∑∞

k=1Φ
~k
t (x, y) converges uniformly on compact subsets of

(0,∞) × Rn × Rn, the function Ψt(x, y) is continuous in (t, x, y) ⊂ (0,∞) ×
Rn ×Rn.

The proof of the continuity of p0 ~ Ψ follows by the same argument as the
proof of continuity of Φ~k

t , we only need to use estimates on p0 and Ψ, see (3.15)
and (3.46). �

3.5. Continuity properties of the operator St. Note that by construction we
have for any subprobability measure Mt(·) on Rn

(3.52)
∫
Rn

(gθ,t ∗Mt)(y)dy ¬ C, t ∈ (0, T ], x ∈ Rn.

Therefore, by (3.15) and (3.49) we have∫
Rn

pt(x, y)dy ¬ C, t ∈ (0, T ], x ∈ Rn.

Then the operator Stf , t > 0 (cf. (2.10)), is well defined for any bounded measur-
able function f .

LEMMA 3.6. (1) For any t > 0 the operator St mapsC∞(Rn) intoC∞(Rn).
(2) For every f ∈ C∞(Rn) we have limt→0+ ∥Stf − f∥∞ = 0.

The proof relies on the proposition below.

PROPOSITION 3.7. For every f ∈ C∞(Rd)

(3.53) lim
|x|→∞

∫
Rd

p0t (x, y)f(y)dy = 0 for any t > 0,

(3.54) sup
x∈Rd

∣∣ ∫
Rd

p0t (x, y)f(y)dy − f(x)
∣∣→ 0, t→ 0.

In order to keep the presentation as clear as possible, we defer the proof of this
proposition to Appendix B.

P r o o f o f L e m m a 3.6. (1) The continuity of Stf follows from the con-
tinuity of pt(x, y). To prove that Stf(x) vanishes as ∥x∥ → ∞, we use the repre-
sentation for pt(x, y) (cf. (2.4) and (2.6)):∣∣ ∫

Rn

pt(x, y)f(y)dy
∣∣ ¬ ∫

Rn

p0t (x, y)|f(y)|dy +
∫
Rn

|(p0 ~Ψ)t(x, y)f(y)|dy

=: I1(t, x) + I2(t, x).
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By statement (3.53) of Proposition 3.7, the first term on the right-hand side tends
to zero as ∥x∥ → ∞. Using the upper estimate on p0 ~Ψ (cf. (3.49)), we get

I2(t, x) ¬ Ctδ
∫
Rn

[ ∫
Rn

gt,χ(y − x− w)|f(y)|dy
]
Π̃t(dw)

= Ctδ
∫
Rn

[ ∫
Rn

gt,χ(z − w)|f(z + x)|dy
]
Π̃t(dw),

and the right-hand side tends to zero as |x| → ∞ by the dominated convergence
theorem (recall that the parameter χ comes from (3.49)).

(2) By (3.54) it is enough to show that

(3.55) sup
x

∣∣ t∫
0

∫
Rd

∫
Rd

Ψt−s(x, z)p
0
s(z, y)f(y)dydzds

∣∣→ 0, t→ 0.

By (3.49) we have

sup
x

∣∣ t∫
0

∫
Rd

∫
Rd

Ψt−s(x, z)p
0
s(z, y)f(y)dydzds

∣∣ ¬ c1tδ ∫
Rn

(gt,χ ∗ Π̃t)(y) dy ¬ c2tδ,

which completes the proof. �

4. APPROXIMATE POSITIVE MAXIMUM PRINCIPLE. PROOF OF THEOREM 2.2

We follow, with the necessary changes, the approach described in [49].
In Section 3 we constructed the function pt(x, y) under the assumption that

pt(x, y) is a fundamental solution to the Cauchy problem for ∂t − L. As in [49],
the straightforward way to check (2.2) and (2.3) meets difficulties. To explain them,
let us look at the behavior of the derivatives of p0t (x, y) near the origin.

Let

(4.1) Pt(du) := c
(
Pt(du) + (Pt ∗ Λt)(du)

)
,

where for any T > 0 the constant c > 0 is chosen such that Pt(Rn) ¬ 1 for all
t ∈ (0, T ], which is possible since Λt(R

n) ¬ n2 (cf. Proposition 3.1).

PROPOSITION 4.1. The function p0t (x, y) is differentiable with respect to t,
the derivative ∂tp0t (x, y) is continuous in (t, x, y) ∈ (0,∞) × Rn × Rn, and for
k = k1 + . . .+ kn  0, T > 0, there exist constants Ãk, ãk > 0 such that
(4.2)∣∣∣∣ ∂∂t ∂k

∂xk11 . . . ∂xknn
p0t (x, y)

∣∣∣∣ ¬ t−1ρkt (fup ∗ Pt)(y − x), t ∈ (0, T ], x, y ∈ Rn,

where Pt(du) is the subprobability measure defined in (4.1), and fup is of the form
(2.22) with constants Ãk and ãk in place of d1 and d2, respectively.
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The proof of this proposition can be obtained by a simple modification of the
proof of the respective statement in [48], see also [46]. We omit the details.

From (4.2) and (3.46) it is unclear why the function pt(x, y) given by (2.4) is
in the domain of the operator L, which was so far defined on C2

∞(R
n)-functions.

Consequently, we cannot check straightforwardly if (2.3) holds true, and to verify
in this way the correctness of the procedure performed in Section 3.

To avoid this difficulty, we introduce for ε > 0 the auxiliary function

(4.3) pt,ϵ(x, y) := p0t+ϵ(x, y) +
t∫
0

∫
Rn

p0t−s+ε(x, z)Ψs(z, y)dzds.

Since the additional time shift by positive ε removes the singularity at the point
s = t, the function pt,ε(x, y) has the following properties:

(i) p·,ϵ(x, y) ∈ C1
(
(0,∞)

)
for any fixed ϵ > 0, x, y ∈ Rn;

(ii) pt,ϵ(·, y) ∈ C2
∞(R

n) for any fixed ϵ > 0, t > 0, y ∈ Rn;
(iii) for any 0 < τ < T we have pt,ϵ(x, y)→ pt(x, y) as ϵ→ 0, uniformly in

(t, x) ∈ [τ, T ]×Rn ×Rn;
(iv) for any 0 < τ < T we have

qt,ϵ(x, y) := (∂t − Lx)pt,ϵ(x, y)→ 0, ε→ 0,

uniformly in (t, x, y) ∈ [τ, T ]×Rn ×Rn.
The proofs of the above properties are analogous to the proofs of the respective

properties for

(4.4) St,εf(x) :=
∫
Rn

pt,ϵ(x, y)f(y)dy, t > 0, x ∈ Rn,

given in Lemmas 4.1 and 4.2. Here we only mention that properties (iii) and (iv)
motivate to name pt,ε(x, y) the approximate fundamental solution.

LEMMA 4.1. (1) For any f ∈ C∞(Rn), ε > 0, the function St,εf(x) belongs
to C1

(
(0,∞)

)
as a function of t, and to C2

∞(R
n) as a function of x.

(2) For every f ∈ C∞(Rn), T > 0,

(4.5) lim
ε→0
∥St,εf − Stf∥∞ = 0,

uniformly in t ∈ [0, T ]; and for every ε > 0

(4.6) St,εf(x)→ 0, ∥x∥ → ∞,

uniformly in t ∈ [0, T ].
(3) For f ∈ C∞(Rn) we have

lim
t,ε→0+

∥St,εf − f∥∞ = 0.
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P r o o f. The proof of the first statement follows from the upper estimate
(3.46) on Ψt(x, y), Proposition 4.1, and the dominated convergence theorem.

Observe that the function

[0, T ] ∋ t 7→
∫
Rn

p0t (·, y)f(y) dy ∈ C∞(Rn)

is continuous, since the function p0t (x, y) is continuous in t for t > 0, and the
continuity of the integral at t = 0 follows from Proposition 3.7. Then∫

Rn

p0t+ϵ(x, y)f(y) dy →
∫
Rn

p0t (x, y)f(y) dy, ϵ→ 0,

uniformly in t ∈ [0, T ], x ∈ Rn. This together with Proposition 4.1, the estimate
(4.2) and the dominated convergence theorem implies statement (2).

The proof of statement (3) is a slight modification of the proof of statement (2)
in Lemma 3.6: we just need to substitute p0t+ε(x, y) and Ψt+ε−s(x, z) for p0t (x, y)
and Ψt−s(x, z) in (3.53) and (3.55), respectively. �

Let us put

(4.7) Vt,εf(x) = (∂t − Lx)St,εf(x), f ∈ C∞(Rn).

LEMMA 4.2. For any f ∈ C∞(Rn) the following statements hold true:
(1) We have

(4.8) Vt,εf(x)→ 0, ϵ→ 0,

uniformly in (t, x) ∈ [τ, T ]×Rn for any τ > 0, T > τ .
(2) We have

(4.9)
t∫
0

Vs,εf(x)ds→ 0, ϵ→ 0,

uniformly in (t, x) ∈ [0, T ]×Rn for any T > 0.

P r o o f. Note that St,εf ∈ C2
∞(R

n), and thus the expression

(4.10) LSt,εf(x)

= Lx
∫
Rn

p0t+ϵ(x, y)f(y)dy + Lx
t∫
0

∫
Rn

∫
Rn

p0t−s+ϵ(x, z)Ψs(z, y)f(y)dydzds

is well defined. Let us show that we can interchange Lx with the integrals in (4.10),
i.e., that

(4.11) LSt,εf(x)

=
∫
Rn

Lxp
0
t+ϵ(x, y)f(y)dy +

t∫
0

∫
Rn

∫
Rn

Lxp
0
t−s+ϵ(x, z)Ψs(z, y)f(y)dydzds.
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Recall the representation of L, cf. (1.1). By Proposition 4.1, the gradient term in
(1.1) can be interchanged with the integral by the dominated convergence theorem.
To do the same with the “integral part” L of L, observe that

Lf(x) = lim
υ→0+

L(υ)f(x),

L(υ)f(x) :=
∫
∥u∥>υ

(
f(x+ u)− f(x)−∇f(x) · u1{∥u∥¬1}

)
µ(x, du).

Clearly, the operator L(υ) can be interchanged with the integrals by the Fubini
theorem. On the other hand,

|Lf(x)− L(υ)f(x)| =
∣∣ ∫
∥u∥¬υ

(
f(x+ u)− f(x)−∇f(x) · u1{∥u∥¬1}

)
µ(x, du)

∣∣
¬ C∥∇2f∥∞ sup

x∈Rn

∫
∥u∥¬υ

∥u∥2µ(x, du).

Using again Proposition 4.1, (3.46), and the dominated convergence theorem, we
can pass to the limit in the expression

t∫
0

∫
Rn

∫
Rn

L(υ)x p0t−s+ϵ(x, z)Ψs(z, y)f(y)dydzds

as υ → 0. Thus, (4.11) holds true.
Similarly, by Proposition 4.1 we get

∂tSt,εf(x)=
∫
Rn

∂tp
0
t+ϵ(x, y)f(y)dy+

t∫
0

∫
Rn

∫
Rn

∂tp
0
t−s+ϵ(x, z)Ψs(z, y)f(y)dydzds

+
∫
Rn

∫
Rn

p0ϵ (x, z)Ψt(z, y)f(y)dydz.

(4.12)

Since
(Lx − ∂t)p0t (x, y) = Φt(x, y),

combining (4.11) and (4.12), we obtain

Vt,ϵf(x) =
∫
Rn

∫
Rn

p0ϵ (x, z)Ψt(z, y)f(y)dydz−
∫
Rn

Φt+ϵ(x, y)f(y)dy

−
t∫
0

∫
Rn

∫
Rn

Φt−s+ϵ(x, z)Ψs(z, y)f(y)dydzds.

(4.13)

Since the function Ψ satisfies the equation

Φt(x, y) = Ψt(x, y)−
t∫
0

∫
Rn

Φt−s(x, z)Ψs(z, y) dzds,
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we can rewrite Vt,ϵf(x) as follows:

Vt,ϵf(x) =
∫
Rn

( ∫
Rn

p0ϵ (x, z)Ψt(z, y)dz −Ψt+ϵ(x, y)
)
f(y)dy

+
∫
Rn

( t+ϵ∫
t

∫
Rn

Φt−s+ϵ(x, z)Ψs(z, y)dzds
)
f(y)dy

=: V 1
t,ϵf(x) + V 2

t,ϵf(x).

By the uniform continuity of Ψ on compact subsets of (0,∞)×Rn ×Rn and the
estimate (3.46), we have for f ∈ C∞(Rn)

sup
t∈[τ,T ],x∈Rn

∣∣ ∫
Rn

Ψt+ϵ(x, y)f(y) dy −
∫
Rn

Ψt(x, y)f(y) dy
∣∣→ 0, ε→ 0.

Similarly, (3.46), (3.54), and the uniform continuity of Ψ on compact subsets of
(0,∞)×Rn ×Rn give

sup
t∈[τ,T ],x,y∈Rn×Rn

∣∣ ∫
Rn

p0ε(x, z)Ψt(z, y) dz −Ψt(x, y)
∣∣→ 0, ε→ 0,

sup
t∈[τ,T ],x∈Rn

∣∣ ∫
Rn

∫
Rn

p0ε(x, z)Ψt(z, y)f(y) dzdy−
∫
Rn

Ψt(x, y)f(y) dy
∣∣→0, ε→0.

This proves (4.8) with V 1
t,ϵf(x) instead of Vt,ϵf(x). Since by (3.49) we have

|V 1
t,ϵf(x)| ¬ Ct−1+δ,

the convergence (4.9) for V 1
t,εf(x) follows easily from (4.8).

Since |f | is bounded, by (3.11) and (3.46) we obtain

(4.14)
∫
Rn

∫
Rn

t+ϵ∫
t

|Φt−s+ϵ(x, z)Ψs(z, y)f(y)|dzdsdy

¬ c1
∫
Rn

∫
Rn

t+ε∫
t

(t− s+ ε)−1+η(gt−s+ε ∗Gt−s+ε)(z − x)

× s−1+δ(gs,ζ ∗Πs)(y − z)dsdzdy

¬ c2
t+ε∫
t

∫
Rn

(t− s+ ε)−1+ηs−1+δgt−ε,χ(y − x− w)

×
[ ∫
Rn

Gt−s+ε(dw − u)Πs(du)
]
ds ¬ c3

t+ε∫
t

(t− s+ ε)−1+ηs−1+δds

¬ c4t−1+δεη, t ∈ [τ, T ], x, y ∈ Rn.

This immediately gives (4.8) and (4.9) with V 2
t,ϵf(x) instead of Vt,ϵf(x). �
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4.1. Positive maximum principle applied to the approximate fundamental
solution. Proof of Theorem 2.2. The proof of Theorem 2.2 follows from Lem-
mas 4.3–4.5 given below. The arguments used in the proofs of these lemmas are
literally the same as those used in [49]. In order to make our paper self-contained,
we give the proof of Lemma 4.3, a hint of the proofs of Lemmas 4.4 and 4.5, and
refer to [49] for the details.

LEMMA 4.3. The operator St defined in (2.10) is positivity preserving, i.e.,
Stf  0 if f  0.

P r o o f. Take f ∈ C∞(Rn), f  0, and suppose that

(4.15) inf
t,x
Stf(x) < 0.

Then there exists T > 0 such that

inf
t¬T,x∈Rn

Stf(x) < 0.

Then by (4.5) there exist ς > 0, θ > 0, ε1 > 0 such that

inf
t¬T,x∈Rn

(
St,εf(x) + θt

)
< −ς, ε < ε1.

Let us put
uϵ(t, x) = St,εf(x) + θt,

and note that, by (4.6),

uϵ(t, x)→ θt > 0, ∥x∥ → ∞,

uniformly in t ∈ [0, T ]. Hence the above infimum is in fact attained at some point;
in what follows we fix one such point for each ε, and denote it by (tε, xε).

Since f(x)  0, by statement (2) of Lemma 4.1 there exist ε0 > 0, τ > 0 such
that

St,εf(x) + θt  − ς
2
, t ¬ τ, ε < ε0, x ∈ Rn.

Because
uϵ(tε, xε) = min

t∈[0,T ],x∈Rn
uε(t, x) < −ς < −

ς

2
,

we have tε > τ as soon as ε < ε0.
The operator L satisfies the positive maximum principle; that is, if f ∈ D(L),

and f(x0)  0, where x0 = argmax f(x), then Lf(x0) ¬ 0, cf. [26], Chapter 4.2.
Therefore,

Lxuε(t, x)|(t,x)=(tε,xε)  0.
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In addition, for ε < ε0
∂tuε(t, x)|(t,x)=(tε,xε) ¬ 0.

Note that the inequality sign may here appear if tε = T , and because we have
excluded another “boundary case” tε = τ , the inverse inequality is impossible.

Then

(4.16) (∂t − Lx)uε(t, x)|(t,x)=(tε,xε) ¬ 0.

On the other hand, because tε ∈ [τ, T ], ε < ε0, by the first statement of Lemma 4.2
we have

(∂t − Lx)uε(t, x)|(t,x)=(tε,xε) = θ + Vtε,εf(xε)→ θ > 0, ε→ 0.

This gives a contradiction and shows that (4.15) fails. �

LEMMA 4.4. The family of operators has the semigroup property:St+s=SsSt.

P r o o f. Take f ∈ C∞(Rn). Applying the same argument as that used in the
proof of Lemma 4.3 to the functions

u±(t, x) = ±St+sf(x)∓ StSsf(x),

we have u±(t, x) 0, which implies that the identity St+sf(x)−StSsf(x)
= 0 holds true. �

LEMMA 4.5. We have

(4.17a) Stf(x)− f(x) =
t∫
0

SsLf(x) ds, f ∈ C2
∞(R

n);

(4.17b) St1 = 1.

P r o o f. Applying the same argument as that used in the proof of Lemma 4.3
to the functions

u±(t, x) = ±
(
Stf(x)− f(x)

)
∓

t∫
0

SsLf(x) ds, f ∈ C2
∞(R

n),

and using the statement (2) of Lemma 4.2, we get the identity (4.17a).
The identity (4.17b) follows from (4.17a) by taking fn → 1, fn ∈ C2

∞(R
n),

such that Lfn(x)→ 0. �

P r o o f o f T h e o r e m 2.2. By Lemmas 4.3–4.5, the family of operators
(St)t0 forms a strongly continuous contraction semigroup which is positivity pre-
serving. Since the semigroup (St)t0 has the continuous transition probability den-
sity pt(x, y), the respective Markov process X is the strong Feller process. Finally,
the expression (4.17a) and the statement (2) of Lemma 3.6 imply that the restriction
of the generator of (St)t0 coincides with L on functions from C2

∞(R
n). �
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5. TIME DERIVATIVES. PROOF OF THEOREM 2.6

Proposition 4.1 allows us to transfer the differentiability properties of p0t (x, y)
to pt(x, y). For this we need to establish the continuity and upper estimates on
∂tΦ

~k and ∂tΨ~k.

LEMMA 5.1. The function Ψt(x, y) is differentiable with respect to t, the
derivative ∂tΨt(x, y) is continuous in (t, x, y) ∈ (0,∞)×Rn ×Rn, and for any
T > 0 there exists a family of subprobability measures {Θt, t  0} such that

(5.1) |∂tΨt(x, y)| ¬ t−2+δ(gt,ζ ∗Θt)(y − x), t ∈ (0, T ], x, y ∈ Rn.

P r o o f. The proof follows the same strategy as that of Theorem 2.1. Using
Proposition 4.1, we can obtain the estimate for ∂tΦt(x, y) in the same way as it
was done for Φt(x, y) in Lemma 3.1:

(5.2) |∂tΦt(x, y)| ¬ Ct−2+δ(g̃t ∗ Gt)(y − x), t ∈ (0, T ], x, y ∈ Rn,

where C > 0, δ ∈ (0, 1) are the same as in (3.29), g̃t is of the form (3.28), and the
family of measures Gt(du) is given by

(5.3) Gt(du) := c
(
Pt,κ(du) + (Λt ∗ Pt,κ)(du)

)
,

Pt,κ(du) :=
(
1 + ρκt (∥u∥κ ∧ 1)

)
Pt(du).

Here c > 0 is the normalizing constant such that Gt(Rn) ¬ 1 for all t ∈ (0, T ].
Note that, by definition,

(5.4) Gt  Gt.

To show that ∂tΦt(x, y) is continuous in (t, x, y), we follow line by line the
proof of continuity of Φt(x, y) (cf. the proof of Theorem 2.1 (b)). Observe that the
function ∂tp0t (x, y) is continuous in (t, x, y), and ∂tp0t (·, y) ∈ C2

∞(R
n). Then for

any t0 > 0

|∂tp0t (x+ u, y)− ∂tp0t (x, y)−∇x∂tp0t (x, y) · u1{∥u∥¬1}| ¬ C(∥u∥2 ∧ 1),

where t > t0, x, y ∈ Rn. Therefore, the function ∂tLxp0t (x, y) = Lx∂tp
0
t (x, y) is

continuous, which together with continuity of ∂2t p
0
t (x, y) implies the continuity of

∂tΦt(x, y) in (t, x, y).
To show the continuity of ∂tΦ~k

t (x, y) for k  2 we use induction. Write

(5.5) Φ
~(k+1)
t (x, y)

=
t/2∫
0

∫
Rn

Φ~k
t−s(x, z)Φs(z, y) dzds+

t/2∫
0

∫
Rn

Φ~k
s (x, z)Φt−s(z, y) dzds.
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Observe that now the functions under the integrals do not have singularities in t.
Differentiating the above expression in t, we get

(5.6) ∂tΦ
~(k+1)
t (x, y) =

t/2∫
0

∫
Rn

(∂tΦ
~k)t−s(x, z)Φs(z, y) dzds

+
t/2∫
0

∫
Rn

Φ~k
s (x, z)(∂tΦ)t−s(z, y) dzds+

∫
Rn

Φ~k
t/2(x, z)Φt/2(z, y) dz.

Since by the induction assumption all functions under the integrals are continu-
ous in (t, x, y), the above expression implies the continuity of ∂tΦ

(k+1)
t (x, y) in

(t, x, y) ∈ (0,∞)×Rn ×Rn.
Let us show by induction that

(5.7) |∂tΦ~k
t (x, y)| ¬ C̃kt−2+kδ(g

(k)
t ∗ G

(k)
t )(y − x), k  2,

where the sequence g(k)t is given by (3.40), and

(5.8) G(k)t (dw) :=
1

1 +B
(
(k − 1)δ, δ

)( 1∫
0

∫
Rn

r−1+δ(1− r)−1+δ(k−1)

× G(k−1)t(1−r)(dw − u)Gtr(du)dr + (G(k−1)t/2 ∗ Gt/2)(dw)
)
, k  2.

Suppose that (5.7) holds true for some k  2. Using (5.2), (5.6), (3.39) and Lem-
mas 3.2 and 3.3, we obtain

|∂tΦ~(k+1)
t (x, y)| ¬

t/2∫
0

∫
Rn

|(∂tΦ~k)t−s(x, z)Φs(z, y)| dzds

+
t/2∫
0

∫
Rn

|Φ~k
s (x, z)(∂tΦ)t−s(z, y)| dzds+

∫
Rn

|Φ~k
t/2(x, z)Φt/2(z, y)| dz

¬ c1(k)
∫
Rn

g
(k+1)
t (y−x−w)

[ t/2∫
0

∫
Rn

(t− s)−2+kδs−1+δG(k)t−s(dw − u)Gs(du)ds
]

+ c2(k)
∫
Rn

g
(k+1)
t (y−x−w)

[ t/2∫
0

∫
Rn

(t−s)−1+kδs−2+δG(k)
t−s(dw−u)Gs(du)ds

]
+ c3(k)t

−2+(k+1)δ
∫
Rn

g
(k+1)
t (y − x− w)

[ ∫
Rn

G
(k)
t/2(dw − u)Gt/2(du)

]
¬ c4(k)

∫
Rn

g
(k+1)
t (y − x− w)

[ t∫
0

∫
Rn

(t− s)−1+kδs−1+δG(k)t−s(dw − u)Gs(du)ds

+ t−2+(k+1)δ(G(k)t/2 ∗ Gt/2)(dw)
]

¬ C̃kt−2+(k+1)δ(g
(k+1)
t ∗ G(k+1)

t )(y − x),
where we used (5.4). This proves (5.7).
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Take as before k0 := [n/(αδ)] + 1. Then, applying induction and (3.43) (cf.
Lemma 3.5), we get

(5.9) |∂tΦ~(k0+ℓ)
t (x, y)| ¬ D̃ℓt

−2+δ(k0+ℓ)(gt,ζ ∗ G
(k0+ℓ)
t )(y − x), ℓ  1,

where

D̃ℓ :=
C(k0)K

ℓΓk0+ℓ(δ)

Γ
(
(k0 + ℓ)δ

) , ℓ  1,

and C(k0),K > 0 are some constants.
Finally, define

(5.10)

Θt(du) :=

k0∑
k=1

C̃kT
δ(k−1)G(k)t (du) +

∞∑
ℓ=1

D̃ℓT
ℓ(k0+ℓ−1)G(k0+ℓ)t (du)

k0∑
k=1

C̃kT δ(k−1) +
∞∑
ℓ=1

D̃ℓT ℓ(k0+ℓ−1)
, t∈(0, T ].

Then Θt(R
n) ¬ 1, t ∈ (0, T ], and thus (5.1) follows from (5.7) and (5.9). �

P r o o f o f T h e o r e m 2.6. The proof of differentiability of pt(x, y) essen-
tially follows from Proposition 4.1 and Lemma 5.1. Indeed, writing pt(x, y) in the
form

(5.11) pt(x, y)

= p0t (x, y)+
t/2∫
0

∫
Rn

p0t−s(x, z)Ψs(z, y) dzds+
t/2∫
0

∫
Rn

p0s(x, z)Ψt−s(z, y) dz ds,

and applying the above lemmas, we get

|∂tpt(x, y)| ¬ Ct−1(gt,χ ∗ Q̃t)(y − x), t ∈ (0, T ], x, y ∈ Rn,

where χ ∈ (0, ζ), ζ is coming from (5.9),

Q̃t(du) := c
(
Pt(du) + tδP̃t(du)

)
is a subprobability measure (here c = c(T ) > 0 is the normalizing constant),

P̃t(du) = (Pt/2 ∗Πt/2)(du) +
1/2∫
0

∫
Rn

r−1+δPt(1−r)(dw − u)Πtr(du)dr

+
1/2∫
0

∫
Rn

Θt(1−r)(dw − u)Ptr(du)dr,

and the measures Πt(du) and Θt(du) are given in (3.47) and (5.10), respectively. �

Probability and Mathematical Statistics 37, z. 1, 2017
© for this edition by CNS



Intrinsic compound kernel estimates 89

We finish this section with a lemma, which plays an important role in the proof
of Theorem 2.3.

LEMMA 5.2. (1) For any f ∈ C∞(Rn),

∥∂tSt,εf − ∂tStf∥∞ → 0 as ϵ→ 0,

uniformly on compact subsets of (0,∞). Also, ∂tStf(x) =
∫
Rn ∂tpt(x, y)f(y)dy.

(2) We have

∂tpt,ϵ(x, y)→ ∂tpt(x, y) as ϵ→ 0,

uniformly on compact subsets of (0,∞)×Rn ×Rn.

The proof relies on the decomposition (5.11), and the estimates on p0,Ψ, ∂tp0

and ∂tΨ obtained above; see the proof of Lemma 6.4 in [49] for details.

6. PROOFS OF THEOREMS 2.3 AND 2.4

The proofs repeat literally the proofs of the respective statements in [49]. In
order to make this paper self-contained, we sketch these proofs below.

P r o o f o f T h e o r e m 2.3. By Theorem 2.2 we know that
(
L,C2

∞(R
n)
)

is the restriction of
(
A,D(A)

)
. Since A is closed, this implies that

(
L,C2

∞(R
n)
)

is closable. Let us show that its closure coincides with
(
A,D(A)

)
.

Take f ∈ C∞(Rn) ∩ D(A). Fix t > 0, and consider the functions Stf and
St,εf . Since f ∈ D(A), we have Stf ∈ D(A), and

(6.1) AStf = ∂tStf.

Recall that St,εf(·) ∈ C2
∞(R

n) ⊂ D(A), which implies

ASt,εf = LSt,εf = ∂tSt,εf.

Further, statement (2) in Lemma 4.1 together with statements (1) of Lemmas 4.2
and 5.2 implies

LSt,εf → AStf in C∞(Rn) as ε→ 0,

and thus Stf belongs to the domain of theC∞(Rn)-closure of
(
L,C2

∞(R
n)
)
. Con-

sequently, this closure coincides with
(
A,D(A)

)
.

In addition, applying the same argument to the function pt,ε(x, y) instead
of St,εf(x) and using the second statement of Lemma 5.2, we infer that pt(x, y)
belongs to D(A), and is the fundamental solution to the Cauchy problem for
∂t −A. �
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P r o o f o f T h e o r e m 2.4. Using the Markov property of X , we deduce
from (4.17a) and the semigroup property for pt(x, y) the following: For given
f ∈ C2

∞(R
n), t2 > t1, and x ∈ Rn, for any m  1, r1, . . . , rm ∈ [0, t1], and

bounded measurable G : (Rn)m → Rn the identity

Ex
[
f(Xt2)− f(Xt2)−

t2∫
t1

hf (Xs) ds
]
G(Xr1 , . . . , Xrm) = 0

holds true. Thus, for every f ∈ C2
∞(R

n) the process

Mf
t = f(Xt)−

t∫
0

hf (Xs) ds, t  0,

is a Px-martingale for every x ∈ Rn; that is, X is a solution to the martingale
problem for

(
L,C2

∞(R
n)
)
.

Note that the operator
(
L,C2

∞(R
n)
)

is dissipative, which follows from the
positive maximum principle, see [26], Lemma 4.2.1, or [39], Lemma 4.5.2. Since
its closure equals the generator A of the C∞(R

n)-semigroup {St, t  0}, for
every λ > 0 the range of the resolvent (λ − L)−1 in C∞(Rn) is dense. Hence
the required uniqueness of the solution to the martingale problem

(
L,C2

∞(R
n)
)

follows by Theorem 4.4.1 in [26]. �

7. UPPER AND LOWER BOUNDS: PROOF OF THEOREM 2.5

P r o o f. U p p e r b o u n d. The upper bound is essentially contained in the
proof of Theorem 2.1. Namely, we already obtained the upper estimate on p0 ~Ψ,
see (3.49). Combining this estimate with the estimate (3.15) (for k = 0) for p0, we
derive the upper bound in (2.23) with

(7.1) Qt(du) := (1 + δ)−1
(
Pt(du) + tδΠ̃t(du)

)
.

Since Pt is the probability measure and Π̃t is the subprobability measure for
t ∈ [0, T ], Qt(Rn) ¬ 1 for all t ∈ [0, T ].

L o w e r b o u n d. By (3.49) and the fact that Π̃ is the subprobability measure
we get

(7.2) |(p0 ~Ψ)t(x, y)| ¬ c1ρnt tδ, x, y ∈ Rn, t ∈ (0, T ],

which implies the upper bound pt(x, x) ¬ c2ρ
n
t for all x ∈ Rn and t ∈ (0, T ].

Finally, using Proposition 3.5 and (7.2), we obtain for t small enough

pt(x, y)  p0t (x, y)− |(p0 ~Ψ)t(x, y)|  ρnt flow(∥y − x∥ρt)− c1ρnt tδ

 c2ρnt flow(∥y − x∥ρt). �
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8. PROOF OF THEOREM 2.7

P r o o f o f T h e o r e m 2.7. S u f f i c i e n c y. We use the upper bound con-
structed in Theorem 2.5.

Fix ℓ ∈ Sn, and define θt := inf{r : qU (rℓ)  1/t}. Note that by A1 we have
θt ≍ ρt for all t ∈ (0, 1]. For any T ∈ (0, 1], making the change of variables s = θt
and using (9.5) (see Appendix A) in the integration by parts, we get

T∫
0

∫
Rn

pt(x, y)ϖ(dy)dt ¬ c0
T∫
0

∫
Rn

∫
Rn

θnt e
−c∥x−y−w∥θtϖ(dy)Qt(dw)dt

¬ c1
∞∫
θT

∫
Rn

∫
Rn

sn−1qL(ℓs)(
qU (s)

)2 e−c∥x−y−w∥sϖ(dy)Qs(dw)ds

¬ c2
∞∫
θT

∫
Rn

∫
Rn

sn−1

q∗(s)
e−c∥x−y−w∥sϖ(dy)Qs(dw)ds

= c2
∞∫
θT

sn−1

q∗(s)

∫
Rn

∞∫
0

ϖ{y : e−c∥x−y−w∥s > r}drQs(dw)ds

= c3
∞∫
θT

sn−1

q∗(s)

∫
Rn

∞∫
0

ϖ{y : ∥x− y − w∥ ¬ v/s}e−cvdvQs(dw)ds

¬ c4
∞∫
θT

sn−1

q∗(s)

∞∫
0

h(v/s)e−cvdvds

= c4
∞∫
0

[ 1/θT∫
0

h(sv)

sn+1q∗(1/s)
ds

]
e−cvdv,

(8.1)

where Qs(dw) is the image measure of Qt(dw) under the transformation s = θt,

h(r) := sup
x∈Rn

ϖ{B(x, r)},

and in the second line from below we made use of the relationQs(Rn) ¬ 1 for all
s ∈ (θT ,∞]. Without loss of generality assume that c = 1. Split

I(T ) : =
∞∫
0

[ 1/θT∫
0

h(sv)

sn+1q∗(1/s)
ds

]
e−vdv

=
1∫
0

[ 1/θT∫
0

h(sv)

sn+1q∗(1/s)
ds

]
e−vdv +

∞∫
1

[ 1/θT∫
0

h(sv)

sn+1q∗(1/s)
ds

]
e−vdv

=: I1(T ) + I2(T ).

We show that under (2.27) (respectively, (2.28)) one has I(T ) → 0 as T → 0
(respectively, I(T ) <∞).
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By the monotonicity of h(r) and (2.27) we have

I1(T ) ¬
1/θT∫
0

h(s)

sn+1q∗(1/s)
ds ·

1∫
0

e−vdv → 0 as T → 0.

Further, using the monotonicity of q∗, we get

I2(T ) ¬
∞∫
1

[ v/θT∫
0

h(u)

un+1q∗(1/u)
du

]
vne−vdv

=
[∞∫

1

1/θT∫
0

+
∞∫
1

v/θT∫
1/θT

][ h(u)

un+1q∗(1/u)
du

]
vne−vdv =: I21(T ) + I22(T ).

For I21(T ) we have

I21(T ) =
∞∫
1

vne−vds ·
1/θT∫
0

h(u)

un+1q∗(1/u)
du→ 0, T → 0.

Further,

I22(T ) =
∞∫

1/θT

[ ∞∫
uθT

vne−vdv
] h(u)

un+1q∗(1/u)
du

¬
∞∫
0

e−ϵuθT
[ ∞∫
uθT

vne−(1−ϵ)vdv
] h(u)

un+1q∗(1/u)
du

¬
∞∫
0

e−ϵu
[ ∞∫
uθT

vne−(1−ϵ)vdv
] h(u)

un+1q∗(1/u)
du.

Since by (2.27) the function

ϕ(u) :=
e−ϵuh(u)

un+1q∗(1/u)

is integrable on (0,∞), we infer, by the theorem on continuity with respect to
a parameter, that I22(T ) → 0 as T → 0. Therefore, under (2.27) (respectively,
(2.28)) we have I(T )→ 0 as T → 0 (respectively, I(T ) <∞), and thus ϖ ∈ SK
(respectively, ϖ ∈ SD).

N e c e s s i t y. Using the lower bound for pt(x, y) and the inequality

(1− ∥x∥s)+  2−11{2∥x∥s¬1},

we obtain
T∫
0

∫
Rn

pt(x, y)ϖ(dy)dt  d1
T∫
0

∫
Rn

ρnt (1− d2∥x− y∥ρt)+ϖ(dy)dt

 2−1d1
T∫
0

∫
Rn

ρnt 1{2d2∥x−y∥ρt¬1}ϖ(dy)dt.

(8.2)
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Without loss of generality we assume that δ = δ(T ) := 1/θT ∈ (0, 1), and that
2d2 = 1. Therefore, using (9.5) and A1, we get

T∫
0

ρnt 1∥x∥ρt¬1ds  c1
1/∥x∥∫
1/δ

sn−1
qL(ℓs)(
qU (ℓs)

)2ds
 β−1c1

1/∥x∥∫
1/δ

sn−1

q∗(s)
ds

= β−1c1
(
U(∥x∥)− U(δ)

)
1{∥x∥¬δ},

(8.3)

where

U(r) :=
1/r∫
1

sn−1

q∗(s)
ds, r ∈ (0, 1).

Integrating by parts, we have∫
∥x−y∥¬δ

(
U(∥x− y∥)− U(δ)

)
ϖ(dy)

=
U(0)−U(δ)∫

0

ϖ{y : U(∥x− y∥)  r + U(δ)}dr

=
U(0)∫
U(δ)

ϖ{y : U(∥x− y∥)  r}dr =
δ∫
0

ϖ{y : ∥x− y∥ ¬ s}
sn+1q∗(1/s)

ds.

Note that δT → 0 if and only if T → 0. Thus, if ϖ ∈ SK (respectively, ϖ ∈ SD),
then (2.29) (respectively, (2.28)) holds true. �

9. APPENDIX A

P r o o f o f P r o p o s i t i o n 3.1. Clearly, for n=1 the statement holds true.
For n  2 we have

µ{u : ∥u∥  r} ¬
n∑
i=1

µ{u : |ui|  rn−1/2}

¬ n max
1¬i¬n

µ{u : |ui|  rn−1/2}

¬ n max
1¬i¬n

qU (
√
nr−1ℓi)

¬ n2 max
1¬i¬n

qU (r−1ℓi)

¬ n2q∗(1/r),

(9.1)

where ℓi := (0, . . . , 1
i
, . . . , 0) ∈ Sn, and in the third line we used the fact that the

inequality qU (ξc) ¬ (c2 ∧ 1)qU (ξ) holds true for any c > 0. Thus, for n  2 we
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have

(9.2) Λt(R
n) = tµ{u : ∥u∥  1/ρt} ¬ n2tq∗(ρt) = n2,

which completes the proof. �

P r o o f o f P r o p o s i t i o n 3.2. Using (2.20) and (9.1), we obtain

(9.3)
∫

ρt∥u∥1
(∥u∥λ ∧ 1)µ(du) =

∫
1/ρt¬∥u∥¬1

∥u∥λµ(du) +
∫
∥u∥1

µ(du)

¬
∫

1/ρt¬∥u∥¬1

∥u∥λ∫
0

drµ(du) + c1

¬
∫∫

11/ρt¬∥u∥¬110<r<∥u∥λdrµ(du) + c1

¬
1/ρλt∫
0

µ{u : ∥u∥  1/ρt}dr +
1∫
0

µ{u : ∥u∥  r1/λ}dr + c1

¬ n2ρ−λt q∗(ρt) + λ
ρt∫
1

µ{u : ∥u∥  1/r}
r1+λ

dr + c1

¬ n2t−1ρ−λt + λn2
ρt∫
1

q∗(r)

r1+λ
dr + c1, t ∈ (0, T ].

Note that condition A1 implies for any ℓ ∈ Sn the inequalities

(9.4) qU (rℓ) ¬ q∗(r) ¬ βqU (rℓ).

Let us estimate

Iℓ(r) :=
r∫
1

qU (vℓ)

v1+λ
dv,

where the vector ℓ ∈ Sn is fixed, and r > 1. Note that for any ℓ ∈ Sn the mapping
r 7→ qU (rℓ) is absolutely continuous, and for any 0 < r1 < r2, ℓ ∈ Sn, we have

(9.5) qU (r2ℓ)− qU (r1ℓ) =
r2∫
r1

2qL(vℓ)

v
dv.

Recall that λ ∈ [0, α). Therefore, applying (9.5), we obtain

Iℓ(r) ¬ β
r∫
1

qL(vℓ)

v1+λ
dv =

β

2

r∫
1

1

vλ
dqU (vℓ) ¬ β

2

(
qU (rℓ)

rλ
+ λIℓ(r)

)
,

which gives Iℓ(r) ¬ (α − λ)−1qU (rℓ)/rλ. Applying again (9.4), we get for any
ℓ ∈ Sn

r∫
1

q∗(v)

v1+λ
dv ¬ βIℓ(r) ¬

2

α(α− λ)
q∗(r)

rλ
,
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which together with the last line in (9.3) finally gives∫
Rn

(∥u∥λ ∧ 1)Λt(du) ¬ n2ρ−λt + c2tρ
−λ
t q∗(ρt) + c1t ¬ c3ρ−λt + c1t

¬ c4ρ−λt , t ∈ (0, T ],

(9.6)

where for the last inequality we again used the fact that λ < α, and hence tρλt ¬ c,
t ∈ [0, T ]. This proves the statement of Proposition 3.2. �

P r o o f o f P r o p o s i t i o n 3.3. By Proposition 3.2 we have for any T >0

(9.7) ρκt
∫
Rn

(∥u∥κ ∧ 1)Λt(du) ¬ C, t ∈ [0, T ].

Then by (9.7) and Proposition 3.1 we have

ρκt
∫
Rn

(∥u∥κ ∧ 1)Λ∗2t (du) ¬ ρκt
∫
Rn

∫
Rn

(∥u∥κ ∧ 1)Λt(du− w)Λt(dw)

¬ 2κ
[
ρκt
∫
Rn

(∥u− w∥κ ∧ 1)Λt(du− w)Λt(dw)

+ ρκt
∫
Rn

(∥w∥κ ∧ 1)Λt(du− w)Λt(dw)
]

¬ 2κ
[
ρκt
∫
Rn

(∥v∥κ ∧ 1)Λt(dv)Λt(Rn) + ρκt
∫
Rn

(∥w∥κ ∧ 1)Λt(dw)Λt(Rn)
]

¬ 2κ+1n2C, t ∈ [0, T ],

where in the second line we applied the inequality

(9.8) (a+ b)κ ¬ 2κ(aκ + bκ), a, b  0.

Let us check that

(9.9) ρκt
∫
Rn

(∥u∥κ ∧ 1)Λ∗mt (du) ¬ C(2κ+1n2)m−1, m  2, t ∈ [0, T ].

Indeed, by induction we have

ρκt
∫
Rn

(∥u∥κ ∧ 1)Λ∗mt (du) = ρκt
∫
Rn

∫
Rn

(∥u∥κ ∧ 1)Λ∗(m−1)t (du− w)Λt(dw)

¬ 2κ
[
ρκt
∫
Rn

(∥u− w∥κ ∧ 1)Λ∗(m−1)t (du− w)Λt(dw)

+ ρκt
∫
Rn

(∥w∥κ ∧ 1)Λ∗(m−1)t (du− w)Λt(dw)
]

¬ 2κ[C · 2(m−2)(κ+1)n2(m−1) + Cn2(m−1)]

¬ C(2κ+1n2)m−1.
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Finally, by (9.9) we have for all t ∈ [0, T ]

(9.10)

ρκt
∫
Rn

(∥u∥κ ∧ 1)Pt(du)=e−Λt(Rn)
∞∑
m=1

ρκt
m!

∫
Rn

(∥u∥κ ∧ 1)Λ∗mt (du)¬ Ce
2κ+1n2

2κ+1n2
,

which completes the proof. �

P r o o f o f P r o p o s i t i o n 3.6. Take an arbitrary θ ∈ (0, 1). Using (9.8)
and the inequality zκe−z ¬ c1e

−θz , z  0, where c1 > 0 is some constant, we
obtain, for t ∈ (0, T ],

(∥x∥κ ∧ 1)ft(x) ¬ c22κρ−κt
[ ∫
Rn

(
∥ρt(x− w)∥ ∧ ρt

)κ
gt(x− w)Pt(dw)

+
∫
Rn

gt(x− w)(∥ρtw∥ ∧ ρt)κPt(dw)
]

¬ c2 · 2κρ−κt
[
c3
∫
Rn

gt,θ(x− w)Pt(dw) +
∫
Rn

gt(x− w)(∥ρtw∥ ∧ ρt)κPt(dw)
]

¬ c4ρ−κt
∫
Rn

gt,θ(x− w)
(
1+(∥ρtw∥ ∧ ρt)κ

)
Pt(dw) = c4ρ

−κ
t (gt,θ ∗ Pt,κ)(x). �

10. APPENDIX B

P r o o f o f P r o p o s i t i o n 3.7. 1. Using (3.15), we get∣∣ ∫
Rn

p0t (x, y)f(y)dy
∣∣ ¬ C ∫

Rn

∫
Rn

gt(y − x− w)|f(y)|Pt(dw)dz

= C
∫
Rn

∫
Rn

gt(z − w)|f(x+ z)|Pt(dw)dz.

Then the right-hand side follows by the inequality (3.52) and the dominated con-
vergence theorem.

2. By the definition of p0t (x, y) (cf. (2.9)) we have∣∣ ∫
Rn

p0t (x, y)f(y)dy − f(x)
∣∣ ¬ ∣∣ ∫

Rn

pxt (y − x)
(
f(y)− f(x)

)
dy
∣∣

+
∣∣ ∫
Rn

(
pyt (y − x)− pxt (y − x)

)
f(y)dy

∣∣
=: I1(t, x) + I2(t, x).

Fix ε > 0. Then, since f is continuous, we have |f(x) − f(y)| < ε as soon as
∥x− y∥ ¬ δ for some δ = δ(ε, x). Then

I1(t, x) ¬
( ∫
∥x−y∥¬δ

+
∫

∥x−y∥>δ

)
pxt (y − x)|f(y)− f(x)|dy

¬ C1

(
ε+

∫
∥z∥>δ

(gt ∗ Pt)(z)dz
)
,
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where we used Proposition 3.4 (see also (3.12) and (3.13)) and the fact that f(x)
is bounded. Note that

I11(t, x) :=
∫
∥z∥>δ

(gt ∗ Pt)(z)dz ¬ C2

∫
∥u∥δρt

∫
Rn

e−c∥u−ρtw∥Pt(dw)du

= C2

∫
∥u∥δρt

∫
Rn

e−c∥u−v∥P ♯t (dv)du,

where P ♯t (dv) is the measure obtained from Pt(dw) by the change of variables
ρtw = v. Observe that P ♯t (dv) is a subprobability measure. Therefore, we have
supx I11(t, x)→ 0 as t→ 0, which in turn implies that limt→0 supx I1(t, x) ¬ ε.

Let us estimate I2(t, x). Since, for a, b > 0, |e−a − e−b| ¬ |a− b|e−(a∧b), we
get, by the Hölder continuity of m(x, u) (cf. the representation of q(x, ξ)),∣∣pxt (y − x)− pyt (y − x)

∣∣ = (2π)−n
∣∣ ∫
Rn

e−iξ(y−x)(e−tq(x,ξ) − e−tq(y,ξ)|)dξ
∣∣

¬ c1(|y − x|γ ∧ 1)
∣∣ ∫
Rn

tqU (ξ)e−ctq
U (ξ)dξ

∣∣
¬ c2|y − x|γρnt , t ∈ (0, 1], x, y ∈ Rn.

Take now ς > n/(n+ γ). Then

I2(t, x) ¬
( ∫
∥y−x∥¬ρ−ς

t

+
∫

∥y−x∥>ρ−ς
t

)∣∣pxt (y − x)− pyt (y − x)
∣∣|f(y)|dy

¬ C
(
ρ
n−(n+γ)ς
t +

∫
∥u∥δρ1−ς

t

∫
Rn

e−c∥u−w∥P ♯t (dw)du
)
.

By our choice of ς , both terms tend to zero as t→ 0, uniformly in x. Thus,

lim
t→0

sup
x

∣∣ ∫
Rn

p0t (x, y)f(y)dy − f(x)
∣∣ < ε.

Since ε > 0 is arbitrary, this implies the convergence (3.54). �
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