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Abstract. We investigate the polygonal line process built on the resid-
uals of the first order nearly nonstationary autoregressive process. We prove
functional limit theorems in Hölder space in two cases: the autoregressive
coefficient ϕn is defined as eγ/n, γ < 0 is a constant, and ϕn is defined as
1 − γn/n, γn →∞, and γn/n tends to zero as n→∞. Also we discuss
some applications of these functional limit theorems in epidemic change
detection.
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1. INTRODUCTION

We analyze the polygonal line process built on the least squares residuals
of a first order nearly nonstationary autoregressive process (yn,k : k = 1, . . . , n;
n = 1, 2, . . .) given by

yn,k = ϕnyn,k−1 + εk,(1.1)

where 0 < ϕn < 1 for fixed n, ϕn → 1 as n→∞, (εk) is a sequence of indepen-
dent identically distributed random variables with Eεk = 0, Eε2k = 1 and yn,0 = 0.

The partial sums process of residuals was investigated by various authors be-
cause of its applicability in many statistical areas, like detecting structural changes
or estimating probability density. A lot of studies are made for residuals partial
sums of stationary and nonstationary autoregression model. For stationary pro-
cesses, the weak limits of partial sums of autoregressive model’s residuals were
studied by Kulperger [11], and ARMA model’s residuals by Bai [2]. Horváth [8]
and Bai [2] proposed applications of limit theorems to change-point problems.
Other authors analyzed more general processes based on residuals. For example,
Yu [25] and Kulperger and Yu [12] constructed high moment partial sum processes
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based on residuals of ARMA and GARCH models, respectively. The residuals of
stationary and nonstationary AR(1) process were studied by Shin [23]. He found
that residuals partial sums processes converge to a standard Brownian motion when
the autoregressive coefficient is strictly less than one, and it is a randomly shifted
Brownian motion when the coefficient is equal to one.

Some functionals of the paths of the residuals partial sums processes are used
as test statistics for the null hypothesis under certain alternatives. So one is in-
terested in a larger choice of possible functionals, because then one has a bigger
class of possible alternatives. The use of Hölder space provides functional limit
theorems of a wider scope (see, e.g., Juodis et al. [10]). Račkauskas and Rastenė
[19] extended Shin’s [23] results establishing the convergence in Hölder spaces of
polygonal line processes constructed from partial sums of residuals of the AR(1)
model.

We establish the convergence in Hölder spaces of the polygonal line processes
Ŵn =

(
Ŵn(t), t ∈ [0, 1], n > 0

)
built on the least squares residuals (ε̂k):

Ŵn(t) :=
[nt]∑
k=1

ε̂k + (nt− [nt])ε̂[nt]+1, Ŵn(0) = 0 and(1.2)

Ŵn(t) = 0 if
n∑
k=1

y2n,k−1 = 0.

The residuals of the model (1.1) are defined by

ε̂k = yn,k − ϕ̂nyn,k−1 = εk − (ϕ̂n − ϕn)yn,k−1,(1.3)

where ϕ̂n is the least squares estimate of the coefficient ϕn defined by

ϕ̂n =

n∑
k=1

yn,kyn,k−1

n∑
k=1

y2n,k−1

.(1.4)

We investigate Hölderian functional central limit theorems in the two situa-
tions in which ϕn tends to one. In the first case, we define ϕn = eγ/n (γ is a nega-
tive constant), see Phillips [18]; in the second case, ϕn = 1− γn/n, γn →∞ and
γn/n→ 0 as n→∞, see Giraitis and Phillips [6]. Note that Markevičiūtė et al.
[14] investigated first order nearly nonstationary processes and proved Hölderian
limit theorems for the polygonal lines built on observations yn,k.

The paper is organized as follows: Section 2 is devoted to some preliminaries
and notation; we prove functional limit theorems for the first type model in Sec-
tion 3, and for the second model in Section 4; Section 5 is devoted to applications.
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2. WEAK CONVERGENCE IN HÖLDER SPACES

By ∥f∥∞ we denote the uniform norm of f ∈ C[0, 1]. For α ∈ [0, 1) the
Hölder space

Hoα[0, 1] := {f ∈ C[0, 1] : lim
δ→0

ωα(f, δ) = 0},

endowed with the norm ∥f∥α := |f(0)|+ ω(f, 1), where

ωα(f, δ) := sup
s,t∈[0,1]
0<t−s<δ

|f(t)− f(s)|
|t− s|α

,

is a separable Banach space. Throughout the paper, W =
(
W (t), t ∈ [0, 1]

)
is a

standard Brownian motion. By the classical Lévy’s result on the modulus of conti-
nuity of W , W ∈ Hoα[0, 1] with probability one for every 0 ¬ α < 1/2.

The polygonal line process Wn =
(
Wn(t), t ∈ [0, 1], n > 0

)
built on i.i.d.

random variables (εj) is defined by

Wn(t) =
[nt]∑
j=1

εj + (nt− [nt])ε[nt]+1, Wn(0) = 0.(2.1)

Račkauskas and Suquet [20] proved that for 0 < α < 1/2 the convergence

n−1/2σ−1Wn
D−−−→

n→∞
W in Hoα[0, 1](2.2)

holds if and only if

lim
t→∞

t1/(1/2−α)P (|ε1| ­ t) = 0.(2.3)

Condition (2.3) provides a precise relation between the strength of the convergence
(2.2) and the integrability of summands. Compared with the classical Donsker
invariance principle, it shows the price to be paid for functional convergence in
a stronger topology. When α > 0, condition (2.3) implies that E |ε1|p < ∞ for
p < (1/2− α)−1 and, in particular, Eε21 <∞.

3. FIRST TYPE MODEL

3.1. Technical lemmas. To prove the main result for the first type model, we
need some technical lemmas.

LEMMA 3.1. Let Nn, Dn, N, D be real-valued random variables with Dn

and D being nonnegative. Assume that P (D = 0) = 0 and that (Nn, Dn) con-
verges in distribution on R2 to (N,D). Define

Φn :=

{
Nn/Dn on {Dn ̸= 0},
0 on {Dn = 0}.

Then Φn converges in distribution to N/D.

Probability and Mathematical Statistics 37, z. 1, 2017
© for this edition by CNS



166 J . Markevi č i ū t ė

We omit the proof of Lemma 3.1. The lemma below is a tool that will help to
prove next two lemmas.

LEMMA 3.2. Suppose that the process (yn,k) is defined by (1.1) with ϕn =

eγ/n, γ < 0 and yn,0 = 0. Let (εk) be i.i.d. random variables with mean zero and
satisfying the condition (2.3). Define

Vn(l) := n−1/2Wn

(
l − 1

n

)
+ γ

l/n∫
0

e(l/n−s)γn−1/2Wn(s) ds(3.1)

for l ¬ n. Then

|n−1/2yn,l−1 − Vn(l)| ¬ ∥n−1/2Wn∥∞
γ2eγ

2n
+
eγ

nα
ωα

(
n−1/2Wn,

1

n

)
(3.2)

+
|2 + γ| eγ

n
∥n−1/2Wn∥∞.

P r o o f. Let us define

Vl,1 := n−1/2yn,l−1 = n−1/2
l−1∑
j=1

e(l−1−j)γ/nεj .

Noting that εl =Wn(l/n)−Wn

(
(l − 1)/n

)
, we can write

yn,l−1 =Wn

(
l − 1

n

)
+
γ

n

l−2∑
j=1

e(l−1−j)γ/nWn

(
j

n

)

+
γ2un
2n2

l−2∑
j=1

e(l−1−j)γ/nWn

(
j

n

)
,

where un is defined by

un = −1 + 2n2

γ2
o

(
1

n2

)
,(3.3)

and un → −1 as n→∞. Then we define

Vl,2 := n−1/2Wn

(
l − 1

n

)
+
γ

n

l−2∑
j=1

e(l−1−j)γ/nn−1/2Wn

(
j

n

)
,

and for the approximation error we obtain the bound

|Vl,2 − Vl,1| ¬ ∥n−1/2Wn∥∞
γ2eγ

2n
.
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Further, we approximate the Riemann sum by the integral (see (3.1))

Vn(l) := n−1/2Wn

(
l − 1

n

)
+ γ

l/n∫
0

e(l/n−s)γn−1/2Wn(s) ds.

Now we estimate the error. For any f ∈ C[0, 1], we have (for details see Markevi-
čiūtė et al. [14])∣∣∣∣ 1n l−2∑

j=1

f

(
j + j0
n

)
−
l/n∫
0

f(s) ds

∣∣∣∣ ¬ ω0

(
f,

1 + j0
n

)
+ ∥f∥∞

2

n
.(3.4)

Moreover,

if f ∈ Hoα[0, 1], ω0(f, δ) ¬ ωα(f, δ)δα.(3.5)

If f(t) = g(t)h(t) with g of class C1 and h ∈ C[0, 1], we get

ω0(gh, δ) ¬ ∥g∥∞ ω0(h, δ) + ∥g′∥∞ ∥h∥∞ δ.(3.6)

Thus, from (3.4)–(3.6) we obtain the uniform bound

|Vn(l)− Vl,2| ¬
eγ

nα
ωα

(
n−1/2Wn,

1

n

)
+
|2 + γ| eγ

n
∥n−1/2Wn∥∞. �

We will use the following functionals in the proofs of the next two lemmas
and the main result of this section:

N(x) :=
1

2

(
x(1) + γ

1∫
0

e(1−s)γx(s) ds
)2(3.7)

− γ
1∫
0

(
x(r) + γ

r∫
0

e(r−s)γx(s) ds
)2
dr − 1

2
,

D(x) :=
1∫
0

(
x(r) + γ

r∫
0

e(r−s)γx(s) ds
)2
dr,(3.8)

F (x)(t) :=
t∫
0

(
x(r) + γ

r∫
0

e(r−s)γx(s) ds
)
dr, t ∈ [0, 1],(3.9)

for x ∈ Hoα[0, 1].

LEMMA 3.3. Suppose that the process (yn,k) is defined by (1.1) with ϕn =

eγ/n, γ < 0 and yn,0 = 0. Let (εk) be i.i.d. random variables with mean zero,
Eε21 = 1, and satisfying the condition (2.3) for some α ∈ (0, 1/2). Define

An,0 := n−2
n∑
k=1

y2n,k−1.

Then

|D(n−1/2Wn)−An,0| = oP(n
−α).(3.10)
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P r o o f. Using Lemma 3.2, we approximate An,0 := n−2
∑n

k=1 y
2
n,k−1 by

An,1 :=
1

n

n∑
k=1

(
n−1/2Wn

(
k − 1

n

)
+ γ

k/n∫
0

e(k/n−s)γn−1/2Wn(s) ds

)2

.

The approximation error is bounded by

|An,1 −An,0| ¬ max
1¬k¬n

|n−1/2yn,k−1 − Vn(k)|(3.11)

¬ max
1¬k¬n

|n−1/2yn,k−1|+ max
1¬k¬n

|Vn(k)| .

By Lemma 3.2, max1¬k¬n |n−1/2yn,k−1 − Vn(k)| = oP(n
−α). As Vn(l) is the

image of n−1/2Wn by a continuous functional on Hoα, we infer from the continu-
ous mapping theorem and Hölderian invariance principle that max1¬k¬n |Vn(k)|
is stochastically bounded. Also, by [18], max1¬k¬n |n−1/2yn,k−1| is stochastically
bounded.

Further, An,1 can be approximated by An, and the bound of approximation
error is

|An −An,1| ¬ ω
(
f,

1

n

)
,

where f(r) :=
(
Wn(r) + γ

∫ r
0
e(r−s)γWn(s) ds

)2
. Define g(r) := f1/2(r). Then

(3.12) ω

(
f,

1

n

)
¬ 1

nα
ωα

(
f,

1

n

)
¬ 2

nα
∥g∥∞ ωα

(
g,

1

n

)
¬ 2

nα
· ∥n−1/2Wn∥∞eγ

(
ωα

(
n−1/2Wn,

1

n

)
+

1

n1−α
eγ∥n−1/2Wn∥∞

)
.

So we obtain |An −An,0| = oP(n
−α). �

LEMMA 3.4. Suppose that the process (yk) is defined by (1.1) with ϕn =
eγ/n, γ < 0 and yn,0 = 0. Let (εk) be i.i.d. random variables with mean zero,
Eε21 = 1, and satisfying the condition (2.3) for some α ∈ (0, 1/2). Define

Bn,0 := n−1
n∑
k=1

εkyn,k−1.

Then

|N(n−1/2Wn)−Bn,0| = oP(n
−α).(3.13)
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P r o o f. By squaring the equation (1.1), subtracting y2n,k−1 from both sides
and summing both sides over k, we obtain

y2n,n = (e2γ/n − 1)
n∑
k=1

y2n,k−1 + 2eγ/n
n∑
k=1

yn,k−1εk +
n∑
k=1

ε2k.

Then multiplying everything by n−1, we get

Bn,1 := 2n−1
n∑
k=1

yn,k−1εk

=
1

eγ/n

(
n−1y2n,n −

2γ

n2

n∑
k=1

y2n,k−1 −
1

n

n∑
k=1

ε2k −
γ2un
n3

n∑
k=1

y2n,k−1

)
,

where un → −1 as n→∞. Further, we can approximate Bn,1 by

Bn,2 :=
1

eγ/n

(
n−1y2n,n −

2γ

n2

n∑
k=1

y2n,k−1 −
1

n

n∑
k=1

ε2k

)
,

and the bound of the approximation error is

|Bn,2 −Bn,1| ¬
γ2

n

∣∣∣∣ 1n2 n∑
k=1

y2n,k−1

∣∣∣∣ P−−−→
n→∞

0

because, by [18],
∣∣n−2∑n

k=1 y
2
n,k−1

∣∣ is stochastically bounded on R and γ2/n→0
as n→∞. Further, we can approximate Bn,2 by

Bn,3 :=
1

eγ/n

(
n−1y2n,n −

2γ

n2

n∑
k=1

y2n,k−1 − 1

)
.

In this case, for the approximation error we have

|Bn,3 −Bn,2| ¬
∣∣∣∣ 1n n∑

k=1

ε2k − 1

∣∣∣∣ P−−−→
n→∞

0

by the weak law of large numbers since Eε20 = 1. Next, we approximate Bn,3 by

Bn,4 := n−1y2n,n −
2γ

n2

n∑
k=1

y2n,k−1 − 1.

As
∣∣n−1y2n,n − (2γ/n2)

∑n
k=1 y

2
n,k−1 − 1

∣∣ is stochastically bounded by Lemma 1
in [18], we obtain

|Bn,4 −Bn,3| =
∣∣∣∣n−1y2n,n − 2γ

n2

n∑
k=1

y2n,k−1 − 1

∣∣∣∣ · ∣∣∣∣1− 1

eγ/n

∣∣∣∣ P−−−→
n→∞

0.
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Finally, put g(r) =Wn(r) + γ
∫ r
0
e(r−s)γWn(s) ds and define

Bn =
1

2

(
g(1)

)2 − γ 1∫
0

(
g(r)

)2
dr − 1

2
.

Then, using Lemma 3.2, we obtain

|Bn −Bn,4| ¬
1

2

∣∣(n−1/2yn,n)2 − (Wn(1) + γ
1∫
0

e(1−s)γWn(s) ds
)2∣∣

+ γ

∣∣∣∣ 1n2 n∑
k=1

y2n,k−1 −
1∫
0

(
Wn(r) + γ

r∫
0

e(r−s)γWn(s) ds
)2
dr

∣∣∣∣.
Further, the first summand is bounded by (3.11) and the second one is bounded by
(3.11) and (3.12). �

3.2. Invariance principle. For the process Ŵn defined by (1.2) we prove an
invariance principle under the necessary and sufficient condition (2.3).

THEOREM 3.1. Let α ∈ (0, 1/2). Suppose that (yn,k) is generated by (1.1),
ϕn = eγ/n, and γ < 0 is a constant. Assume that (εk) are i.i.d. random variables
with Eε0 = 0, Eε20 = σ2 and yn,0 = 0. Then

n−1/2σ−1Ŵn
D−−−→

n→∞
W −A−1BJ in Hoα[0, 1](3.14)

if and only if condition (2.3) holds. Here A =
∫ 1

0
U2
γ (t) dt, B =

∫ 1

0
Uγ(t) dW (t),

and J(t) is an integrated Ornstein–Uhlenbeck process defined by

J(t) :=
t∫
0

Uγ(s) ds,(3.15)

where Uγ(r) is an Ornstein–Uhlenbeck process,

Uγ(r) :=
r∫
0

e(r−s)γ dW (s), Uγ(0) = 0.(3.16)

REMARK 3.1. If variance is unknown, then by Slutsky’s theorem it can be
replaced in (3.14), via Theorem 1 in Phillips [18], by its estimator defined by

σ̂2 :=
1

n

n∑
k=1

ε̂2k.(3.17)

P r o o f o f T h e o r e m 3.1. Without loss of generality we assume that
σ2=1.
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To prove the sufficiency, at first, we express Ŵn in terms ofWn and the polyg-
onal line process Sn built on observations yk:

n−1/2Ŵn = n−1/2Wn −
n−1

n∑
k=1

εkyn,k−1

n−2
n∑
k=1

y2n,k−1

· n−3/2Sn,(3.18)

where Sn =
(
Sn(t), t ∈ [0, 1], n > 0

)
, and

Sn(t) =
[nt]∑
j=1

yn,j−1 + (nr − [nt])yn,[nt], Sn(0) = 0.(3.19)

Next, using the definition of Uγ , we obtain, by Itô’s formula,

1∫
0

Uγ(r) dW (r) =
1

2

(
U2
γ (1)− 1− 2γ

1∫
0

U2
γ (r) dr

)
.

Further, define the operator T ,

T (W ) :=W −A−1BJ,

so that

T : Hoα[0, 1]→ Hoα[0, 1], T (x) := x− N(x)

D(x)
F (x),

where N(x), D(x) and F (x) are defined by (3.7), (3.8) and (3.9), respectively. It
is obvious that the domain of the operator T is

HT := {x ∈ Hoα[0, 1] : D(x) ̸= 0}.

Further note that HT is the Hölder space without the zero functions. Indeed,
from the equations D(x) = 0, recalling that x is a continuous function on [0, 1],
we obtain for every r ∈ [0, 1]

x(r) + γ
r∫
0

e(r−s)γx(s) ds = 0.(3.20)

Thus, any continuous solution x of D(x) = 0 satisfies

x(r) = −γerγ
r∫
0

e−sγx(s) ds.(3.21)
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Further, from the continuity of x it follows that the right-hand side of (3.21) is ob-
viously differentiable; consequently, x is itself differentiable, and for all r ∈ (0, 1)
we obtain x′(r) = 0. This implies that x is a constant on [0, 1] (it is continuous at
zero and at one). Let r tend to zero in (3.21). Then by the continuity of x we obtain
x(0) = 0, and since x is constant, x(r) = 0 for every r ∈ [0, 1]. Thus we obtain

P(W ∈ Hoα[0, 1] \HT ) = P(W = 0) = 0.

Next, we obtain the convergence (3.14) by proving that
(a) T is a continuous operator on HT , and P(W ∈ Hoα[0, 1] \HT ) = 0;

(b) ∥n−1/2Ŵn − T (n−1/2Wn)∥α
P−−−→

n→∞
0.

We start with the continuity of T . The operator T is the difference of two op-
erators. The first one is the identity on Hoα[0, 1], obviously continuous. The second
one is

T̃ (x) :=
N(x)

D(x)
· F (x), x ∈ HT .

First we show that N : Hoα[0, 1]→ R and D : Hoα[0, 1]→ R are continuous.
Let us check first the continuity of D. By the triangular inequality of L2-norm
applied to the function f(x)(r) = x(r) + γ

∫ r
0
e(r−s)γx(s) ds, we have

|D1/2(x)−D1/2(y)| =
∣∣∣( 1∫

0

(
f(x)(r)

)2
dr
)1/2
−
( 1∫

0

(
f(y)(r)

)2
dr
)1/2∣∣∣

¬
∣∣∣( 1∫

0

(
|x(r)− y(r)|+ γ

r∫
0

e(r−s)γ |x(s)− y(s)| ds
)2
dr
)1/2∣∣∣

¬ ∥x− y∥∞
(

1

2γ
(e2γ − 1)

)1/2

.

Since ∥·∥∞ ¬ ∥·∥α, we obtain

|D1/2(x)−D1/2(y)| ¬
(

1

2γ
(e2γ − 1)

)1/2

∥x− y∥α.

This implies that D1/2 is continuous on Hoα[0, 1], and so is D. Using the same
arguments, we obtain the continuity of N on Hoα[0, 1].

Thus, the ratio N/D is continuous as the ratio of two continuous functions
except on the subset of Hoα[0, 1], where D(x) = 0, that is, at the null function on
[0, 1].

As F is linear, it is enough to show its continuity at zero. Recall that

∥F (x)∥α = |F (x)(0)|+ sup
0¬t′<t¬1

|F (x)(t)− F (x)(t′)|
|t− t′|α

.
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Noting ∥x∥∞ ¬ ∥x∥α, we see that

|F (x)(t)− F (x)(t′)| =
∣∣ t∫
t′

(
x(r) + γ

r∫
0

e(r−s)γx(s) ds
)
dr
∣∣

¬ (1 + γeγ) ∥x∥α |t− t
′|.

Since F (x)(0) = 0, we obtain

∥F (x)∥α ¬ (1 + γeγ) ∥x∥α,(3.22)

which gives the continuity of F .
The continuity of T̃ on HT follows easily from the continuity of N , D

and F . Finally, the operator T is continuous on HT as the difference of two con-
tinuous operators.

As the operator T is continuous onHT and P(W = 0) = 0, also the Hölderian
invariance principle holds (see [21]); then we have

T (n−1/2Wn)
D−−−→

n→∞
T (W ) =W −A−1BJ in Hoα[0, 1](3.23)

by the continuous mapping theorem (for details see [3], Theorem 5.1).
By Lemmas 3.3 and 3.4 we have

n−1
n∑
k=1

εkyn,k−1 := N(n−1/2Wn) +Rn,

n−2
n∑
k=1

y2n,k−1 := D(n−1/2Wn) + R̃n,

where Rn = oP(n
−α) and R̃n = oP(n

−α). We have also

n−3/2Sn(t) = F (n−1/2Wn)(t) +
˜̃
Rn, t ∈ [0, 1],

where ˜̃Rn = oP(n
−α) (for details see the proof of Theorem 1 in [14]).

Further, we can express Ŵn as

n−1/2Ŵn = n−1/2Wn −
N(n−1/2Wn) +Rn

D(n−1/2Wn) + R̃n
·
(
F (n−1/2Wn)(t) +

˜̃
Rn
)
,

and we obtain

∥n−1/2Ŵn − T (n−1/2Wn)∥α

¬
∣∣∣∣N(n−1/2Wn) +Rn

D(n−1/2Wn) + R̃n
− N(n−1/2Wn)

D(n−1/2Wn)

∣∣∣∣∥F (n−1/2Wn) +
˜̃
Rn∥α

+

∣∣∣∣N(n−1/2Wn)

D(n−1/2Wn)

∣∣∣∣∥ ˜̃Rn∥α.
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Let us to introduce the random variables Φn and Φ̃n defined by

Φn :=


N(n−1/2Wn)

D(n−1/2Wn)
on {D(n−1/2Wn) ̸= 0},

0 on {D(n−1/2Wn) = 0},

Φ̃n :=


N(n−1/2Wn) +Rn

D(n−1/2Wn) + R̃n
on {D(n−1/2Wn) + R̃n ̸= 0},

0 on {D(n−1/2Wn) + R̃n = 0}.

Coming back to the decomposition of n1/2Ŵn and modifying the definition of
T (n−1/2Wn) as

T (n−1/2Wn) = n−1/2Wn − ΦnF (n
−1/2Wn)

(for that purpose it suffices to define T (0) := 0), we can rewrite the estimate of
∥n1/2Ŵn − T (n−1/2Wn)∥α as

∥n1/2Ŵn − T (n−1/2Wn)∥α ¬ |Φn − Φ̃n|
∥∥F (n−1/2Wn) +

˜̃
Rn
∥∥
α
+ |Φn|

∥∥˜̃Rn∥∥α.
By continuous mapping,

(
N(n−1/2Wn), D(n−1/2Wn)

)
converges in distri-

bution in R2 to
(
N(W ), D(W )

)
= (B,A). In view of P

(
D(W ) = 0

)
= 0, Lem-

ma 3.1 gives us the convergence in distribution of Φn to B/A, and, in particular,
Φn is stochastically bounded.

Since
∥∥˜̃Rn∥∥α converges to zero in probability and ∥F (n−1/2Wn)∥α is stochas-

tically bounded, it remains only to check that |Φn − Φ̃n| converges to zero in prob-
ability.

Note that

|Φn − Φ̃n| ¬
|Rn|

|D(n−1/2Wn) + R̃n|
+

∣∣∣∣N(n−1/2Wn)

D(n−1/2Wn)

∣∣∣∣ · |R̃n|
|D(n−1/2Wn) + R̃n|

.

So the problem reduces to proving that

|Rn|
|D(n−1/2Wn) + R̃n|

P−−−→
n→∞

0 and
|R̃n|

|D(n−1/2Wn) + R̃n|
P−−−→

n→∞
0.

But these two convergences can be easily checked, so finally the convergence
(3.14) is established.

The next step is to prove the necessity. By (3.14), the sequence (n−1/2Ŵn) is
tight on Hoα[0, 1], and this implies that, for every ϵ > 0,

lim
δ→0

sup
n­1

P
(
ωα(n

−1/2Ŵn, δ) > ϵ
)
= 0,
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see, e.g., Theorem 13 in [24]. This clearly entails that ωα(n−1/2Ŵn, 1/n)
P−−−→

n→∞
0.

Since

n−1/2max1¬k¬n |ε̂k|
n−α

= n−1/2+α max
1¬k¬n

∣∣∣∣Ŵn

(
k

n

)
− Ŵn

(
k − 1

n

)∣∣∣∣
¬ ωα

(
n−1/2Ŵn,

1

n

)
,

we obtain n−1/2max1¬k¬n |ε̂k|
P−−−→

n→∞
0.

Next decompose ε̂k = εk − (ϕ̂n − ϕn)yn,k−1. Denote by yn,[n•] the step pro-
cess (yn,[nt], t ∈ [0, 1]). Recall that, by [18], Lemma 1, part (a), n−1/2yn,[n•] con-
verges in distribution in D[0, 1] to an Ornstein–Uhlenbeck process. As the supre-
mum norm of such a step process is obviously reached at one of the points t = k/n,
0 ¬ k ¬ n, this convergence implies the stochastic boundedness of

max
1¬k¬n

|n−1/2yn,k−1| = ∥n−1/2yn,[n•]∥∞.

Notice that

nα−1/2 max
1¬k¬n

|(ϕ̂n − ϕn)yn,k−1|

¬ nα−1|n(ϕ̂n − ϕn)| max
1¬k¬n

|n−1/2yn,k−1|
P−−−→

n→∞
0,

because by [18] (Theorem 1, part (a)) |n(ϕ̂n − ϕn)| is also stochastically bounded.
It follows then that

nα−1/2 max
1¬k¬n

|εk|
P−−−→

n→∞
0,

which gives the condition (2.3) by the independence of (εk). �

4. SECOND TYPE MODEL

For the second type model we obtain the result of the convergence of n−1/2Ŵn

to Wiener process in Hoβ[0, 1] for 0 < β ¬ α, assuming additionally some rate of
divergence for γn.

THEOREM 4.1. Suppose (yn,k) is generated by (1.1) and ϕn = 1 − γn/n,
where (γn) is a sequence of nonnegative numbers, γn → ∞ and γn/n → 0 as
n → ∞. Assume also that the innovations (εk) are i.i.d. with mean zero, Eε21 =
σ2, and satisfy condition (2.3): limt→∞ t

pP(|ε0| > t) = 0 for some p > 2. Put
α = 1/2− 1/p. Then, for 0 < β ¬ α,

n−1/2σ−1Ŵn
D−−−→

n→∞
W in Hoβ[0, 1](4.1)
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if yn,0 = 0 and

lim inf
n→∞

γnn
−2β/(1+2α) > 0.(4.2)

REMARK 4.1. If variance is unknown, by Slutsky’s theorem it can be replaced
in (4.1) by its estimator defined by (3.17) via Lemma 4.1 below.

P r o o f o f T h e o r e m 4.1. Condition (2.3) (see [21]) gives the weak con-
vergence of Wn, defined by (2.1), to the standard Brownian motion in the space
Hoα[0, 1]. By continuous embedding of Hölder spaces, the same convergence re-
mains true inH0

β[0, 1] for 0 < β ¬ α. Therefore, to obtain (4.1) it suffices to prove
that

∆n,β := ∥n−1/2Ŵn − n−1/2Wn∥β
P−−−→

n→∞
0.

We first establish the useful inequality

∥Sn∥β ¬
n

γn
[∥Wn∥β + 2nβ max

1¬k¬n
|yn,k|],(4.3)

where Sn is defined by (3.19). We have, for 1 ¬ j < k ¬ n,

Sn(k/n)− Sn(j/n) = (1− ϕn)−1
(
Wn(k/n)−Wn(j/n)− yn,k + yn,j

)
.

Recalling that the Hölder norm of a polygonal line is reached at some pair of ver-
tices (see Lemma A.2 in [14]) and that Sn(0) = 0, we have

∥Sn∥β = max
1¬j<k¬n

∣∣(1− ϕn)−1(Wn(k/n)−Wn(j/n)− yn,k + yn,j
)∣∣

|k/n− j/n|β

¬ n

γn

[
max

1¬j<k¬n

|Wn(k/n)−Wn(j/n)|
|k/n− j/n|β

+ max
1¬j<k¬n

|yn,k − yn,j |
|k/n− j/n|β

]
=

n

γn

[
∥Wn∥β + max

1¬j<k¬n

|yn,k − yn,j |
|k/n− j/n|β

]
.

This leads to (4.3) via the elementary estimate

max
1¬j<k¬n

|yn,k − yn,j |
|k/n− j/n|β

¬ 2nβ max
1¬k¬n

|yn,k|.(4.4)

Note that Ŵn =Wn + (ϕn − ϕ̂n)Sn, see (3.18), thus we have

∆n,β = n−1/2|ϕn − ϕ̂n| ∥Sn∥β.

By the results in [6], there is a positive random variable M not depending on n,
such that |ϕn − ϕ̂n| ¬Mn−1γ

1/2
n , so using (4.3), we can bound ∆n,β as follows:

∆n,β ¬Mn−1/2γ−1/2n (∥Wn∥β + 2nβ max
1¬k¬n

|yn,k|).
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As n−1/2 ∥Wn∥β is stochastically bounded, the proof of the theorem is finally re-
duced to checking that

n−1/2+βγ−1/2n max
1¬k¬n

|yn,k|
P−−−→

n→∞
0.

By Lemma 1 in [14], max1¬k¬n |yn,k| = oP (n
1/2γ−αn ), so the above convergence

holds provided that

lim sup
n→∞

nβ

γ
1/2+α
n

<∞,

which is equivalent to assumption (4.2). �

Next we show that, for the second type model defined by (1.1), the estimate of
variance is consistent.

LEMMA 4.1. Suppose (yn,k) is generated by (1.1) and ϕn = 1− γn/n, where
γn is a sequence of nonnegative numbers, γn/n → 0 and γn → ∞ as n → ∞.
Assume also that the innovations (εk) are i.i.d. random variables with Eεk = 0,
Eε2k = σ2. The variance estimator σ̂2 is defined by (3.17). Then

σ̂2
P−−−→

n→∞
σ2.(4.5)

P r o o f. We can rearrange (3.17), using (1.3), in the following way:

σ̂2 =
1

n

n∑
k=1

ε̂k
2 =

1

n

n∑
k=1

ε2k −
2

n
(ϕ̂n − ϕn)

n∑
k=1

εkyn,k−1

+
1

n
(ϕ̂n − ϕn)2

n∑
k=1

y2n,k−1.

By the weak law of large numbers we have

1

n

n∑
k=1

ε2k
P−−−→

n→∞
σ2.(4.6)

Using (5) and (10) of Giraitis and Phillips [6] for 1
n(ϕ̂n − ϕn)

2
∑n

k=1 y
2
n,k−1, we

obtain

1

n
(ϕ̂n − ϕn)2

n∑
k=1

y2n,k−1
P−−−→

n→∞
0.(4.7)

Also, for 2
n(ϕ̂n − ϕn)

∑n
k=1 εkyn,k−1, by (5) and (9) in Giraitis and Phillips [6],

we find

2

n
(ϕ̂n − ϕn)

n∑
k=1

εkyn,k−1
P−−−→

n→∞
0.(4.8)

Thus (4.6)–(4.8) give us (4.5). �
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5. APPLICATIONS

The Hölderian limit theorems provide applications via continuous mapping.
To be more precise, we will formulate two general corollaries.

COROLLARY 5.1. Under the conditions of Theorem 3.1, for any continuous
function F : Hoα[0, 1] 7→ R, α ∈ (0, 1/2),

F (n−1/2σ−1Ŵn)
D−−−→

n→∞
F (W −A−1BJ).

COROLLARY 5.2. Under the conditions of Theorem 4.1, for any continuous
function F̃ : Hoβ[0, 1] 7→ R, β ∈ (0, 1/2− 1/p), p > 2,

F̃ (n−1/2σ−1Ŵn)
D−−−→

n→∞
F̃ (W ).

5.1. Epidemic change detection. In this section we give an application of func-
tional limit theorems to the epidemic type change problem. The epidemic change
in parameter θ is described as the change at some unknown time or location such
that θ1 = . . . = θk∗ = θm∗+1 = θn = θ0 and θk∗+1 = . . . = θm∗ = θ. That is, at
some point of time or location the value of the unknown parameter changes, but
after a certain period it returns to an initial value. Epidemic change detection is a
widely investigated question. We refer to Levin and Kline [13], Commenges et al.
[5], Broemeling and Tsurumu [4], Gombay [7], Avery and Henderson [1], etc., for
more information. The Hölderian framework for epidemic change was introduced
by Račkauskas and Suquet [21] for i.i.d. random variables. They showed that the
Hölderian weighting allows us to detect epidemics shorter than

√
n.

We implement this setting for the innovations of the first order nearly nonsta-
tionary autoregressive process. Assume we are given a sample yn,1, . . . , yn,n for a
fixed n, generated from the first order autoregressive process

yn,k = ϕnyn,k−1 + εk + an,k, k = 1, . . . , n, n ­ 1, yn,0 = 0,(5.1)

where ϕn = eγ/n, γ < 0 is a constant, or ϕn = 1− γn/n, where (γn) is a sequence
of nonnegative numbers, γn → ∞ and γn/n → 0 as n → ∞. The innovations
(εk, k ¬ n) are unobservable, centered, square integrable random variables.

The aim is to propose tests for the null hypothesis

H0 : an,1 = . . . = an,n = 0

against the epidemic alternative

HA : there exist 0 ¬ k∗n < n, and 1 ¬ m∗n ¬ n such that
an,k = an ̸= 0 for k ∈ I∗n,whereas an,k = 0 for k ̸∈ I∗n,
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where I∗n = {k∗n + 1, . . . ,m∗n}. The value an during the period I∗n is interpreted
as an epidemic deviation from the usual (zero) mean of innovations, and ℓ∗n =
m∗n − k∗n is the duration of the epidemic state. Note that Markevičiūtė et al. [15]
investigated uniform increments statistics built on observations for the nearly non-
stationary process. Since innovations are not observed, we may build a uniform
increments statistics also on least squares residuals. Set for α ∈ [0, 1)

T̂α,n = Tα,n(ε̂1, . . . , ε̂n) = max
1¬ℓ¬n

ℓ−α max
1¬k¬n−ℓ

∣∣∣∣ k+ℓ∑
j=k+1

ε̂j −
ℓ

n

n∑
j=1

ε̂j

∣∣∣∣,(5.2)

where (ε̂k) are residuals of the model (5.1) defined by (1.3) and (1.4).
Using the Hölderian limit theorems, it is easy to find the limit of test statistics

(5.2) under the null hypothesis. Note that the test statistics for the second type
model with different approach is investigated in detail in Markevičiūtė et al. [16],
so we find the limit under the null hypothesis only for the first type model, and we
assume that all an,k = 0.

THEOREM 5.1. In the first type model defined by (1.1) and ϕn = eγ/n, γ is a
negative constant. Assume that innovations satisfy limt→∞ t

pP(|ε0| > t) = 0 for
some p > 2. Then under H0 for any α ∈ (0, 1/2− 1/p)

(5.3) n−1/2+ασ−1T̂α,n
D−−−→

n→∞
Tα,∞(Z),

where σ2 = Eε21, and

Z(t) =W (t)−A−1BJ(t).(5.4)

P r o o f. Using Lemma A.1 in [15] and Theorem 3.1, we immediately obtain
the result. �

5.1.1. Test power analysis. In this section we perform the test power analysis.
The results are presented in Tables 1 and 2. We compute empirical power on the
size-adjusted (not nominal size) basis, i.e., we replace the nominal value of signif-
icance level by the value of empirical distribution function for p-values under the
null hypothesis.

Here we compute N = 1000 realizations of test statistics with the sample size
n for different values of parameters γ, γn, α, k∗, ℓ∗ and an. Innovations (εj) are
generated as standard normally distributed random variables. For the limit distri-
bution we compute N = 5000 realizations of test statistics with the sample size
n = 5000. We approximate the values of the standard Wiener process by

W

(
k

5000

)
= 5000−1/2

k∑
j=1

ε(j), k = 1, . . . , 5000.
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Table 1. Empirical power at the size-adjusted significance
level 0.05 for the first type model with Gaussian innovations

Parameters α = 2/32 α = 6/32 α = 12.5/32

ℓ∗/n = 0.035 0.462 0.715 0.968
ℓ∗/n = 0.050 0.879 0.981 0.998
ℓ∗/n = 0.065 0.988 1.000 1.000

k∗/n = 0.2 0.903 0.981 1.000
k∗/n = 0.4 0.879 0.981 0.998
k∗/n = 0.8 0.784 0.967 0.997

an = 0.8 0.574 0.793 0.957
an = 1 0.879 0.981 0.998
an = 1.2 0.989 1.000 1.000

n = 500 0.498 0.700 0.884
n = 1000 0.879 0.981 0.998
n = 2000 1.000 1.000 1.000

γ = −2 0.879 0.981 0.998
γ = −12 0.831 0.976 0.998
γ = −100 0.010 0.267 0.975

Table 2. Empirical power at the size-adjusted significance
level 0.05 for the second type model with Gaussian innovations

Parameters α = 2/32 α = 6/32 α = 10/32

ℓ∗/n = 0.035 0.049 0.190 0.763
ℓ∗/n = 0.050 0.093 0.573 0.965
ℓ∗/n = 0.065 0.216 0.880 0.998

k∗/n = 0.2 0.077 0.589 0.974
k∗/n = 0.4 0.093 0.573 0.965
k∗/n = 0.8 0.105 0.615 0.974

an = 0.8 0.102 0.328 0.791
an = 1 0.093 0.573 0.965
an = 1.2 0.080 0.810 1.000

n = 500 0.062 0.171 0.552
n = 1000 0.093 0.573 0.965
n = 2000 0.660 0.997 1.000

γn = n/ ln(n) 0.035 0.416 0.950
γn = ln2.5(n) 0.020 0.353 0.935
γn = n3/4 0.093 0.573 0.965

The Ornstein–Uhlenbeck process has been approximated by the following dis-
cretization:

S(j) = S(j − 1)eγ/n +

√
1− e2γ/n
−2γ

· ε(j), ε(j) ∼ N(0, 1).(5.5)
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Using values generated by (5.5), we approximate the integrated Ornstein–Uhlen-
beck process by

J

(
k

5000

)
= 5000−1

k∑
j=1

S(j), k = 1, . . . , 5000,

and values

A = 5000−1
n∑
j=1

S2(j), B =
n∑
j=1

S(j)

(
W

(
j

5000

)
−W

(
j − 1

5000

))
.

For the first type model (ϕn = eγ/n) with innovations that satisfy the integra-
bility condition (2.3) the basic parameters are

γ = −2, an = 1, n = 1000,
ℓ∗

n
= 0.05,

k∗

n
= 0.4, yn,0 = 0.

We modify them separately and compute the empirical size-power. We keep all the
parameters fixed except one (indicated in the first column in both tables), which is
allowed to vary.

As one can see in Table 1 the test power increases with the α. The test statistics
has a quite big power in detecting short epidemics with α closer to 1/2. Naturally,
increasing n increases the test power. In general, the test has a quite big power for
all chosen parameters.

For the second type model (ϕn = 1− γn/n) with innovations that satisfy the
integrability condition (2.3), the basic parameters are

γn = n3/4, an = 1, n = 1000,
ℓ∗

n
= 0.05,

k∗

n
= 0.4, yn,0 = 0.

For the second type model (Table 2), the test power is very low for the small α.
The test power increases with n, ℓ∗ and the rate of divergence of γn.

5.2. Comparison with other test statistics. Table 3 shows size-adjusted test
power for statistics T̃α,n = Tα,n(yn,1, . . . , yn,n) (see [15]) and statistics T̂α,n =
Tα,n(ε̂1, . . . , ε̂n) (see also [16]), where innovations satisfy the integrability con-
dition (2.3). The result shows that with different parameters for the second type
model, both statistics give opposite results. In this example, statistics T̂α,n with
γn = n0.45 detects epidemics better, while statistics T̃α,n performs better with
γn = n0.8.
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Table 3. Comparison of the statistics T̃α,n and T̂α,n for the first
type model (model I) and for the second type model (model II)

an = 1, ℓ∗ = 30, k∗ = 400, n = 1000, γ = −2, γn = n0.45

α1 = 0.0625 α2 = 0.1875
α3 = 0.39 (model I)
α3 = 0.31 (model II)

T̃α,n
model I 0.318 0.327 0.306
model II 0.276 0.330 0.429

T̂α,n
model I 0.335 0.526 0.914
model II 0.061 0.452 0.836

an = 1, ℓ∗ = 30, k∗ = 400, n = 1000, γ = −20, γn = n0.8

T̃α,n
model I 0.280 0.322 0.467
model II 0.314 0.505 0.796

T̂α,n
model I 0.088 0.502 0.913
model II 0.073 0.213 0.682

REFERENCES

[1] P. J . Avery and A. D. Henderson, Detecting a changed segment in DNA sequences,
J. R. Stat. Soc. Ser. C. Appl. Stat. 48 (1999), pp. 489–503.

[2] J . Bai, On the partial sums of residuals in autoregressive and moving average models, J. Time
Series Anal. 14 (1993), pp. 247–260.

[3] P. Bil l ingsley, Convergence of Probability Measures, Wiley, New York 1968.
[4] L. Broemeling and H. Tsurumi, Econometrics and Structural Change, Marcel Dekker,

New York 1987.
[5] D. Commenges, J . Seal , and F. Pinatel, Inference about a change point in experimental

neurophysiology, Math. Biosci. 80 (1986), pp. 81–108.
[6] L. Girai t is and P. C. B. Phi l l ips, Uniform limit theory for stationary autoregression,

J. Time Series Anal. 27 (1) (2006), pp. 51–60.
[7] E Gombay, Testing for change-points with rank and sign statistics, Statist. Probab. Lett. 20

(1994), pp. 49–55.
[8] L. Horváth, Change in autoregressive process, Stochastic Process. Appl. 44 (1993), pp. 221–

242.
[9] V. K. Jandhyala and I . B. MacNeil, Iterated partial sum sequences of regression resid-

uals and tests for change points with continuity constraints, J. R. Stat. Soc. Ser. B 59 (1997),
pp. 147–156.
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[14] J . Markevi č i ū t ė , A. Račkauskas, and Ch. Suquet, Functional limit theorems for sums
of nearly nonstationary processes, Lith. Math. J. 52 (3) (2012), pp. 282–296.
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[16] J . Markevi č i ū t ė , A. Račkauskas, and Ch. Suquet, Testing epidemic change in nearly
nonstationary process with statistics based on residuals, Statist. Papers, doi: 10.1007/s00362-
015-0712-0, 2015.

[17] N. Mimoto, Convergence in distribution for the sup-norm of a kernel density estimator for
GARCH innovations, Statist. Probab. Lett. 78 (2008), pp. 915–923.

[18] P. C. B. Phi l l ips, Towards a unified asymptotic theory for autoregression, Biometrika 74 (3)
(1987), pp. 535–547.
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