STRONG LAW OF LARGE NUMBERS FOR RANDOM VARIABLES WITH MULTIDIMENSIONAL INDICES

BY
AGNIESZKA M. GDULA (LUBLIN) AND ANDRZEJ KRAJKA* (LUblin)

Abstract. Let $\left\{X_{\underline{n}}, \underline{n} \in V \subset \mathbb{N}^{2}\right\}$ be a two-dimensional random field of independent identically distributed random variables indexed by some subset V of lattice \mathbb{N}^{2}. For some sets V the strong law of large numbers

$$
\lim _{\underline{n} \rightarrow \infty, \underline{n} \in V} \frac{\sum_{\underline{k} \in V, \underline{k} \leqslant \underline{n}} X_{\underline{k}}}{|\underline{n}|}=\mu \text { a.s. }
$$

is equivalent to

$$
E X_{\underline{1}}=\mu \quad \text { and } \quad \sum_{\underline{n} \in V} P\left[\left|X_{\underline{1}}\right|>|\underline{n}|\right]<\infty .
$$

In this paper we characterize such sets V.
2010 AMS Mathematics Subject Classification: Primary: 60F15; Secondary: 60G50, 60G60

Key words and phrases: Strong law of large numbers, sums of random fields, multidimensional index.

1. INTRODUCTION

Let $\left\{X_{\underline{n}}, \underline{n}=\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in \mathbb{N}^{d}\right\}$ be a family of independent identically distributed random variables indexed by \mathbb{N}^{d}-vectors, and let us put

$$
S_{\underline{n}}=\sum_{\underline{k} \leqslant \underline{n}} X_{\underline{k}}, \quad \underline{n} \in \mathbb{N}^{d},
$$

where $\underline{k} \leqslant \underline{n}$ iff $k_{j} \leqslant n_{j}, j=1,2, \ldots, d$. In this paper we investigate the almost sure behavior of the sums $S_{\underline{n}}$ when $|\underline{n}| \stackrel{\text { def }}{=} \prod_{j=1}^{d} n_{j} \rightarrow \infty$, i.e., the strong law of large numbers (SLLN).

* Corresponding author.

In the case of $d=1$ the classical Kolmogorov's SLLN result asserts that

$$
\begin{equation*}
\frac{S_{\underline{n}}}{|\underline{n}|} \rightarrow \mu \text { a.s. } \tag{1.1}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
E X=\mu, \quad E|X|<\infty, \tag{1.2}
\end{equation*}
$$

where here and in what follows $X=X_{1}$. The proof of Kolmogorov's SLLN is based on the fact that for $d=1$ the relation (L.L) is equivalent to

$$
\begin{equation*}
\forall_{\epsilon>0} \quad P\left[\left|\frac{S_{n}}{|\underline{n}|}-\mu\right| \geqslant \epsilon, \text { infinitely often }\right]=0 . \tag{1.3}
\end{equation*}
$$

This is not the case if $d>1$, since (L.D) is weaker than (L..3) even for i.i.d. random fields. Fortunately, Smythe [8] (Proposition 3.1, p. 913) observed that for i.i.d. random fields satisfying $E|X|<\infty$ (this is obviously necessary for (L.II) to hold) relations ([.LI) and (L.3) are equivalent. Moreover, Smythe [T] proved that ([L.3) is equivalent to

$$
\begin{equation*}
E X=\mu, \quad E|X|\left(\log _{+}|X|\right)^{d-1}<\infty . \tag{1.4}
\end{equation*}
$$

Let us notice that the sufficiency of (L.4) was obtained in a more general setting of non-commutative ergodic transformations much earlier by Dunford [罒] (see also Zygmund [10]).

It was Gabriel [2] who first observed that if we replace the whole lattice \mathbb{N}^{d} with a sector $V_{\theta}^{d}=\left\{\underline{n}: \theta n_{i} \leqslant n_{j} \leqslant \theta^{-1} n_{i}, i \neq j, i, j=1,2, \ldots, d\right\}$, then the situation is completely analogous to the one-dimensional case, namely $E|X|<$ $+\infty$ if and only if

$$
\lim _{V} \frac{S_{\underline{n}}}{|\underline{n}|} \text { exists a.s., }
$$

and then the limit is, of course, equal to $E X$. Here $\lim _{V} c_{\underline{n}}=c_{0}$ means that for every $\epsilon>0$ we have $\left|c_{\underline{n}}-c_{0}\right|<\epsilon$ for all but a finite number of $\underline{n} \in V$. (We refer also to [3] for the sectorial Marcinkiewicz-Zygmund laws of large numbers.)

Later, Klesov and Rychlik [6] and Indlekofer and Klesov [4] proved that for a large class of subsets $V \subset \mathbb{N}^{d}$ the SLLN along V, i.e.

$$
\begin{equation*}
\lim _{V} \frac{S_{\underline{n}}}{|\underline{n}|}=E X \text { a.s., } \tag{1.5}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\sum_{\underline{n} \in V} P[|X| \geqslant|\underline{n}|]<+\infty . \tag{1.6}
\end{equation*}
$$

The relation (L.6) can be written in terms of the Dirichlet divisors. For $V \subset \mathbb{N}^{d}$ let us define

$$
\tau_{V}(n)=\operatorname{card}\{\underline{k} \in V:|\underline{k}|=n\}, \quad T_{V}(x)=\sum_{k \leqslant x} \tau_{V}(k) .
$$

By the very definition we have

$$
\sum_{\underline{n} \in V} P[|X| \geqslant|\underline{n}|]=E T_{V}(|X|),
$$

hence (1.6) can be verified if we are able to determine the asymptotics of T_{V}. For example, using methods of number theory, one can show that

$$
T_{\mathbb{N}^{d}}(x) \sim n w_{d-1}(\log x)
$$

where w_{k-1} is a polynomial of degree $k-1$. This in turn leads to (1.4) as a necessary and sufficient condition for (1.1) and rediscovers a result of Smythe [8].

In fact, the results of [4] and [6] were proved for the case $d=2$ only. We shall describe them briefly. Let us introduce the following classes of nonnegative functions on \mathbb{N} :

$$
\begin{aligned}
& F_{1} \stackrel{\text { def }}{=}\{f: f \nearrow, x \leqslant f(x), f(x) / x \nearrow\}, \\
& G_{1} \stackrel{\text { def }}{=}\{g: g \nearrow, g(x) \leqslant x, g(x) / x \searrow\}, \\
& F_{2} \stackrel{\text { def }}{=}\{f: f \text { is nondecreasing }, x \leqslant f(x)\}, \\
& G_{2} \stackrel{\text { def }}{=}\{g: g \text { is nondecreasing, } g(x) \leqslant x\} .
\end{aligned}
$$

By $C\left(F_{i}, G_{i}\right), i=1,2$, we will denote the class of subsets $V \subset \mathbb{N}^{2}$ of the form

$$
V=V(f, g)=\left\{\underline{n}=\left(n_{1}, n_{2}\right): g\left(n_{1}\right) \leqslant n_{2} \leqslant f\left(n_{1}\right)\right\},
$$

where $f \in F_{i}, g \in G_{i}$. Then the main result of [4] states that the class $C\left(F_{1}, G_{1}\right)$ consists of good sets, i.e. such that (1.5) is equivalent to (1.6), while the paper [6] proves that a larger class $C\left(F_{2}, G_{2}\right)$ has this property as well.

The purpose of the present paper is to indicate some other classes of subsets of \mathbb{N}^{2}, which are determined by classes of functions F_{j} and G_{j}, exhibiting less regularity in comparison with $C\left(F_{2}, G_{2}\right)$, but still containing $C\left(F_{2}, G_{2}\right)$. In the next section we provide three theorems, each exploiting a different direction, as Example 2.1 shows:
(i) We smooth out the boundaries from up and down and evaluate the difference of series (L.6) for these boundaries.
(ii) We introduce the usual order for the boundaries with a finite number of oscillations.
(iii) We smooth on the boundaries from the bottom and evaluate the measure of area between the smoothed and original boundaries.

Throughout the paper, c denotes the generic constants different in different places, perhaps. All functions in the families F and G considered in this paper always satisfy additionally $f(x) \geqslant x, x \in \mathbb{R}_{+}$, and $0<g(x) \leqslant x, x \in \mathbb{R}_{+}$, respectively. We will use the inverse function for not necessarily strictly monotone and continuous functions putting $f=1(y)=\inf \left\{x \in \mathbb{R}_{+}: f(x-0) \leqslant y \leqslant f(x+0)\right\}$ and $f^{-1}(y)=\sup \left\{x \in \mathbb{R}_{+}: f(x-0) \leqslant y \leqslant f(x+0)\right\}$. Furthermore, for an arbitrary graph $\Gamma=\{(x, f(x)), x \in X\}$, where $X \subset \mathbb{R}$, we define the \mathbb{N}^{2} boundary of Γ by

$$
\begin{equation*}
\partial \triangle_{f}=\left\{(i, j) \in \mathbb{N}^{2}: \underset{\substack{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \in}}{\exists} f\left(i_{1}\right)<j_{1}, f\left(i_{2}\right)>j_{2}\right\} \tag{1.7}
\end{equation*}
$$

(obviously, this definition obeys the case when f is a function). In the whole paper we note $x \vee y=\max \{x, y\}, x \wedge y=\min \{x, y\}, \log _{+} x=\max \{\log x, 0\}$, and $\log x$ denotes the natural logarithm.

2. MAIN RESULTS

For an arbitrary function $f \in \mathbb{R}_{+}^{\mathbb{R}_{+}}$, we put

$$
\underline{f}(x)=\inf _{u \geqslant x} f(u), \quad \bar{f}(x)=\sup _{0 \leqslant u \leqslant x} f(u) .
$$

It is easy to check that
(i) $\underline{f}(x)$ is nondecreasing, $\bar{f}(x)$ is nondecreasing,
(ii) $\underline{f}(x) \leqslant f(x) \leqslant \bar{f}(x), x \in \mathbb{R}_{+}$,
(iii) for $f(x)$ nondecreasing or $f(x)$ nonincreasing, $\underline{f}(x)=f(x)=\bar{f}(x)$.

Furthermore, for two functions f, g we put

$$
\begin{aligned}
& \bar{V}=\bar{V}(f, g)=V(\bar{f}, \underline{g}), \\
& \underline{V}=\underline{V}(f, g)=V(\underline{f}, \bar{g})
\end{aligned}
$$

(for fixed f, g we will often omit arguments), and for arbitrary families of the functions F and G let us define

$$
\begin{align*}
& \bar{C}(F, G)=\{\bar{V}(f, g): f \in F, g \in G\}, \\
& \underline{C}(F, G)=\{\underline{V}(f, g): f \in F, g \in G\} . \tag{2.1}
\end{align*}
$$

Moreover, let us define the families of the functions $\left\{F_{3}, G_{3}\right\}$ as follows:

$$
F_{3}=\left\{f: \int_{0}^{\infty} \frac{\log \left(\frac{\bar{f}(x) \vee e}{\underline{f}(x) \vee 1}\right)}{x \vee 1} d x<\infty\right\}, \quad G_{3}=\left\{g: \int_{0}^{\infty} \frac{\log \left(\frac{\bar{g}(x) \vee e}{g}(x) \vee 1\right.}{x \vee 1} d x<\infty\right\} .
$$

Theorem 2.1. The class $C\left(F_{3}, G_{3}\right)$ consists of good sets.
Let $B_{f}(y)$ denote the minimal family of connected subsets of the set $\{(x, y)$: $f(x)<y\}$ (minimal means that for every $B_{1} \in B_{f}(y), B_{2} \in B_{f}(y), B_{1} \neq B_{2}$, $B_{1} \cup B_{2}$ is disconnected). Let us note that all sets of the family $B_{f}(y)$ are subsets $[0, y] \times\{y\}$. Furthermore, let $K_{f}(y):=\operatorname{card}\left\{B_{f}(y)\right\}$. Let us define

$$
F_{4}=\left\{f: \sup _{n \in \mathbb{N}} K_{f}(n)<\infty\right\}, \quad G_{4}=\left\{g: \sup _{n \in \mathbb{N}} K_{g}(n)<\infty\right\} .
$$

Theorem 2.2. The class $C\left(F_{4}, G_{4}\right)$ consists of good sets.
Now we consider the families:

$$
\begin{aligned}
& F_{5}=\left\{f: \forall_{x \in \mathbb{N}, y \in(\underline{f}(x), f(x)\rceil \cap \mathbb{N}}\left\{\lceil y-\underline{f}(x)\rceil \log _{+}(x\lceil y-\underline{f}(x)\rceil) \leqslant c y\right.\right. \\
& \text { or } \left.\left.\lceil\underline{f}-\underline{-1}(y)-x\rceil \log _{+}(y\lceil\underline{f} \underline{-1}(y)-x\rceil) \leqslant c x\right\}\right\} \text {, } \\
& G_{5}=\left\{g: \forall_{x \in \mathbb{N}, y \in[g(x), \bar{g}(x)) \cap \mathbb{N}}\left\{\lceil\bar{g}(x)-y\rceil \log _{+}(x\lceil\bar{g}(x)-y\rceil) \leqslant c y\right.\right. \\
& \text { or } \left.\left.\left\lceil x-\bar{g}^{-1}(y)\right\rceil \log _{+}\left(y\left\lceil x-\bar{g}^{-1}(y)\right\rceil\right) \leqslant c x\right\}\right\}, \\
& F_{6}=\left\{f: \forall_{x \in \mathbb{N}}\lceil f(x)-\underline{f}(x)\rceil \log _{+}(x\lceil f(x)-\underline{f}(x)\rceil) \leqslant c f(x)\right\}, \\
& G_{6}=\left\{g: \forall_{x \in \mathbb{N}}\lceil\bar{g}(x)-g(x)\rceil \log _{+}(x\lceil\bar{g}(x)-g(x)\rceil) \leqslant c g(x)\right\}, \\
& F_{7}=\left\{f: \forall_{x \in \mathbb{N}, y \in(\underline{f}(x), f(x)) \cap \mathbb{N}}\lceil\underline{f-1}(y)-f \underline{-1}(y)\rceil \log _{+}(y\lceil\underline{f} \underline{-1}(y)-f \underline{-1}(y)\rceil)\right. \\
& \leqslant c f-1(y)\}, \\
& G_{7}=\left\{g: \forall_{x \in \mathbb{N}, y \in(g(x), \bar{g}(x)) \cap \mathbb{N}}\left\lceil g^{\overline{-1}}(y)-\bar{g}^{\overline{-1}}(y)\right\rceil \log _{+}\left(y\left\lceil g^{\overline{-1}}(y)-\bar{g}^{\overline{-1}}(y)\right\rceil\right)\right. \\
& \left.\leqslant c g^{\overline{-1}}(y)\right\} \text {. }
\end{aligned}
$$

THEOREM 2.3. The class $C\left(F_{5}, G_{5}\right)$ consists of good sets.
It is obvious that if $F \subset F^{\prime}, G \subset G^{\prime}$, and the class $C\left(F^{\prime}, G^{\prime}\right)$ consists of good sets, then the class $C(F, G)$ consists also of good sets.

REMARK 2.1. The following inclusions are true:

$$
F_{6} \cup F_{7} \subset F_{5}, \quad G_{6} \cup G_{7} \subset G_{5} .
$$

Because for f nondecreasing and g nondecreasing we have $\underline{f}=f=\bar{f}, \underline{g}=$ $g=\bar{g}$ and $K_{f}(y)=1, K_{g}(y)=1$, we get

COROLLARY 2.1. The following inclusions are true:

$$
F_{1} \subset F_{2} \subset F_{i} \quad \text { and } \quad G_{1} \subset G_{2} \subset G_{i} \quad \text { for } i=3,4,5,6,7
$$

Therefore, all our Theorems [2.]-2.3] generalize the main results of [4] and [6].

Example 2.1. We will consider the class of functions

$$
\begin{equation*}
f(x)=u(x)+g(x)|\cos (h(x) \pi)| \tag{2.2}
\end{equation*}
$$

for nondecreasing positive functions g and u, with $u(x) \geqslant x$, and an arbitrary function h. Notice that we always have $\bar{f}(x)=u(x)+g(x)$ and $\underline{f}(x)=u(x)$.
(i) If $u(x)=2^{x}\left(\log _{+} x\right)^{2}, g(x)=2^{x}, h(x)=2^{x}(\log \bar{x})^{2}, x \in \mathbb{R}$, then the assumptions of Theorem [2.] are satisfied, but those of Theorems 2.2 and 2.3$]$ fail.
(ii) If $u(x)=x, g(x)=x, h(x)=\left(x-2^{k}\right) / 2^{k-1}, x \in \mathbb{R}, k=\left\lceil\log _{2} x\right\rceil$, then the assumptions of Theorem [2.2] hold, but those of Theorems [2.] and 2.3$]$ fail.
(iii) If $u(x)=x, g(x)=x / \log x, h(x)=2^{x}, x \in \mathbb{R}$, then the assumptions of Theorem [2.3] are satisfied, but those of Theorems 2.1$]$ and 2.2 fail.

3. PROOFS

Proof of Theorem [2.]. From Theorem 1 in [4] we infer that for arbitrary families of the functions F, G the conditions for both the classes $\underline{C}(F, G)$ and $\bar{C}(F, G)$ to consist of good sets are satisfied, i.e.

$$
\begin{equation*}
\left(\sum_{\underline{n} \in \underline{V}} P[|X| \geqslant|\underline{n}|]<\infty \text { and } E X=\mu\right) \Leftrightarrow \lim _{\underline{V}} \frac{S_{\underline{n}}}{|\underline{n}|}=\mu, \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{\underline{n} \in \bar{V}} P[|X| \geqslant|\underline{n}|]<\infty \text { and } E X=\mu\right) \Leftrightarrow \lim _{\bar{V}} \frac{S_{\underline{n}}}{|\underline{n}|}=\mu . \tag{ii}
\end{equation*}
$$

If additionally we show that, for every fixed $f \in F_{3}, g \in G_{3}$,

$$
\begin{equation*}
\sum_{\underline{n} \in \bar{V} \backslash \underline{V}} P[|X| \geqslant|\underline{n}|]<\infty \tag{3.1}
\end{equation*}
$$

then the assertion follows from the chain of implications

$$
\begin{aligned}
& \left(\sum_{\underline{n} \in V} P[|X| \geqslant|\underline{n}|]<\infty \text { and } E X=\mu\right) \stackrel{(\text { (In) }}{\Rightarrow}\left(\sum_{\underline{n} \in \bar{V}} P[|X| \geqslant|\underline{n}|]<\infty \text { and } E X=\mu\right) \\
& \quad \stackrel{(\mathrm{i})}{\Rightarrow}\left(\lim _{\bar{V}} \frac{S_{n}}{|\underline{n}|}=\mu\right) \Rightarrow\left(\lim _{V} \frac{S_{n}}{|\underline{n}|}=\mu\right) \Rightarrow\left(\lim _{\underline{V}} \frac{S_{\underline{n}}}{|\underline{n}|}=\mu\right) \\
& \stackrel{(\mathrm{ii})}{\Rightarrow}\left(\sum_{\underline{n} \in \underline{V}} P[|X| \geqslant|\underline{n}|]<\infty \text { and } E X=\mu\right) \stackrel{((\underline{n})}{\Rightarrow}\left(\sum_{\underline{n} \in V} P[|X| \geqslant|\underline{n}|]<\infty \text { and } E X=\mu\right),
\end{aligned}
$$

so that it is enough to prove (3.l|). From the above considerations we may and do assume that $E X=\mu$, i.e. $E|X|<\infty$.

Because for each nonincreasing function h and nondecreasing t we have

$$
\sum_{n=1}^{\infty} h(n) \leqslant \int_{0}^{\infty} h(x) \wedge h(1) d x, \quad \sum_{\underline{n} \in \partial \Delta_{t}} P[|X| \geqslant|\underline{n}|] \leqslant E \sqrt{|X|}
$$

(for the last inequality see the proof of Lemma 2 in [4]), and

$$
\sum_{\underline{n} \in \bar{V} \backslash \underline{V}} P[|X| \geqslant|\underline{n}|] \leqslant \sum_{\underline{n} \in \bar{V} \backslash \underline{V}} \frac{E|X|}{|\underline{n}|}
$$

we obtain

$$
\begin{aligned}
\sum_{\underline{n} \in \bar{V} \backslash \underline{V}} P[|X| \geqslant|\underline{n}|] \leqslant & E|X| \underset{\left\{\underline{x} \in R^{2}: \underline{f}\left(x_{1}\right) \leqslant x_{2} \leqslant \bar{f}\left(x_{1}\right)\right\}}{ } \frac{1}{\left(x_{1} \vee 1\right)\left(x_{2} \vee 1\right)} d x_{1} d x_{2} \\
& +E|X| \underset{\left\{\underline{x} \in R^{2}: \underline{g}\left(x_{1}\right) \leqslant x_{2} \leqslant \bar{g}\left(x_{1}\right)\right\}}{ } \frac{1}{\left(x_{1} \vee 1\right)\left(x_{2} \vee 1\right)} d x_{1} d x_{2} \\
& +\sum_{\underline{n} \in \partial \Delta_{\underline{f}}} P[|X| \geqslant|\underline{n}|]+\sum_{\underline{n} \in \partial \triangle_{\bar{f}}} P[|X| \geqslant|\underline{n}|] \\
& +\sum_{\underline{n} \in \partial \Delta_{\underline{g}}} P[|X| \geqslant|\underline{n}|]+\sum_{\underline{n} \in \partial \Delta_{\bar{g}}} P[|X| \geqslant|\underline{n}|] \\
\leqslant & E|X| I_{1}+E|X| I_{2}+4 E \sqrt{|X|}, \text { say. }
\end{aligned}
$$

Now we show how to evaluate I_{1}.
First we remark that because for $0 \leqslant a \leqslant b<\infty$ we have

$$
\int_{a}^{b} \frac{1}{x \vee 1} d x= \begin{cases}\log (b / a) & \text { if } 1 \leqslant a \leqslant b \\ \log (b)+(1-a) & \text { if } a<1 \leqslant b \\ b-a & \text { if } a \leqslant b \leqslant 1\end{cases}
$$

and for $a<1$ we get $\log \frac{b \vee e}{a \vee 1} \geqslant 1$, the following inequality holds true:

$$
\int_{a}^{b} \frac{1}{x \vee 1} d x \leqslant 2 \log \frac{b \vee e}{a \vee 1}
$$

Therefore,

$$
I_{1} \leqslant \int_{0}^{\infty} \int_{\underline{f}\left(x_{1}\right)}^{\bar{f}\left(x_{1}\right)} \frac{1}{x_{2} \vee 1} d x_{2} \frac{1}{x_{1} \vee 1} d x_{1} \leqslant 2 \int_{0}^{\infty} \frac{\log \left(\frac{\bar{f}(x) \vee e}{\underline{f}(x) \vee 1}\right)}{x \vee 1} d x<\infty,
$$

and similarly for $I_{2}<\infty$.

For the proof of Theorem [2.2] let us notice that the functions f and g from the families F_{4} and G_{4}, respectively, can be discontinuous. If, e.g., $f\left(x_{0}-0\right)=y_{0}<$ $y_{1}=f\left(x_{0}+0\right)$, then we "complete" the definition putting $f\left(x_{0}\right)=\left[y_{0}, y_{1}\right]$ (the whole interval $\left.\left[y_{0}, y_{1}\right]\right)$. Obviously, at this moment $\Gamma=\{(x, f(x)), x \in \mathbb{R}\}$ is not a function, but a continuous graph, and f is a relation. However, we will write later "function f ", so that it does not cause misunderstanding. We say that the piecewise continuous graph $\{(x, f(x)), x \in X\}$ for $X \subset \mathbb{R}$ satisfies the condition G iff

Condition G. If $\left\{(x, f(x)), x \in\left(x_{0}, x_{1}\right)\right\}$ and $\left\{(x, f(x)), x \in\left(x_{2}, x_{3}\right)\right\}$ are two pieces where the graph is continuous and $x_{1} \leqslant x_{2}$, then $f\left(x_{0}\right) \leqslant f\left(x_{3}\right)$.

For such graphs we have
Proposition 3.1. Let $\{(x, f(x)), x \in X\}$, where $X \subset \mathbb{R}$, be a piecewise nonincreasing graph satisfying the condition G . Then

$$
\begin{equation*}
\sum_{(i, j) \in \partial \triangle_{f}} P[|X|>i j] \leqslant 4 E|X| . \tag{3.2}
\end{equation*}
$$

Proof of Proposition B.1. By $Q(i, j)$ we denote the square $\{(x, y) \in$ $\left.\mathbb{R}^{2}: i<x \leqslant i+1, j \leqslant y<j+1\right\}$.

Let us consider one piece of the graph $\Gamma=\left\{(x, f(x)), x \in\left(x_{0}, x_{1}\right)\right\}$ on which the graph is continuous (and it is not continuous or even does not exist at x_{1}).

The boundary of this piece of the graph can be expressed as a subset P_{1} (may be empty) of the path $P=[(i, j), \ldots,(i+k, j-l)]$ for some positive integers i, j, k, l, where if $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ are subsequent points, then $\left(i_{2}, j_{2}\right)$ is equal to $\left(i_{1}+1, j_{1}\right)$ or $\left(i_{1}, j_{1}-1\right)$, or $\left(i_{1}+1, j_{1}-1\right)$ according to the way the graph Γ "goes out" from $Q\left(i_{1}, j_{1}\right)$ and "enters" $Q\left(i_{2}, j_{2}\right)$. If the graph Γ does not "enter" the interior $Q\left(i_{2}, j_{2}\right)$, then $\left(i_{2}, j_{2}\right) \notin P_{1}$, but obviously $\left(i_{2}, j_{2}\right) \in P$.

For such paths P and P_{1} we construct a function H defined on \triangle_{f} and taking values in $\{(x, 1): x \in \mathbb{N}\} \cup\{(1, y): y \in \mathbb{N}\}$ as follows:

$$
\begin{aligned}
& H\left(\left(i_{1}, j_{1}\right)\right)=\left(i_{1}, 1\right), \\
& H\left(\left(i_{k}, j_{k}\right)\right)= \begin{cases}\left(i_{k}, 1\right) & \text { if } i_{k}>i_{k-1} \\
\left(1, j_{k}\right) & \text { if } i_{k}=i_{k-1}\end{cases}
\end{aligned}
$$

On the piece $\left(x_{0}, x_{1}\right)$ we have
$H\left(\triangle_{\left.\left.f\right|_{x \in\left(x_{0}, x_{1}\right)}\right) \subset\{(i, 1),(i+1,1), \ldots,(i+k, 1),(1, j),(1, j-1), \ldots,(1, j-l)\}, ~}\right.$
and H is the injective function (in this area), where $\left.f\right|_{x \in\left(x_{0}, x_{1}\right)}$ denotes the restriction of the function f to the interval (x_{0}, x_{1}). Obviously, because for every point
$(i, j) \in(\mathbb{N} \backslash\{0\})^{2}$ we have $i j>\max \{i, j\}$, it follows that

It may happen then that one continuous piece of the graph Γ has a path of boundaries $[(i, j), \ldots,(i+k, j-l)]$, whereas the next continuous piece of the graph contains a point $(i+k, j)$, and in this case the projection H may transform $(i+k, j)$ into the existing point $(i+k, 1)$ or $(1, j)$; consequently,

$$
\begin{equation*}
\sum_{(i, j) \in \partial_{f}} P[|X|>i j] \leqslant 2 \sum_{(i, j) \in H\left(\partial_{f}\right)} P[|X|>i j] \leqslant 4 \sum_{i=1}^{\infty} P[|X|>i]=4 E|X| \tag{3.4}
\end{equation*}
$$

which completes the proof.
Proof of Theorem [2.2. Without loss of generality we assume $E X=0$. We consider only the sector $\left\{(m, n) \in \mathbb{R}^{2}: m \leqslant n\right\}$ and the family of functions F_{4} since in the case G_{4} the proof runs similarly. For the function $f: \mathbb{R} \rightarrow \mathbb{R}$, such that $f(x)>x$ and every $y \in \mathbb{R}$, we define the partition of the interval $[0, y]=$ $B_{f}(y)+A_{f}(y)$ by $B_{f}(y)=\{(x, y): f(x)<y\}, A_{f}(y)=\{(x, y): f(x) \geqslant y\}$, and

$$
\begin{aligned}
B_{f}(y) & =\left(\left[0, x_{1}\right) \times\{y\}\right) \cup\left(\left(x_{2}, x_{3}\right) \times\{y\}\right) \cup \ldots \cup\left(\left(x_{K_{f}(y)-1}, x_{K_{f}(y)}\right) \times\{y\}\right) \\
& =\bigcup_{k=1}^{K_{f}(y)} B_{k}(f, n), \\
A_{f}(y) & =\left(\left[x_{1}, x_{2}\right] \times\{y\}\right) \cup\left(\left[x_{3}, x_{4}\right] \times\{y\}\right) \cup \ldots \cup\left(\left[x_{K_{f}(y)}, y\right] \times\{y\}\right) \\
& =\bigcup_{k=1}^{K_{f}(y)} A_{k}(f, y), \quad 0<x_{1}<x_{2}<x_{3}<\ldots<x_{K_{f}(y)}<y,
\end{aligned}
$$

for some finite (the definition of the family F_{4}) integers $K_{f}(y) \in \mathbb{N}$. We put $K=$ $\sup \left\{K_{f}(y): y \in \mathbb{R}\right\}$. For each y we complete the families $\mathcal{B}(f, y)=\left\{B_{k}(f, y)\right.$, $\left.1 \leqslant k \leqslant K_{f}(y)\right\}$ putting $B_{k}(f, y)=\emptyset$ for $k=K_{f}(y)+1, K_{f}(y)+2, \ldots, K$. Immediately, from the definition of this family we have the property

$$
\forall_{y_{1}<y_{2}} \forall_{1 \leqslant i \leqslant K} \exists_{1 \leqslant j \leqslant k} B_{i}\left(f, y_{1}\right) \subset B_{j}\left(f, y_{2}\right)
$$

Thus, on the base of the family $\mathcal{B}(f, y)$ we define the family

$$
\Gamma_{k}(y)=\bigcup_{i=1}^{k} \bigcup_{1 \leqslant t \leqslant y} \bigcup_{j: B_{j}(f, t) \subset B_{i}(f, y), 1 \leqslant j \leqslant K} B_{j}(f, t), \quad 1 \leqslant k \leqslant K .
$$

Furthermore, for every $1 \leqslant k \leqslant K$ we put

$$
A(k)=\bigcup_{y \in \mathbb{R}} A_{k}(f, y), \quad k=1,2,3, \ldots, K
$$

We explain the introduced families in Figure 1.

Figure 1. The partition of the graph on the areas $A(i), 1 \leqslant i \leqslant K$
It is easy to check that Lemma 1 and the proof of Theorem 1 in [4] hold for the sequences $\left\{\underline{n}_{k}, k \in \mathbb{N}\right\} \subset A(k)$ and the increasing sequences of sums of random variables

$$
Y_{\underline{n}}(k)=\sum_{\underline{m} \in \Gamma_{k}\left(n_{2}\right) \cap \mathbb{N}^{2}} X_{\underline{m}}=\sum_{\underline{m} \in\left[1, n_{1}\right] \times\left[1, n_{2}\right] \cap B} X_{\underline{m}}, \quad \underline{n} \in A(k),
$$

iff only $A(k)$ is not bounded for $k=1,2,3, \ldots, K$. Some comments are required about the fulfilling of Lemma 2 in [4] for the boundaries of our sets $A(k)$. The boundary of such sets can be divided by at most K graphs $\Xi_{i}, 1 \leqslant i \leqslant K$, piecewise continuous and increasing (in Figure We mark three such graphs: a, b and c, respectively) and at most K graphs $\Upsilon_{i}, 1 \leqslant i \leqslant K$, piecewise continuous and decreasing (in Figure \mathbb{I} we mark two such graphs: d and e, respectively). For each graph from the family $\Xi_{i}, 1 \leqslant i \leqslant K$, we intermediately use Lemma 2 of [4], whereas for the graphs from the family $\Upsilon_{i}, 1 \leqslant i \leqslant K$, we use our Proposition [.].).

Thus, using the notation of [4],

$$
\lim _{\underline{n} \in A(k)} \frac{Y_{\underline{n}}(k)}{\left|\left[1, n_{1}\right] \times\left[1, n_{2}\right] \cap B\right|}=0, \quad k=1,2,3, \ldots, K,
$$

and because each subsequence $\mathcal{N}=\left\{\underline{n}_{i} \in A, i \in \mathbb{N}\right\}$ can be divided into K subsequences $\mathcal{N} \cap A(k)$, the assertion holds.

Note that in the above proof we use only the definitions of $\left\{A_{i}(f, y), B_{i}(f, y)\right.$, $\left.\Gamma_{i}(y)\right\}$ for integer y 's. Therefore, we restrict ourselves in the definitions of F_{4} and G_{4}, and $K_{f}(y)$ and $K_{g}(y)$ for integer y 's, only.

Proof of Theorem 2.3. We show that if

$$
\begin{equation*}
\lim _{\underline{V}} \frac{S_{\underline{n}}}{\underline{n}}=E X \tag{3.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{V} \frac{S_{\underline{n}}}{\underline{n}}=E X \tag{3.6}
\end{equation*}
$$

Obviously, (3.5) follows from Theorem 1 in [4]. Then we have $E|X|<\infty$. Furthermore, we define four functions:

$$
\begin{aligned}
& M_{1}:\left\{\begin{array}{c}
V \longrightarrow \underline{V}, \\
M_{1}\left(\left(k_{1}, k_{2}\right)\right)=\left(k_{1},\left\lfloor\underline{f}\left(k_{1}\right)\right\rfloor\right),
\end{array}\right. \\
& M_{2}:\left\{\begin{array}{c}
V \longrightarrow \underline{V}, \\
M_{2}\left(\left(k_{1}, k_{2}\right)\right)=\left(\left\lceil f \frac{-1}{}\left(k_{2}\right)\right\rceil, k_{2}\right),
\end{array}\right. \\
& M_{3}:\left\{\begin{array}{c}
V \longrightarrow \underline{V}, \\
M_{3}\left(\left(k_{1}, k_{2}\right)\right)=\left(k_{1},\left\lceil\bar{g}\left(k_{1}\right)\right\rceil\right),
\end{array}\right. \\
& M_{4}:\left\{\begin{array}{c}
V \longrightarrow \underline{V}, \\
M_{4}\left(\left(k_{1}, k_{2}\right)\right)=\left(\left\lfloor g^{-1}\left(k_{2}\right)\right\rfloor, k_{2}\right) .
\end{array}\right.
\end{aligned}
$$

Obviously, as $M_{i}\left(k_{1}, k_{2}\right) \in \underline{V}, i=1,2,3,4$, from (3.5) we have

$$
\begin{equation*}
\lim _{|\underline{n}| \rightarrow \infty, \underline{n} \in V} \frac{S_{M_{i}(\underline{n})}}{\left|M_{i}(\underline{n})\right|}=E X, \quad i=1,2,3,4 \tag{3.7}
\end{equation*}
$$

Let the sequence $\left\{\underline{n}_{k}=\left(n_{1, k}, n_{2, k}\right), k \in \mathbb{N}\right\} \subset V \backslash \underline{V}$ be such that $\left|\underline{n}_{k}\right| \rightarrow \infty$, and let

$$
\left\{\underline{n}_{k}, k \in \mathbb{N}\right\}=\bigcup_{i=1}^{4}\left\{\underline{n}_{k}^{(i)}=\left(n_{1, k}^{(i)}, n_{2, k}^{(i)}\right), k \in \mathbb{N}\right\}
$$

be four subsequences such that

$$
\begin{gathered}
\left\lceil f\left(n_{1, k}^{(1)}\right)-\underline{f}\left(n_{1, k}^{(1)}\right)\right\rceil \log _{+}\left(n_{1, k}^{(1)}\left\lceil f\left(n_{1, k}^{(1)}\right)-\underline{f}\left(n_{1, k}^{(1)}\right)\right\rceil\right) \leqslant c f\left(n_{1, k}^{(1)}\right), \\
\left\lceil\underline{f} \underline{-1}\left(n_{2, k}^{(2)}\right)-f \frac{-1}{(2)}\left(n_{2, k}^{(2)}\right)\right\rceil \log _{+}\left(n_{2, k}^{(2)}\left\lceil\underline{f} \underline{-1}\left(n_{2, k}^{(2)}\right)-f \underline{-1}\left(n_{2, k}^{(2)}\right)\right\rceil\right) \leqslant c f \frac{-1}{(2)}\left(n_{2, k}^{(2)}\right), \\
\left\lceil\bar{g}\left(n_{1, k}^{(3)}\right)-g\left(n_{1, k}^{(3)}\right)\right\rceil \log _{+}\left(n_{1, k}^{(3)}\left\lceil\bar{g}\left(n_{1, k}^{(3)}\right)-g\left(n_{1, k}^{(3)}\right)\right\rceil\right) \leqslant c g\left(n_{1, k}^{(3)}\right), \\
\left\lceil g^{-1}\left(n_{2, k}^{(4)}\right)-\bar{g}^{-1}\left(n_{2, k}^{(4)}\right)\right\rceil \log _{+}\left(n_{2, k}^{(4)}\left\lceil g^{\overline{-1}}\left(n_{2, k}^{(4)}\right)-\bar{g}^{-1}\left(n_{2, k}^{(4)}\right)\right\rceil\right) \leqslant c g^{-1}\left(n_{2, k}^{(4)}\right) .
\end{gathered}
$$

At least one of the above-defined subsequences is infinite (we denote the set of such subsequences by I).

Let us remark that for $x>y>0$ we have $\lfloor x\rfloor-\lfloor y\rfloor \leqslant\lceil x-y\rceil$. Indeed, if $x-y$ is an integer, then $\lfloor x\rfloor-\lfloor y\rfloor=x-y=\lceil x-y\rceil$. On the other hand, since for arbitrary $z \in(0,2)$ we have $\lfloor z\rfloor \leqslant 1$, it follows that

$$
\begin{aligned}
\lfloor x\rfloor-\lfloor y\rfloor & =\lfloor x-\lfloor y\rfloor\rfloor=\lfloor x-y+\{y\}\rfloor \\
& =\lfloor\lfloor x-y\rfloor+\{x-y\}+\{y\}\rfloor=\lfloor x-y\rfloor+\lfloor\{x-y\}+\{y\}\rfloor \\
& \leqslant\lfloor x-y\rfloor+1=\lceil x-y\rceil .
\end{aligned}
$$

Therefore, the subsequences defined as above satisfy
$\limsup _{k \rightarrow \infty} \frac{\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right)\left(\log _{+}\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right) \vee 1\right)}{\left|\underline{n}_{k}^{(i)}\right|}<c<\infty, \quad i \in I$,
and, in consequence, because $\lim _{V \backslash \underline{V}} \log _{+}\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right)=+\infty$ or $\left|\underline{n}_{k}^{(i)}\right|=$ $\left|M_{i}\left(\underline{(\underline{e}}_{k}^{(i)}\right)\right|, k \in \mathbb{N}$, we obtain

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|}{\left|\underline{n}_{k}^{(i)}\right|}=1, \quad i \in I . \tag{3.9}
\end{equation*}
$$

On the other hand, let us remark that

$$
S_{\underline{n}}-S_{M_{i}(\underline{n})} \stackrel{\mathcal{D}}{\sim} S_{\underline{\underline{n}}-M_{i}(\underline{n})},
$$

and from Theorem 1 in [5] we have

$$
\lim _{k \rightarrow \infty} \frac{S_{\underline{n}_{k}^{(i)}}-E S_{\underline{n}_{k}^{(i)}}-S_{M_{i}\left(\underline{n}_{k}^{(i)}\right)}+E S_{M_{i}\left(\underline{n}_{k}^{(i)}\right)}}{\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right)\left(\log _{+}\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right) \vee 1\right)}=0, \quad i \in I .
$$

Because for $i \in I$
(3.10) $\lim _{k \rightarrow \infty} \frac{-E S_{\underline{n}_{k}^{(i)}}+E S_{M_{i}\left(\underline{n}_{k}^{(i)}\right)}}{\left(\left|\underline{\underline{n}}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right)\left(\log _{+}\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right) \vee 1\right)}$

$$
=\lim _{k \rightarrow \infty} \frac{-E X}{\log _{+}\left(\left|\underline{\underline{n}}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right) \vee 1}=0,
$$

and

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{S_{\underline{n}_{k}^{(i)}}}{\left|\underline{n}_{k}^{(i)}\right|}= \\
& \lim _{k \rightarrow \infty}\left\{\frac{S_{M_{i}\left(\underline{n}_{k}^{(i)}\right)}}{\left|M_{i}\left(\underline{(n}_{k}^{(i)}\right)\right|} \frac{\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|}{\left|\underline{n}_{k}^{(i)}\right|}+\frac{S_{\underline{n}_{k}^{(i)}}-S_{M_{i}\left(\underline{(n}_{k}^{(i)}\right)}}{\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right)\left(\log _{+}\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right) \vee 1\right)}\right. \\
&\left.\times \frac{\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right)\left(\log _{+}\left(\left|\underline{n}_{k}^{(i)}\right|-\left|M_{i}\left(\underline{n}_{k}^{(i)}\right)\right|\right) \vee 1\right)}{\left|\underline{n}_{k}^{(i)}\right|}\right\} \\
&=E X \cdot 1+0 \cdot c=E X, \quad i \in I,
\end{aligned}
$$

and, in consequence,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{S_{\underline{n}_{k}}}{\left|\underline{n}_{k}\right|}=E X \tag{3.11}
\end{equation*}
$$

the proof is completed.
Proof of Example [.]. In all the three cases we have

$$
\begin{gathered}
\int_{0}^{\infty} \frac{\log \left(\frac{\bar{f}(x) \vee e}{f(x) \vee 1}\right)}{x \vee 1} d x=\int_{0}^{\infty} \frac{\log \left(\frac{(u(x)+g(x)) \vee e}{u(x) \vee 1}\right)}{x \vee 1} d x, \\
\lceil f(x)-\underline{f}(x)\rceil \log _{+}(x\lceil f(x)-\underline{f}(x)\rceil) \\
\quad=\lceil g(x)|\cos (h(x) \pi)|\rceil \log _{+}(x\lceil g(x)|\cos (h(x) \pi)|\rceil) .
\end{gathered}
$$

In the case (i), because $\log (1+x) \leqslant x$, we have

$$
\int_{1}^{\infty} \frac{\log \left(1+1 /(\log x)^{2}\right)}{x} d x \leqslant \int_{1}^{\infty} \frac{1}{x(\log x)^{2}} d x<\infty
$$

Let us define the sequence $\left\{x_{n}, n \geqslant 1\right\}$ divergent to infinity, so that, for $i \geqslant 1$, $2^{x_{i}}\left(\log x_{i}\right)^{2} \in \mathbb{N}$ (it is possible as the function $2^{x}(\log x)^{2}$ is continuously increasing to infinity for $x>1$). Then for every constant c there exists i_{0} such that, for every $i>i_{0}$,

$$
\begin{aligned}
&\left\lceil 2^{x_{i}}\left|\cos \left(2^{x_{i}}\left(\log x_{i}\right)^{2} \pi\right)\right|\right\rceil \log \\
&+\left(x_{i}\left\lceil 2^{x_{i}}\left|\cos \left(2^{x_{i}}\left(\log x_{i}\right)^{2} \pi\right)\right|\right\rceil\right) \\
&=2^{x_{i}} \log x_{i}+x_{i} 2^{x_{i}} \log 2 \geqslant c\left(2^{x_{i}}\left(\log x_{i}\right)^{2}+2^{x_{i}}\right)
\end{aligned}
$$

thus the assumptions of Theorem[2.] are satisfied, whereas the assumptions of Theorem[2.3] fail. Let us remark that, for arbitrary $x \in \mathbb{N}$ in the interval (x, y), the function f has at least $2^{y}(\log y)^{2}-2^{x}(\log x)^{2}-2$ oscillations, where $2^{y}(\log y)^{2}=$ $2^{x}\left[(\log x)^{2}+1\right]$. Therefore, for $y>e$,

$$
K_{f}(y) \geqslant 2^{y}(\log y)^{2}-2^{x}(\log x)^{2}-2 \geqslant 2^{x}-2,
$$

and $K_{f}(y) \rightarrow \infty$ as $y \rightarrow \infty$, so that the assumptions of Theorem 2.2] fail.
In the case (ii) we have

$$
\int_{1}^{\infty} \frac{\log (2)}{x} d x=\infty
$$

Furthermore, it is easy to check that $|\cos (h(x) \pi)|$ is equal to one only for $x=2^{k}$ or $x=3 \cdot 2^{k-1}$ and it is equal to zero only for $x=5 \cdot 2^{k-2}$ and $x=7 \cdot 2^{k-2}$ for $k \in \mathbb{N}$. Thus, in the interval $x \in\left[2^{k}, 2^{k+1}\right)$ the function f has two local minima at $x=5 \cdot 2^{k-2}$ and $x=7 \cdot 2^{k-2}$ equal to $5 \cdot 2^{k-2}$ and $7 \cdot 2^{k-2}$, respectively, and two local maxima at $x=2^{k}$ and $x=3 \cdot 2^{k-1}$ equal to 2^{k+1} and $3 \cdot 2^{k}$, respectively, so that for every $x \in \mathbb{R}$ we have $K_{f}(x) \leqslant 4$, and the assumptions of Theorem 2.2] are fulfilled. Taking $x=k \in \mathbb{N}$, we see that for every constant c there exists a sufficiently large $k \in \mathbb{N}$ such that

$$
\lceil k|\cos (k \pi)|\rceil \log _{+}(k\lceil k|\cos (k \pi)|\rceil)=2 k \log k>c k ;
$$

thus the assumptions of Theorem 2.2$]$ fail.
In the case (iii) we have

$$
\int_{1}^{\infty} \frac{\log (1+1 / \log x)}{x} d x=\infty,
$$

so that the assumptions of Theorem [.] fail. Failure of the assumptions of Theorem [2.2 follows from analogous considerations to those for the point (i). From

$$
\begin{aligned}
\frac{x}{\log x}\left|\cos \left(2^{x} \pi\right)\right| \log \left(\frac{x^{2}}{\log x}\left|\cos \left(2^{x} \pi\right)\right|\right) & \leqslant \frac{x}{\log x} \log x^{2} \\
& =2 x \leqslant 2\left(x+\frac{x}{\log x}\left|\cos \left(2^{x} \pi\right)\right|\right)
\end{aligned}
$$

we see that the assumptions of Theorem [2.3] are satisfied with $c=2$.
Acknowledgments. The authors gratefully acknowledge many helpful suggestions of the referee during the preparation of the paper.

REFERENCES

[1] N. Dunford, An individual ergodic theorem for noncommutative transformations, Acta Sci. Math. (Szeged) 14 (1951), pp. 1-4.
[2] J.-P. Gabriel, Martingales with a countable filtering index set, Ann. Probab. 5 (1977), pp. 888-898.
[3] A. Gut, Strong laws for independent identically distributed random variables indexed by a sector, Ann. Probab. 11 (3) (1983), pp. 569-577.
[4] K.-H. Indlekofer and I. O. Klesov, Strong law of large numbers for multiple sums whose indices belong to a sector with function boundaries, Theory Probab. Appl. 52 (4) (2008), pp. 711-719.
[5] I. O. Klesov, Strong law of large numbers for multiple sums of independent identically distributed random variables (in Russian), Mat. Zametki 38 (6) (1985), pp. 915-930.
[6] I. O. Klesov and Z. Rychlik, Strong laws of large numbers on partially ordered sets, Theory Probab. Math. Statist. 58 (1999), pp. 35-41.
[7] R. T. Smythe, Strong laws of large numbers for r-dimensional arrays of random variables, Ann. Probab. 1 (1973), pp. 164-170.
[8] R. T. S mythe, Sums of independent random variables on partially ordered sets, Ann. Probab. 2 (1974), pp. 906-917.
[9] N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), pp. 1-18.
[10] A. Zygmund, An individual ergodic theorem for noncommutative transformations, Acta Sci. Math. (Szeged) 14 (1951), pp. 103-110.

Agnieszka M. Gdula	Andrzej Krajka
Institute of Mathematics	Institute of Computer Sciences
Maria Curie-Skłodowska University	Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1	pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland	20-031 Lublin, Poland
E-mail: gdula.agnieszka@gmail.com	E-mail: akrajka@gmail.com

Received on 1.7.2014;
revised version on 14.8.2016

