
PROBABILITY
AND

MATHEMATICAL STATISTICS

Vol. 38, Fasc. 1 (2018), pp. 243–247
doi:10.19195/0208-4147.38.1.13

A REVERSE TO THE JEFFREYS–LINDLEY PARADOX∗

BY

WIEBE R . P E S T M A N (LEUVEN), FRANCIS T U E R L I N C K X (LEUVEN),
AND WOLF VA N PA E M E L (LEUVEN)

Abstract. In this paper the seminal Jeffreys–Lindley paradox is re-
garded from a mathematical point of view. We show that in certain scenarios
the paradox may emerge in a reverse direction.

2010 AMS Mathematics Subject Classification: Primary: 62A01,
62C10; Secondary: 60A10.

Key words and phrases: Hypothesis testing, Bayes factor, p-value,
reverse, paradox, Lindley, Jeffreys.

1. INTRODUCTION

The Jeffreys–Lindley paradox (see [2], [6], [9]) describes a discordance be-
tween frequentist and Bayesian hypothesis testing. When comparing a simple null
hypothesis against a diffuse alternative, it has been found that a given sample may
simultaneously lead to a frequentist rejection of the null hypothesis (because the
p-value is smaller than a critical alpha) and a Bayesian support for the null hypoth-
esis (because the value of the Bayes factor exceeds some critical threshold). The
‘paradox’ has been the subject of intensive debate in the statistical literature and
this debate is still ongoing ([6], [10], [11]).

The classical example used to illustrate the discordance involves Gaussian
populations with known variance and a point null hypothesis for the mean versus
a diffuse alternative hypothesis. In words, the argument usually goes as follows:
A value for the test statistic is chosen that gives a small but constant p-value with in-
creasing sample size (hence the test value scales with the sample size), thus leading
to a systematic rejection of the null hypothesis in frequentist statistics. Under the
same scenario, it can then be shown that, with increasing sample sizes, the Bayes
factor of the alternative hypothesis over the null goes to zero. Thus, asymptoti-
cally, the Bayesian will favour the null hypothesis. The same phenomenon can be
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observed with several non-Gaussian populations. In this paper we show, however,
that there also exist scenarios in which the Jeffreys–Lindley paradox may appear
in a reversed way. That is to say, we show that it may occur that the frequentist
asymptotically maintains the null hypothesis whereas the Bayesian rejects it.

2. THE JEFFREYS–LINDLEY PARADOX REVERSED

We will construct an example where the Jeffreys–Lindley paradox appears in
a reversed way. As a first step, we define an auxiliary function f : R→ [0,+∞)
as follows:

(2.1) f(x) =


A

|x|
exp

{
− log(1/|x|)
log
(
log(1/|x|)

)} if 0 < |x| < 1

e2
,

0 elsewhere.

The constant A in the above formula is chosen in such a way that the function f
integrates to one. Thus f can be considered a probability density in the strict sense
of the word. This density has the following properties:

• f is symmetric around the origin.
• f is piecewise continuous.
• f has compact support and thus has moments of all orders.
• Due to a singularity at x = 0, all convolution powers f∗n are unbounded.

A proof of the last property can be found in [4]. In the following, the variance of f
will be denoted by σ2. A family {f(• | θ) | θ ∈ R} of densities is defined as

(2.2) f(x | θ) = f(x− θ).

Suppose now that a population is given with a probability density f(• | θ), where
the parameter θ, presenting the population mean, is unknown. In the following two
subsections we will compare the Bayesian and frequentist approach when testing
the null hypothesis H0 : θ = 0 against the alternative hypothesis H1 : θ ̸= 0. To
this end, in both scenarios, a sampleX1, X2, . . . , Xn is drawn from the population,
and the sample mean Yn, defined as

(2.3) Yn =
X1 +X2 + . . .+Xn

n
,

is chosen to be the test statistic.

2.1. The Bayesian approach. In a Bayesian framework of hypothesis testing
we need to specify priors for the null and the alternative hypothesis. In our example
the null prior is chosen to be the Dirac measure δ0 in θ = 0. In order to reverse the
Jeffreys–Lindley paradox, the alternative prior p is constructed as follows. First we
define a sequence I1, I2, I3, . . . of subsets of R by

In =
{
θ ∈ R

∣∣ f∗n(σ√n− nθ)  n2nf∗n(σ√n)}.
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Now, on the one hand, the functions f∗n being unbounded and piecewise continu-
ous, the subsets In must have non-empty interior, and therefore must be of strictly
positive Lebesgue measure. On the other hand, the f∗n being integrable, the sub-
sets In must be of bounded Lebesgue measure. Altogether one may talk about the
uniform distribution on In and about its density pn. In terms of these pn, we define
the prior p as

(2.4) p(θ) =
∞∑
k=1

2−kpk(θ).

From Lebesgue’s convergence theorems (see, for example, [3], [7], [8]) it follows
that p is a well-defined density with total probability mass equal to one. With the
likelihood given by (2.2) the hypotheses to be tested are

H0 : prior is δ0 against H1 : prior is p.

Bayesians will base their decision on the Bayes factor, which is in this scenario,
for an arbitrary outcome y of Yn, given by

(2.5) BFn(y) =

+∞∫
−∞

fYn(y | θ) p(θ) dθ

fYn(y | 0)
.

In the above formula, fYn(• | θ) stands for the probability density of the vari-
able Yn, given θ. If this Bayes factor exceeds some prescribed threshold, then the
Bayesian rejects the hypothesis H0. Suppose now that we observe the outcome

yn =
σ√
n

for the sample mean Yn. The value of the density fYn in yn may be expressed (see
[3], [5]) in terms of a convolution power of f as

fYn(yn | θ) = nf∗n(σ
√
n− nθ).

Using this in (2.5), one arrives at

BFn(yn) =
+∞∫
−∞

fYn(yn | θ)
fYn(yn | 0)

p(θ) dθ =
+∞∫
−∞

f∗n(σ
√
n− nθ)

f∗n(σ
√
n)

p(θ) dθ

=
∞∑
k=1

∫
Ik

f∗n(σ
√
n− nθ)

f∗n(σ
√
n)

2−kpk(θ) dθ


∫
In

f∗n(σ
√
n− nθ)

f∗n(σ
√
n)

2−npn(θ) dθ


∫
In

n2n 2−npn(θ) dθ = n.
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It thus appears that

(2.6) lim
n→∞

BFn(yn) =∞.

Thus, asymptotically, the Bayesian will reject H0 when confronted with outcomes
yn of the sample mean Yn.

2.2. The frequentist approach. The frequentist approach is based on the p-
value. If this p-value is below some prescribed threshold (typically 0.05), then the
frequentist will reject the hypothesis H0. The p-value is computed starting from
the null-hypothesized value for θ, in our scenario the value θ = 0. Contrary to the
Bayesian approach, the form of the alternative hypothesis H1 does not play an
essential role in the frequentist decision procedure. When testing in a two-sided
way, the p-value in our particular scenario, given the outcome yn = σ/

√
n for the

sample mean Yn, would be determined as

(2.7) PVn = 2× {1− FYn(yn |H0)},

where FYn(• |H0) stands for the cumulative distribution function of Yn under H0.
In order to evaluate the p-value asymptotically, we define the variable Zn as

Zn =
Yn

σ/
√
n
.

Note that Zn is under H0 precisely the standardization of Yn. Given the outcome
yn for the sample mean Yn one may rewrite (2.7) as follows in terms of the Zn:

PVn = 2× {1− FZn(1 |H0)}.

The second moment of the population being finite, the classical central limit
theorem may be applied. Thus, denoting the cumulative distribution function of
the standard Gaussian distribution by Φ, the asymptotic p-value turns out to be

(2.8) lim
n→∞

PVn = 2× {1− Φ(1)} = 0.32.

When observing a p-value of this size the frequentist will generally decide not to
rejectH0. Hence, asymptotically, the frequentist will maintainH0 when confronted
with an outcome yn of the sample mean Yn.

3. CLOSING REMARKS

We have constructed an example in which the Bayesian (basing his decision
on (2.6)) will asymptotically rejectH0 whereas the frequentist (basing his decision
on (2.8)) will asymptotically not reject this hypothesis. It thus appears that, in the
absence of sufficient regularity of likelihood or prior, the Jeffreys–Lindley paradox
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may manifest itself in a reversed way. It should be noted that, rather than the spe-
cific function f defined by (2.1), any persistently unbounded probability density
(see [4]) will lead to a reversion of the paradox.

In the likelihood defined by (2.2), the parameter θ presents the population
mean. For this reason, at first sight, it may seem natural to use its empirical coun-
terpart, the sample mean Yn defined by (2.3), as the test statistic. However, in the
proposed scenario, the sample mean fails to be a sufficient estimator for the param-
eter θ. Future work needs to be done to construct an example in which the paradox
is reversed through a sufficient test statistic.
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