PROBABILITY AND MATHEMATICAL STATISTICS Vol. 38, Fasc. 1 (2018), pp. 61–75 doi:10.19195/0208-4147.38.1.4

EXTREMES OF ORDER STATISTICS OF STATIONARY GAUSSIAN PROCESSES*[∗]*

BY

CHUNMING ZHAO (CHENGDU)

Abstract. Let $\{X_i(t), t \geq 0\}$, $1 \leq i \leq n$, be mutually independent and identically distributed centered stationary Gaussian processes. Under some mild assumptions on the covariance function, we derive an asymptotic expansion of

$$
\mathbb{P}\big(\sup_{t\in[0,xm_r(u)]}X_{(r)}(t)\leqslant u\big)\quad\text{as $u\to\infty$},
$$

where

$$
m_r(u) = \left(\mathbb{P}(\sup_{t \in [0,1]} X_{(r)}(t) > u)\right)^{-1} (1 + o(1)),
$$

and $\{X_{(r)}(t), t \ge 0\}$ is the *r*th order statistic process of $\{X_i(t), t \ge 0\}$, $1 \leq i, r \leq n$. As an application of the derived result, we analyze the asymptotics of supremum of the order statistic process of stationary Gaussian processes over random intervals.

2010 AMS Mathematics Subject Classification: Primary: 60G15; Secondary: 60G70.

Key words and phrases: Asymptotic, Gaussian processes, order statistic, stationarity, supremum.

1. INTRODUCTION

Let $\{X(t): t \geq 0\}$ be a centered stationary Gaussian process with continuous sample paths. One of the classical results in extreme value theory states that, under some mild conditions on the covariance function of *X*,

(1.1)
$$
\lim_{u \to \infty} \mathbb{P}\left(\sup_{t \in [0, x m(u)]} X(t) \leq u\right) = e^{-x}
$$

for $x > 0$ and $m(u) = \mathbb{P}(\sup_{t \in [0,1]} X(t) > u)^{-1}$; see, e.g., Leadbetter et al. [11], Theorem 12.3.4; Arendarczyk and D˛ebicki [4], Lemma 4.3; Tan and Hashorva [13], Lemma 3.3.

[∗] This work was supported by the FP7 project RARE-318984.

Consider a vector-valued Gaussian stochastic process $\{X(t): t \geq 0\}$, where $\mathbf{X}(t) = (X_1(t), \dots, X_n(t))$ with $\{X_i(t) : t \geq 0\}$, $i = 1, \dots, n$, being mutually independent copies of $\{X(t): t \geqslant 0\}$. Denote by $\{X_{(r)}(t), t \geqslant 0\}, r = 1, 2, \ldots, n$, the *r*th smallest order statistic process, i.e., for each $t \ge 0$,

$$
(1.2) \t X_{(1)}(t) = \min_{1 \le i \le n} X_i(t) \le X_{(2)}(t) \le \ldots \le \max_{1 \le i \le n} X_i(t) = X_{(n)}(t).
$$

In this contribution we derive a counterpart of (1.1) for $\{X_{(r)}(t), t \geq 0\}$.

One of important motivations to analyze asymptotic properties of extremes of order statistic processes is their relation with the *conjunction problem*. Following [14], the set of conjunctions $C_{T,u}$ is defined as

$$
C_{T,u}:=\{t\in [0,T]: \min_{1\leqslant i\leqslant n}X_i(t)>u\},
$$

so

$$
\mathbb{P}\left(C_{T,u} = \emptyset\right) = \mathbb{P}\left(\sup_{t \in [0,T]} \min_{1 \leq i \leq n} X_i(t) \leq u\right).
$$

We refer to [2], [3], [6], [9], [14] for recent results on asymptotic properties of $\mathbb{P}\left(C_{T,u}\neq\emptyset\right).$

As an application of the obtained result we provide the exact asymptotics of

$$
\mathbb{P}\big(\sup_{t\in[0,T]}X_{(r)}(t)>u\big)\quad\text{ as }u\to\infty
$$

for T being a nonnegative random variable independent of $X(t)$. The obtained asymptotics extends the recent results of Arendarczyk and D˛ebicki [4].

2. PRELIMINARIES

Suppose that $X(t) = (X_1(t), \dots, X_n(t))$ and $\{X_i(t) : t \ge 0\}, i = 1, \dots, n$, are mutually independent centered stationary Gaussian processes with covariance function $r(t)$ satisfying the following conditions:

(A1) $r(t) = 1 - t^{\alpha} + o(t^{\alpha})$ as $t \to 0$;

(A2)
$$
r(t) < 1 \text{ if } t > 0;
$$

(A3) $r(t) \log t \to 0$ as $t \to \infty$.

Following D˛ebicki et al. [9], let us introduce the *generalized Pickands constant* as

$$
\mathcal{H}_{\alpha,k} = \lim_{S \to \infty} S^{-1} \mathcal{H}_{\alpha,k}(S) \in (0,\infty),
$$

where

$$
\mathcal{H}_{\alpha,k}(S)
$$
\n
$$
= \int_{R^n} \exp\left(\sum_{i=1}^k w_j\right) \mathbb{P}\left(\sup_{t \in [0,S]} \min_{1 \le i \le k} \left(\sqrt{2}B_{\alpha}^{(i)}(t) - t^{\alpha} - w_i\right) > 0\right) d\mathbf{w} \in (0,\infty),
$$

and $B_{\alpha}^{(i)}$, $i=1,\ldots,n$, are mutually independent standard fractional Brownian motions with Hurst index $\alpha/2 \in (0, 1]$, i.e., centered Gaussian processes with stationary increments and variance function *t α*.

Let

$$
(2.1) \t mr(u) := \frac{(2\pi)^{(n+1-r)/2}}{c_{n,r-1}\mathcal{H}_{\alpha,n+1-r}} u^{n+1-r-2/\alpha} \exp\left(\frac{n+1-r}{2}u^2\right),
$$

where

$$
c_{n,r-1} = \frac{n!}{(r-1)!(n+1-r)!}.
$$

It follows from Theorem 2.2 in [8] that, for each $T > 0$ and $1 \le r \le n$,

$$
(2.2) \mathbb{P}\left(\sup_{t \in [0,T]} X_{(r)}(t) > u\right) = c_{n,r-1} \mathcal{H}_{\alpha,n+1-r} T u^{2/\alpha} \big(\Psi(u)\big)^{n+1-r} \big(1+o(1)\big)
$$

$$
= \frac{T}{m_r(u)} \big(1+o(1)\big) \quad \text{as } u \to \infty,
$$

where $\Psi(u) = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi} \int_u^\infty \exp(-x^2/2) dx.$

3. MAIN RESULTS

The following theorem constitutes the main result of this contribution.

THEOREM 3.1. Let $\{X_i(t), t \geq 0\}$ be independent and identically distributed *centered stationary Gaussian processes with convariance function r*(*t*) *satisfying the conditions* (A1)–(A3) *and assume that* $0 < A < B < \infty$ *and* $x > 0$ *. Then*

(3.1)
$$
\mathbb{P}\left(\sup_{t\in[0, x m_r(u)]} X_{(r)}(t) \leq u\right) \to e^{-x} \quad as \ u \to \infty,
$$

uniformly for $x \in [A, B]$ *.*

Let T be a nonnegative random variable which is independent of X . In the following theorem we discuss the asymptotic behavior of $\mathbb{P}(\sup_{t\in[0,T]}X_{(r)}(t)>u)$ as $u \rightarrow \infty$. It appears that the qualitative form of the asymptotics strongly depends on *heaviness* of the tail of *T* .

THEOREM 3.2. Let $\{X_i(t), t \geq 0\}$ be independent and identically distributed *centered stationary Gaussian processes with convariance function r*(*t*) *satisfying the conditions* $(A1)–(A3)$ *, and let* T *be a nonnegative random variable independent of X.*

(i) If
$$
\mathbb{E}\mathcal{T} < \infty
$$
, then, as $u \to \infty$,
\n(3.2)
\n
$$
\mathbb{P}(\sup_{t \in [0,T]} X_{(r)}(t) > u) = \mathbb{E}\mathcal{T}c_{n,r-1}\mathcal{H}_{\alpha,n+1-r}u^{2/\alpha}(\Psi(u))^{n+1-r}(1+o(1)).
$$

(ii) *If* \mathcal{T} *has a regularly varying tail distribution at infinity with index* $\lambda \in$ $(0, 1)$ *, then, as* $u \rightarrow \infty$ *,*

(3.3)
$$
\mathbb{P}\left(\sup_{t\in[0,T]} X_{(r)}(t) > u\right) = \Gamma(1-\lambda)\mathbb{P}\left(\mathcal{T} > m_r(u)\right)\left(1+o(1)\right).
$$

(iii) *If* \mathcal{T} *has a slowly varying tail distribution at infinity, then, as* $u \to \infty$ *,*

(3.4)
$$
\mathbb{P}\left(\sup_{t\in[0,T]}X_{(r)}(t)>u\right)=\mathbb{P}\left(\mathcal{T}> m_r(u)\right)\left(1+o(1)\right).
$$

The proofs of Theorems 3.1 and 3.2 are given in Section 4.

4. PROOFS

Before proceeding to the proofs of Theorems 3.1 and 3.2, we give some preliminary lemmas. Let us put $\mathcal{T}_r = xm_r(u)$ and $n_r = \lfloor \mathcal{T}_r \rfloor$. For any $\varepsilon \in (0,1)$ and $1 \le l \le n_r$, we write $I_l = [l - 1 + \varepsilon, l]$ and $I_l^* = [l - 1, l - 1 + \varepsilon]$.

LEMMA 4.1. *For each* $B > A > 0$,

$$
(4.1) \quad \lim_{u \to \infty} \left| \mathbb{P} \left(\sup_{t \in [0,n_r]} X_{(r)}(t) \leq u \right) - \mathbb{P} \left(\sup_{t \in \bigcup_{l=1}^{n_r} I_l} X_{(r)}(t) \leq u \right) \right| \leq \rho_1(\varepsilon),
$$

uniformly for $x \in [A, B]$ *, where* $\rho_1(\varepsilon) \to 0$ *as* $\varepsilon \to 0$ *.*

P r o o f. Suppose that $x \in [A, B]$. By stationarity, Bonferroni's inequality (see, e.g., [10]) and (2.2), we have

$$
0 \leq \mathbb{P}\left(\sup_{t \in \bigcup_{l=1}^{n_r} I_l} X_{(r)}(t) \leq u\right) - \mathbb{P}\left(\sup_{t \in [0,n_r]} X_{(r)}(t) \leq u\right)
$$

\n
$$
= \mathbb{P}\left(\sup_{t \in [0,n_r]} X_{(r)}(t) > u\right) - \mathbb{P}\left(\sup_{t \in \bigcup_{l=1}^{n_r} I_l} X_{(r)}(t) > u\right)
$$

\n
$$
\leq \mathbb{P}\left(\sup_{t \in \bigcup_{l=1}^{n_r} I_l^*} X_{(r)}(t) > u\right) \leq n_r \mathbb{P}\left(\sup_{t \in [0,\varepsilon]} X_{(r)}(t) > u\right)
$$

\n
$$
= x m_r(u) \frac{\varepsilon}{m_r(u)} \left(1 + o(1)\right) \leq B\varepsilon =: \rho_1(\varepsilon) \quad \text{as } u \to \infty.
$$

This completes the proof. \blacksquare

LEMMA 4.2. Let
$$
q = q(u) = au^{-2/\alpha}
$$
 for some $a > 0$. Then

$$
\limsup_{u\to\infty} \left| \mathbb{P}\left(\sup_{t\in\bigcup_{l=1}^{n_r} I_l} X_{(r)}(t) \leq u\right) - \mathbb{P}\left(\max_{iq\in\bigcup_{l=1}^{n_r} I_l} X_{(r)}(iq) \leq u\right) \right| \leq \rho_2(a),
$$

uniformly for $x \in [A, B]$ *, where* $\rho_2(a) \to 0$ *as* $a \to 0$ *.*

P r o o f. Since $X_i(t)$ are independent and identically distributed, we obtain $\mathbb{P}\left(\max_{iq \in I_1} X_{(r)}(iq) > u\right)$ = P (∪ *iq∈I*¹ ∪*n j*=*n−r*+1 $\{ \exists k_1, \ldots, k_j, X_{k_1}(iq) > u, \ldots, X_{k_j}(iq) > u \}$ = P (∪ *iq∈I*¹ ∪*n j*=*n−r*+1 $\{\exists k_1, \ldots, k_j, X_{k_1}(iq) > u, \ldots, X_{k_j}(iq) > u,$ $X_k(iq) \leq u, k \neq k_1, \ldots, k_j\}$ $=\sum_{n=1}^{\infty}$ *j*=*n−r*+1 $c_{n,j} \mathbb{P}(\exists_{iq \in I_1}, X_1(iq) > u, \dots, X_j(iq) > u, X_k(iq) \leq u, k > j)$ $=$ $\sum_{n=1}^{n}$ *j*=*n−r*+1 $c_{n,j} \mathbb{P} \left(\max_{iq \in I_1} \min_{1 \leqslant i \leqslant j} X_i(iq) > u \right) \left(1 + o(1) \right).$

Following Dębicki et al. [8] we define

$$
(4.2) \quad \mathcal{H}'_{\alpha,j}(a) = \frac{1}{a} P\Big(\max_{k\geqslant 1} \min_{1\leqslant m\leqslant j} \big(\sqrt{2}B_{\alpha}^{(m)}(ak) - (ak)^{\alpha} + \eta_m\big) \leqslant 0\Big),
$$

where $j = 1, 2, \ldots, n$, and $\{B_{\alpha}^{(m)}, t \geq 0\}$, $m \geq 1$, are independent and identically distributed standard fractional Brownian motions which are further independent of independent unit exponential random variables *ηm*. Using analogous arguments to those in the proof of Theorem 1.1 in D˛ebicki et al. [8] or Lemma 1 in Albin and Choi [1], we have

$$
\mathbb{P}\left(\max_{iq\in I_1} X_{(r)}(iq) > u\right) = \sum_{j=n-r+1}^n \frac{\mathcal{H}'_{\alpha,j}(a)}{\mathcal{H}_{\alpha,j}} \frac{1-\varepsilon}{m_{n+1-j}(u)}
$$

$$
= \frac{\mathcal{H}'_{\alpha,n+1-r}(a)}{\mathcal{H}_{\alpha,n+1-r}} \frac{1-\varepsilon}{m_r(u)} \left(1+o(1)\right) \quad \text{as } u \to \infty,
$$

where $\mathcal{H}'_{\alpha,k}(a) \to \mathcal{H}_{\alpha,k}$ as $a \to 0$. Therefore, by stationarity, we obtain

$$
0 \leq \mathbb{P}\left(\max_{iq \in \bigcup_{l=1}^{n_r} I_l} X_{(r)}(iq) \leq u\right) - \mathbb{P}\left(\sup_{t \in \bigcup_{l=1}^{n_r} I_l} X_{(r)}(t) \leq u\right)
$$

\n
$$
\leq n_r \max_{1 \leq l \leq n_r} \left(\mathbb{P}\left(\max_{iq \in I_l} X_{(r)}(iq) \leq u\right) - \mathbb{P}\left(\sup_{t \in I_l} X_{(r)}(t) \leq u\right)\right)
$$

\n
$$
\leq n_r \mathbb{P}\left(X_{(r)}(0) > u\right) + n_r \mathbb{P}\left(\sup_{t \in [0,1-\varepsilon]} X_{(r)}(t) > u\right)
$$

\n
$$
- n_r \mathbb{P}\left(\max_{iq \in [0,1-\varepsilon]} X_{(r)}(iq) > u\right)
$$

\n
$$
= x m_r(u) \left(o\left(\frac{1}{m_r(u)}\right) + \frac{1-\varepsilon}{m_r(u)} - \frac{\mathcal{H}'_{\alpha,n+1-r}(a)}{\mathcal{H}_{\alpha,n+1-r}} \frac{1-\varepsilon}{m_r(u)}\right) \left(1+o(1)\right)
$$

\n
$$
\leq B\left(1 - \frac{\mathcal{H}'_{\alpha,n+1-r}(a)}{\mathcal{H}_{\alpha,n+1-r}}\right) =: \rho_2(a),
$$

Probability and Mathematical Statistics 38, z. 1, 2018 © for this edition by CNS

where the penultimate expression is due to (2.2). Since $\rho_2(a) \rightarrow 0$ as $a \rightarrow 0$, the proof is completed. ■

For each $1 \leqslant j \leqslant n$, let ${X_i^{(k)}}$ $j^{(k)}(t), t \ge 0$ _{*k*=1} be a sequence of independent and identically distributed centered stationary Gaussian processes that satisfy the conditions (A1)–(A3). Define

$$
Y_j(t) = X_j^{(k)}(t)
$$
 if $t \in [k-1, k)$,

and, for $t \geqslant 0$,

$$
Y_{(1)}(t) = \min_{1 \le j \le n} Y_j(t) \le Y_{(2)}(t) \le \dots \le \max_{1 \le j \le n} Y_j(t) = Y_{(n)}(t).
$$

LEMMA 4.3. *We have*

$$
\lim_{u\to\infty}\left|\mathbb{P}\left(\sup_{iq\in\bigcup_{l=1}^{n_r}I_l}X_{(r)}(iq)\leq u\right)-\mathbb{P}\left(\sup_{iq\in\bigcup_{l=1}^{n_r}I_l}Y_{(r)}(iq)\leq u\right)\right|=0.
$$

P r o o f. Define $A = \mathbb{N} \cap \bigcup_{l=1}^{n_r} I_l q^{-1} = \{i_1, i_2, \ldots, i_d\}$, where $1 \le i_1 < i_2$ $\dots < i_d < \infty$, and observe that

$$
\Delta_{(r)} = \left| \mathbb{P} \left(\sup_{iq \in \bigcup_{l=1}^{n_r} I_l} X_{(r)}(iq) \leq u \right) - \mathbb{P} \left(\sup_{iq \in \bigcup_{l=1}^{n_r} I_l} Y_{(r)}(iq) \leq u \right) \right|
$$

$$
= \left| \mathbb{P} \left(\sup_{i \in A} X_{(r)}(iq) \leq u \right) - \mathbb{P} \left(\sup_{i \in A} Y_{(r)}(iq) \leq u \right) \right|.
$$

For $i \in A$ and $1 \leqslant j \leqslant n$, we put $X_{ij} = X_j(iq)$ and $Y_{ij} = Y_j(iq) = X_j^{(\lfloor iq \rfloor + 1)}$ $j^{(lq) + 1)}(iq).$ Note that

$$
\sigma_{ij,lk}^X = \mathbb{E} X_{ij} X_{lk} = \mathbb{E} X_j (iq) X_k (lq) = r((i-l)q) \mathbb{I} \{ j = k \} := \sigma_{il}^X \mathbb{I} \{ j = k \},
$$

\n
$$
\sigma_{ij,lk}^Y = \mathbb{E} Y_{ij} Y_{lk} = \mathbb{E} X_j^{(\lfloor iq \rfloor + 1)} (iq) X_k^{(\lfloor lq \rfloor + 1)} (lq)
$$

\n
$$
= r((i-l)q) \mathbb{I} \{ [iq] = \lfloor lq \rfloor \} \mathbb{I} \{ j = k \} := \sigma_{il}^Y \mathbb{I} \{ j = k \}.
$$

It follows from Theorem 2.4 in [7] that

$$
\Delta_{(r)} \leqslant \frac{n(c_{n-1,r-1})^2}{(2\pi)^{n+1-r}} u^{-2(n-r)} \sum_{i,l \in A, i \neq l} |A_{il}^{(r)}| \exp\left(-\frac{(n+1-r)u^2}{1+\rho_{il}}\right),
$$

where

$$
\rho_{il} = \max\{|\sigma_{il}^X|, |\sigma_{il}^Y|\} = |r((i-l)q)|,
$$

$$
A_{il}^{(r)} = \int_{\sigma_{il}^{Y}}^{\sigma_{il}^{X}} \frac{(1+|h|)^{2(n-r)}}{(1-h^{2})^{(n+1-r)/2}} dh
$$

=
$$
\int_{0}^{r((i-l)q)} \frac{(1+|h|)^{2(n-r)}}{(1-h^{2})^{(n+1-r)/2}} dh \mathbb{I}\{[iq] \neq [lq] \}.
$$

Since $\delta := \sup\{|r(t)|, t \geq \varepsilon\} < 1$, for $i, l \in A$ satisfying $\lfloor iq \rfloor \neq \lfloor lq \rfloor$, one has $|(i-l)q|$ ≥ ε , and $|r((i-l)q)| \le \delta < 1$. Notice that the integrand in the definition of $A_{il}^{(r)}$ is continuous and bounded on $[0, \delta]$, so there exists a constant K_1 such that

$$
|A_{il}^{(r)}| \leqslant K_1 |r((i-l)q)| \mathbb{I}\{ \lfloor iq \rfloor \neq \lfloor lq \rfloor \}.
$$

Hence,

$$
\Delta_{(r)} \leqslant \frac{n(c_{n-1,r-1})^2 K_1}{(2\pi)^{n+1-r}} u^{-2(n-r)} \frac{\tau_r}{q} \sum_{\varepsilon \leqslant kq \leqslant T_r} |r(kq)| \exp\left(-\frac{(n+1-r)u^2}{1+|r(kq)|}\right)
$$

\n
$$
= \frac{n(c_{n-1,r-1})^2 K_1}{(2\pi)^{n+1-r}} u^{-2(n-r)} \frac{\tau_r}{q} \sum_{\varepsilon \leqslant kq \leqslant T_r^{\beta}} |r(kq)| \exp\left(-\frac{(n+1-r)u^2}{1+|r(kq)|}\right)
$$

\n
$$
+ \frac{n(c_{n-1,r-1})^2 K_1}{(2\pi)^{n+1-r}} u^{-2(n-r)} \frac{\tau_r}{q} \sum_{\tau_r^{\beta} < kq \leqslant T_r} |r(kq)| \exp\left(-\frac{(n+1-r)u^2}{1+|r(kq)|}\right)
$$

\n
$$
=: \mathbb{P}_1 + \mathbb{P}_2,
$$

where $0 < \beta < (1 - \delta)/(1 + \delta)$.

First, we prove that $\mathbb{P}_1 \to 0$ as $u \to \infty$. Indeed,

$$
\mathbb{P}_{1} \leqslant \frac{n(c_{n-1,r-1})^{2} K_{1}}{(2\pi)^{n+1-r}} u^{-2(n-r)} \frac{\mathcal{T}_{r}^{\beta+1}}{q^{2}} \exp\left(-\frac{(n+1-r)u^{2}}{1+\delta}\right)
$$
\n
$$
= \frac{n(c_{n-1,r-1})^{2} K_{1}}{(2\pi)^{n+1-r} a^{2}} u^{4/\alpha-2(n-r)} \mathcal{T}_{r}^{\beta+1} \exp\left(-\frac{(n+1-r)u^{2}}{2}\right)^{2/(1+\delta)}
$$
\n
$$
\leqslant K_{2} u^{4/\alpha-2(n-r)+(\beta+1)(n+1-r-2/\alpha)} \exp\left(\frac{(n+1-r)u^{2}}{2}\right)^{\beta-(1-\delta)/(1+\delta)}
$$
\n
$$
\to 0 \quad \text{as } u \to \infty.
$$

In order to show that $\mathbb{P}_2 \to 0$, we put $\delta(t) = \sup\{|r(s) \log s|, s \geq t\}$. By (A3), we have $|r(t)| \le \delta(t)/\log t$ and $\delta(t) \downarrow 0$ as $t \to \infty$. Moreover,

$$
\log \mathcal{T}_r = \frac{n+1-r}{2}u^2\big(1+o(1)\big) \quad \text{ for } kq > T_r^{\beta}.
$$

Thus,

$$
\exp\left(-\frac{(n+1-r)u^2}{1+|r(kq)|}\right) \le \exp\left(-\left(n+1-r\right)u^2\left(1-\frac{\delta(\mathcal{T}_r^{\beta})}{\log \mathcal{T}_r^{\beta}}\right)\right)
$$

$$
\le K_3 \exp\left(-\left(n+1-r\right)u^2\right).
$$

Hence,

$$
\mathbb{P}_2 \leq \left\{ K_4 u^{-2(n-r)} \frac{\mathcal{T}_r^2}{q^2} \exp\left(-(n+1-r)u^2\right) \frac{1}{\log \mathcal{T}_r^{\beta}} \right\}
$$

\n
$$
\times \frac{q}{\mathcal{T}_r} \sum_{\mathcal{T}_r^{\beta} < kq \leq \mathcal{T}_r} |r(kq)| \log(kq)
$$

\n
$$
\leq K_5 u^{-2(n-r)} \frac{u^{2(n+1-r-2/\alpha)} \exp\left((n+1-r)u^2\right)}{u^{-4/\alpha}} \exp\left(-(n+1-r)u^2\right) \frac{1}{u^2}
$$

\n
$$
\times \frac{q}{\mathcal{T}_r} \sum_{\mathcal{T}_r^{\beta} < kq \leq \mathcal{T}_r} |r(kq)| \log(kq)
$$

\n
$$
\leq K_5 \frac{q}{\mathcal{T}_r} \sum_{\mathcal{T}_r^{\beta} < kq \leq \mathcal{T}_r} |r(kq)| \log(kq) \to 0 \quad \text{as } u \to \infty.
$$

This completes the proof. \blacksquare

LEMMA 4.4. *We have*

lim sup *u→∞* $\mathbb{P}(\sup_{i\in\mathbb{Z}}\mathbb{E}^n)$ iq ∈ $\bigcup_{l=1}^{\overline{n}_r} I_l$ $Y_{(r)}(iq) \leqslant u$) – P(sup *t∈*[0*,nr*] $Y_{(r)}(t) \leqslant u)$ | $\leqslant x(\rho_3(a) + \varepsilon),$

where $\rho_3(a) \rightarrow 0$ *as* $a \rightarrow 0$ *.*

P r o o f. Since I_l , $l = 1, 2, \ldots, n_r$, are disjoint, $\{Y_{(r)}(t), t \in I_l\}$ are independent, and, by stationarity,

$$
0 \leq \mathbb{P}\left(\sup_{iq\in\bigcup_{l=1}^{n_r} I_l} Y_{(r)}(iq) \leq u\right) - \mathbb{P}\left(\sup_{t\in\bigcup_{l=1}^{n_r} I_l} Y_{(r)}(t) \leq u\right)
$$

\n
$$
= \mathbb{P}\left(\sup_{iq\in[0,1-\varepsilon]} Y_{(r)}(iq) \leq u\right)^{n_r} - \mathbb{P}\left(\sup_{t\in[0,1-\varepsilon]} Y_{(r)}(t) \leq u\right)^{n_r}
$$

\n
$$
\leq n_r \left(\mathbb{P}\left(\sup_{iq\in I_1} Y_{(r)}(iq) \leq u\right) - \mathbb{P}\left(\sup_{t\in I_1} Y_{(r)}(t) \leq u\right)\right)
$$

\n
$$
\leq n_r \left(\mathbb{P}\left(Y_{(r)}(0) > u\right) + \mathbb{P}\left(\sup_{iq\in[0,1-\varepsilon]} Y_{(r)}(iq) \leq u\right) - \mathbb{P}\left(\sup_{t\in[0,1-\varepsilon]} Y_{(r)}(t) \leq u\right)\right)
$$

\n
$$
= x m_r(u) \left(o\left(\frac{1}{m_r(u)}\right) + \left(1 - \frac{\mathcal{H}'_{\alpha,n+1-r}(a)}{\mathcal{H}_{\alpha,n+1-r}}\right) \frac{1-\varepsilon}{m_r(u)}\right) \left(1+o(1)\right)
$$

\n
$$
\leq x \left(1 - \frac{\mathcal{H}'_{\alpha,n+1-r}(a)}{\mathcal{H}_{\alpha,n+1-r}}\right) =: x \rho_3(a),
$$

where $\rho_3(a) \rightarrow 0$ as $a \rightarrow 0$. Moreover,

$$
0 \leq \mathbb{P}\left(\sup_{t \in \bigcup_{l=1}^{n_r} I_l} Y_{(r)}(t) \leq u\right) - \mathbb{P}\left(\sup_{t \in [0,n_r]} Y_{(r)}(t) \leq u\right)
$$

\n
$$
\leq \mathbb{P}\left(\sup_{t \in [0,1-\varepsilon]} Y_{(r)}(t) \leq u\right)^{n_r} - \mathbb{P}\left(\sup_{t \in [0,1]} Y_{(r)}(t) \leq u\right)^{n_r}
$$

\n
$$
\leq n_r P\left(\sup_{t \in [0,\varepsilon]} Y_{(r)}(t) > u\right)
$$

\n
$$
= x m_r(u) \frac{\varepsilon}{m_r(u)} \left(1 + o(1)\right) = x\varepsilon \left(1 + o(1)\right).
$$

The combination of the above displays completes the proof. \blacksquare

LEMMA 4.5. *We have*

$$
\lim_{u \to \infty} \mathbb{P}\left(\sup_{t \in [0, n_r]} Y_{(r)}(t) \leq u\right) = e^{-x}.
$$

P r o o f. Since

$$
\mathbb{P}\left(\sup_{t\in[0,n_r]} Y_{(r)}(t) \leq u\right) = \mathbb{P}\left(\sup_{t\in[0,1]} X_{(r)}(t) \leq u\right)^{n_r}
$$

$$
= \left(1 - \mathbb{P}\left(\sup_{t\in[0,1]} X_{(r)}(t) > u\right)\right)^{n_r}
$$

$$
= \left(1 - m_r(u)^{-1}\right)^{x m_r(u)} \left(1 + o(1)\right) \to e^{-x},
$$

the proof is completed. \blacksquare

Proof of Theorem 3.1. The proof of the theorem follows directly from Lemmas 4.1–4.5. \blacksquare

LEMMA 4.6. For any
$$
S > 0
$$
, we have
\n(4.3)
\n
$$
\mathbb{P}(\sup_{t \in [0, Su^{-2/\alpha}]} X_{(r)}(t) > u) = c_{n,r-1} \mathcal{H}_{\alpha,n+1-r}(S) (\Psi(u))^{n+1-r} (1+o(1))
$$

 $as u \rightarrow \infty$.

The proof of Lemma 4.6 follows line-by-line the same reasoning as the proof of Theorem 2.2 in [8], and thus we omit it.

P r o o f o f T h e o r e m 3.2. (i) For any $t, u, S > 0$, let us put

$$
N_t = \left\lfloor \frac{t}{Su^{-2/\alpha}} \right\rfloor \quad \text{and} \quad \Delta_k = [kSu^{-2/\alpha}, (k+1)Su^{-2/\alpha}] \text{ with } k = 0, 1, \dots, N_t.
$$

Upper bound. By stationarity of the process $\{X_{(r)}(t), t \geq 0\}$ and Lemma 4.6, we obtain

$$
\mathbb{P}\left(\sup_{t\in[0,T]} X_{(r)}(t) > u\right) = \int_{0}^{\infty} \mathbb{P}\left(\sup_{s\in[0,t]} X_{(r)}(s) > u\right) d\mathbb{P}(T \leq t)
$$

$$
\leq \mathbb{P}\left(\sup_{s\in\Delta_0} X_{(r)}(s) > u\right) \left(\frac{u^{2/\alpha}}{S} \int_{0}^{\infty} t d\mathbb{P}(T \leq t) + 1\right)
$$

$$
= \frac{\mathcal{H}_{\alpha,n+1-r}(S)}{S} c_{n,r-1} \mathbb{E} T u^{2/\alpha} \left(\Psi(u)\right)^{n+1-r} \left(1+o(1)\right)
$$

as $u \to \infty$. Thus, letting $S \to \infty$, we get

$$
\mathbb{P}\big(\sup_{t\in[0,T]}X_{(r)}(t)>u\big)=c_{n,r-1}s\mathcal{H}_{\alpha,n+1-r}u^{2/\alpha}\mathbb{E}\mathcal{T}\big(\Psi(u)\big)^{n+1-r}\big(1+o(1)\big).
$$

L o w e r b o u n d. By Bonferroni's inequality, we have

$$
\begin{aligned}\n\text{(4.4)} \quad & \mathbb{P}\big(\sup_{t\in[0,T]} X_{(r)}(t) > u\big) = \int_{0}^{\infty} \mathbb{P}\big(\sup_{s\in[0,t]} X_{(r)}(s) > u\big) d\mathbb{P}(T \leq t) \\
&\geq \int_{0}^{u} \mathbb{P}\big(\sup_{s\in[0,t]} X_{(r)}(s) > u\big) d\mathbb{P}(T \leq t) \\
&\geq \mathbb{P}\big(\sup_{s\in\Delta_0} X_{(r)}(s) > u\big) \bigg(\frac{u^{2/\alpha}}{S} \int_{0}^{u} t d\mathbb{P}(T \leq t) - 1\bigg) \\
&\quad - \int_{0}^{u} \sum_{0 \leq i < j \leq N_t} \mathbb{P}\big(\sup_{s\in\Delta_i} X_{(r)}(s) > u, \sup_{s\in\Delta_j} X_{(r)}(s) > u\big) d\mathbb{P}(T \leq t) \\
&=: I_1 - I_2.\n\end{aligned}
$$

Note that

$$
I_1 = \frac{\mathcal{H}_{\alpha,n+1-r}(S)}{S} c_{n,r-1} \mathbb{E} \mathcal{T} u^{2/\alpha} (\Psi(u))^{n+1-r} (1+o(1))
$$

as $u \to \infty$. Thus, letting $S \to \infty$, we obtain

$$
(4.5) \t I_1 \geqslant c_{n,r-1} \mathcal{H}_{\alpha,n+1-r} u^{2/\alpha} \mathbb{E} \mathcal{T}(\Psi(u))^{n+1-r}.
$$

Hence, in order to complete the proof it suffices to show that $I_2 = o(I_1)$ as $u \to \infty$.

Indeed, we have

$$
I_2 = \int_{0}^{u} \sum_{k=1}^{N_t} (N_t - k) \mathbb{P} \Big(\sup_{s \in \Delta_0} X_{(r)}(s) > u, \sup_{s \in \Delta_k} X_{(r)}(s) > u \Big) d\mathbb{P}(T \leq t)
$$
\n
$$
\leq \frac{u^{2/\alpha}}{S} \int_{0}^{u} t d\mathbb{P}(T \leq t) \sum_{k=1}^{N_u} \mathbb{P} \Big(\sup_{s \in \Delta_0} X_{(r)}(s) > u, \sup_{s \in \Delta_k} X_{(r)}(s) > u \Big)
$$
\n
$$
\leq \frac{u^{2/\alpha}}{S} \mathbb{E}T \sum_{k=1}^{N_u} \mathbb{P} \Big(\sup_{s \in \Delta_0} X_{(r)}(s) > u, \sup_{s \in \Delta_k} X_{(r)}(s) > u \Big)
$$
\n
$$
\leq c_{n,r-1} \frac{u^{2/\alpha}}{S} \mathbb{E}T \sum_{k=1}^{N_u} \mathbb{P} \Big(\sup_{s \in \Delta_0} \min_{1 \leq i \leq n+1-r} X_i(s) > u, \sup_{s \in \Delta_k} X_{(r)}(s) > u \Big)
$$
\n
$$
\leq c_{n,r-1} \frac{u^{2/\alpha}}{S} \mathbb{E}T \sum_{k=1}^{N_u} \mathbb{P} \Big(\sup_{s \in \Delta_0} \min_{1 \leq i \leq n+1-r} X_i(s) > u, \sup_{s \in \Delta_k} \min_{1 \leq i \leq n+1-r} X_i(s) > u \Big)
$$
\n
$$
+ c_{n,r-1} \frac{u^{2/\alpha}}{S} \mathbb{E}T \sum_{k=1}^{N_u} \mathbb{P} \Big(\sup_{s \in \Delta_0} \min_{1 \leq i \leq n+1-r} X_i(s) > u, \sup_{s \in \Delta_k} X_{(r)}(s) > u,
$$
\n
$$
\sup_{s \in \Delta_k} \min_{1 \leq i \leq n+1-r} X_i(s) \leq u \Big)
$$

 $=: I_{21} + I_{22}.$

Since

$$
\sum_{k=1}^{N_u} \mathbb{P}\left(\sup_{s \in \Delta_0} \min_{1 \le i \le n+1-r} X_i(s) > u, \sup_{s \in \Delta_k} \min_{1 \le i \le n+1-r} X_i(s) \le u, \sup_{s \in \Delta_k} X_{(r)}(s) > u\right) \le N_u \mathbb{P}\left(\sup_{s \in \Delta_0} X_1(s) > u\right)^{n+2-r},
$$

we get $I_{22} = o(I_1)$ as $u \to \infty$. Moreover, using the relations

$$
I_{21} \leqslant c_{n,r-1} \frac{u^{2/\alpha}}{S} \mathbb{E} \mathcal{T} \sum_{k=1}^{N_u} \mathbb{P} \Big(\sup_{s \in \Delta_0} X_1(s) > u, \sup_{s \in \Delta_k} X_1(s) > u \Big)^{n+r-1}
$$
\n
$$
\leqslant c_{n,r-1} u^{2/\alpha} \mathbb{E} \mathcal{T} \Big(\frac{1}{S^{1/(n+r-1)}} \sum_{k=1}^{N_u} \mathbb{P} \Big(\sup_{s \in \Delta_0} X_1(s) > u, \sup_{s \in \Delta_k} X_1(s) > u \Big) \Big)^{n+r-1},
$$

we are left with finding a tight asymptotic bound for

$$
\frac{1}{S^{1/(n+r-1)}}\sum_{k=1}^{N_u} \mathbb{P}\big(\sup_{s\in\Delta_0} X_1(s) > u, \sup_{s\in\Delta_k} X_1(s) > u\big),
$$

which follows by the same argument as that given in the proof of Theorem D.2 in [12] (see also the proof of Theorem 3.1 in [4]), with the minor exception that the

first term in the above summand is bounded by

$$
\mathbb{P}\left(\sup_{s\in\Delta_0} X_1(s) > u, \sup_{s\in\Delta_1} X_1(s) > u\right) \\
\leq \mathbb{P}\left(\sup_{s\in[0, Su^{-2/\alpha}]} X_1(s) > u, \sup_{\{(S+S^{1/(2(n+r-1))})u^{-2/\alpha}, (2S+S^{1/(2(n+r-1))})u^{-2/\alpha}\}} X_1(s) > u\right) \\
+ \mathbb{P}\left(\sup_{s\in[0, S^{1/(2(n+r-1))}u^{-2/\alpha}]} X_1(s) > u\right).
$$

This completes the proof of Theorem 3.1(i).

(ii) For any $0 < A < B < \infty$ and sufficiently large *u*, we make the following decomposition:

$$
\mathbb{P}\left(\sup_{t\in[0,T]} X_{(r)}(t) > u\right)
$$
\n
$$
= \left(\int_{0}^{A m_{r}(u)} + \int_{A m_{r}(u)}^B \mathbb{P}\left(\sup_{s\in[0,t]} X_{(r)}(s) > u\right) d\mathbb{P}(T \le t)\right)
$$
\n
$$
=: I_1 + I_2 + I_3.
$$

We analyze I_1, I_2, I_3 separately.

In t e g r a l I_1 . Since the process $\{X_{(r)}(t), t \geq 0\}$ is stationary, by Bonferroni's inequality, we have

$$
\begin{aligned} \text{(4.6)} \qquad & I_1 \leq \mathbb{P}\big(\sup_{s \in [0,1]} X_{(r)}(s) > u\big) \big(\bigcap_{0}^{A m_r(u)} t d\mathbb{P}\big(\mathcal{T} \leq t\big) + 1\big) \\ &= \mathbb{P}\big(\sup_{s \in [0,1]} X_{(r)}(s) > u\big) \\ & \times \bigg(\bigcap_{0}^{A m_r(u)} \mathbb{P}\big(\mathcal{T} > t\big) dt - A m_r(u) \mathbb{P}\big(\mathcal{T} > A m_r(u)\big) + 1\bigg) \end{aligned}
$$

Using Karamata's theorem, we get

$$
\int_{0}^{Am_r(u)} \mathbb{P}(\mathcal{T} > t)dt = \frac{1}{\lambda}Am_r(u)\mathbb{P}(\mathcal{T} > Am_r(u)\big)\big(1+o(1)\big) \text{ as } u \to \infty,
$$

.

which, combined with (4.6) and Theorem 2.2 in [8], implies that

$$
I_1 \leq \frac{\lambda}{1-\lambda} A \mathbb{P}\big(\mathcal{T} > Am_r(u)\big) \big(1 + o(1)\big)
$$
\n
$$
= \frac{\lambda}{1-\lambda} A^{1-\lambda} \mathbb{P}\big(\mathcal{T} > m_r(u)\big) \big(1 + o(1)\big) \quad \text{as } u \to \infty.
$$

Integral I_3 . It is straightforward that

$$
I_3 \leqslant \mathbb{P}\big(\mathcal{T} > Bm_r(u)\big)\big(1+o(1)\big) = B^{-\lambda} \mathbb{P}\big(\mathcal{T} > m_r(u)\big)\big(1+o(1)\big) \quad \text{ as } u \to \infty.
$$

In t e g r a l I_2 . For any $\varepsilon > 0$ and sufficiently large *u*, applying Theorem 3.1, we get the upper bound

$$
I_2 = \int_A^B \mathbb{P}(\sup_{s \in [0, x m_r(u)]} X_{(r)}(s) > u) d\mathbb{P}(T \leq x m_r(u))
$$

\n
$$
\leq (1 + \varepsilon) \int_A^B (1 - e^{-x}) d\mathbb{P}(T \leq x m_r(u))
$$

\n
$$
= (1 + \varepsilon) \int_A^B e^{-x} \mathbb{P}(T > x m_r(u)) dx - (1 + \varepsilon)(1 - e^{-B}) \mathbb{P}(T > B m_r(u))
$$

\n
$$
+ (1 + \varepsilon)(1 - e^{-A}) \mathbb{P}(T > A m_r(u)),
$$

and similarly we obtain the lower bound

$$
I_2 \geqslant (1-\varepsilon) \int_A^B e^{-x} \mathbb{P}\big(\mathcal{T} > x m_r(u)\big) dx - (1-\varepsilon)(1-e^{-B}) \mathbb{P}\big(\mathcal{T} > B m_r(u)\big) + (1-\varepsilon)(1-e^{-A}) \mathbb{P}\big(\mathcal{T} > A m_r(u)\big).
$$

Since T has a regularly varying tail distribution at infinity, by Theorem 1.5.2 in [5], we get

$$
\int_{A}^{B} e^{-x} \mathbb{P}\big(\mathcal{T} > x m_r(u)\big) dx = \mathbb{P}\big(\mathcal{T} > m_r(u)\big) \int_{A}^{B} e^{-x} x^{-\lambda} dx \big(1 + o(1)\big) \quad \text{as } u \to \infty.
$$

Thus, for any $\varepsilon > 0$ and $0 < A < B < \infty$, we obtain

$$
\limsup_{u \to \infty} \frac{I_2}{\mathbb{P}(\mathcal{T} > m_r(u))}
$$

\$\leqslant (1+\varepsilon) \left(\int_0^B x^{-\lambda} e^{-x} dx - (1 - e^{-B}) B^{-\lambda} + (1 - e^{-A}) A^{-\lambda}\right)\$

and

$$
\liminf_{u \to \infty} \frac{I_2}{\mathbb{P}(\mathcal{T} > m_r(u))} \le (1 - \varepsilon) \left(\int_0^B x^{-\lambda} e^{-x} dx - (1 - e^{-B}) B^{-\lambda} + (1 - e^{-A}) A^{-\lambda} \right).
$$

Probability and Mathematical Statistics 38, z. 1, 2018 © for this edition by CNS

Therefore, letting $A \to 0$, $B \to \infty$, and $\varepsilon \to 0$, we find that I_1 and I_3 are negligible, and

$$
I_2 = \Gamma(1 - \lambda) \mathbb{P}(T > m_r(u)) (1 + o(1)) \quad \text{as } u \to \infty,
$$

which completes the proof of Theorem 3.2(ii).

(iii) L o w e r b o u n d. From Theorem 3.1, for any given $B > 0$, it follows that

$$
\mathbb{P}\left(\sup_{t\in[0,T]} X_{(r)}(t) > u\right) \ge \mathbb{P}\left(\sup_{s\in[0,Bm_r(u)]} X_{(r)}(s) > u\right) \mathbb{P}\left(\mathcal{T} > Bm_r(u)\right)
$$

$$
= (1 - e^{-B}) \mathbb{P}\left(\mathcal{T} > m_r(u)\right) \left(1 + o(1)\right)
$$

as $u \to \infty$. Thus, letting $B \to \infty$, we obtain the asymptotic lower bound

$$
\mathbb{P}\big(\sup_{t\in[0,T]}X_{(r)}(t)>u\big)\geqslant\mathbb{P}\big(\mathcal{T}> m_r(u)\big)\big(1+o(1)\big)\quad\text{ as }u\to\infty.
$$

U p p e r b o u n d. For given $A > 0$, we get

$$
\mathbb{P}\left(\sup_{t\in[0,T]} X_{(r)}(t) > u\right)
$$
\n
$$
\leqslant \int_{0}^{A m_r(u)} \mathbb{P}\left(\sup_{s\in[0,t]} X_{(r)}(s) > u\right) d\mathbb{P}(T \leqslant t) + \mathbb{P}(T > A m_r(u))
$$
\n
$$
= \int_{0}^{A m_r(u)} \mathbb{P}\left(\sup_{s\in[0,t]} X_{(r)}(s) > u\right) d\mathbb{P}(T \leqslant t) + \mathbb{P}(T > m_r(u)) \left(1 + o(1)\right)
$$

as $u \to \infty$. Due to the stationarity of the process $\{X_{(r)}(t), t \geqslant 0\}$ and Bonferroni's inequality, we have

$$
\begin{aligned}\n\text{(4.7)} \qquad & \int_{0}^{A m_{r}(u)} \mathbb{P}\big(\sup_{s \in [0,t]} X_{(r)}(s) > u\big) d\mathbb{P}(T \leq t) \\
&\leq \mathbb{P}\big(\sup_{s \in [0,1]} X_{(r)}(s) > u\big) \big(\int_{0}^{A m_{r}(u)} t d\mathbb{P}(T \leq t) + 1\big) \\
&\leq \mathbb{P}\big(\sup_{s \in [0,1]} X_{(r)}(s) > u\big) \big(\int_{0}^{A m_{r}(u)} \mathbb{P}(T > t) dt + 1\big).\n\end{aligned}
$$

From Karamata's theorem (see, e.g., Proposition 1.5.8 in [5]), we get

$$
\int_{0}^{Am_r(u)} \mathbb{P}(\mathcal{T} > t)dt = Am_r(u)\mathbb{P}(\mathcal{T} > Am_r(u))(1+o(1))
$$

as $u \rightarrow \infty$, which, combined with (4.7) and Theorem 2.2 in [8], implies that

$$
\mathbb{P}\big(\sup_{t\in[0,T]}X_{(r)}(t)>u\big)\leqslant(1+A)\mathbb{P}\big(\mathcal{T}> m_r(u)\big)\big(1+o(1)\big)
$$

as $u \to \infty$. Letting $A \to 0$, we obtain (3.4). This completes the proof of Theorem $3.2.$

Acknowledgments. The author would like to thank Professor Krzysztof Dębicki and the referees for their valuable comments.

REFERENCES

- [1] J. M. P. Albin and H. Choi, *A new proof of an old result by Pickands*, Electron. Commun. Probab. 15 (2010), pp. 339–345.
- [2] M. T. Al o dat, *An approximation to cluster size distribution of two Gaussian random fields conjunction with application to FMRI data*, J. Statist. Plann. Inference 141 (2011), pp. 2331– 2347.
- [3] M. T. Alodat, M. Al-Rawwash, and M. A. Jebrini, *Duration distribution of the conjunction of two independent F processes*, J. Appl. Probab. 47 (2010), pp. 179–190.
- [4] M. Arendarczyk and K. Debicki, *Exact asymptotics of supremum of a stationary Gaussian process over a random interval*, Statist. Probab. Lett. 82 (2012), pp. 645–652.
- [5] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1989.
- [6] D. Cheng and Y. Xiao, *Excursion probability of Gaussian random fields on sphere*, Bernoulli 22 (2016), pp. 1113–1130.
- [7] K. Dębicki, E. Hashorva, L. Ji, and C. Ling, On Berman's inequality for order statis*tics of Gaussian arrays*, submitted.
- [8] K. Debicki, E. Hashorva, L. Ji, and K. Tabis, *On the probability of conjunctions of stationary Gaussian processes*, Statist. Probab. Lett. 88 (2014), pp. 141–148.
- [9] K. Debicki, E. Hashorva, L. Ji, and K. Tabis, *Extremes of vector-valued Gaussian processes: Exact asymptotics*, Stochastic Process. Appl. 125 (2015), pp. 4039–4065.
- [10] J. Galambos, *Bonferroni inequalities*, Ann. Probab. (1977), pp. 577–581.
- [11] M. R. Leadbetter, G. Lindgren, and H. Rootzén, *Extremes and Related Properties of Random Sequences and Processes*, Springer, New York 1983.
- [12] V. I. Piterbarg, *Asymptotic Methods in the Theory of Gaussian Processes and Fields*, Transl. Math. Monogr., Vol. 148, American Mathematical Society, Providence 1996.
- [13] Z. Tan and E. Hashorva, *Limit theorems for extremes of strongly dependent cyclostationary χ-processes*, Extremes 16 (2) (2013), pp. 241–254.
- [14] K. J. Worsley and K. J. Friston, *A test for a conjunction*, Statist. Probab. Lett. 47 (2000), pp. 135–140.

Chunming Zhao Department of Statistics, School of Mathematics

Southwest Jiaotong University

Xi'an Road 999, Xipu, Pixian

Chengdu, Sichuan 611756, PR of China

E-mail: cmzhao@swjtu.cn

Received on 17.3.2015; revised version on 23.10.2016