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Abstract. We consider the regression model in the situation when the
number of available regressors pn is much bigger than the sample size n and
the number of nonzero coefficients p0n is small (the sparse regression). To
choose the regression model, we need to identify the nonzero coefficients.
However, in this situation the classical model selection criteria for the choice
of predictors like, e.g., the Bayesian Information Criterion (BIC) overesti-
mate the number of regressors. To address this problem, several modifica-
tions of BIC have been recently proposed. In this paper we prove weak
consistency of some of these modifications under the assumption that both
n and pn as well as p0n go to infinity.
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1. INTRODUCTION

If we want to choose the regression model in the case when we have a lot of
exogenous variables, we should at first identify the nonzero coefficients. We can
use model selection criteria for the choice of predictors but the classical ones, e.g.
Akaike Information Criterion (AIC, Akaike 1974) or Bayesian Information Crite-
rion (BIC, Schwarz 1978), were derived based on the assumption that the sample
size n goes to infinity, while the total number of available regressors pn remains
constant. In our case pn is much bigger than n and those classical criteria are in-
appropriate (they overestimate the number of regressors [9]). Specifically, Bogdan
et al. [8] showed that if pn/

√
n→ c ∈ (0,∞], then the expected number of false

positives (false regressors) detected by BIC may go to infinity. Since AIC selects
more regressors than BIC, it will also overestimate the number of predictors.

∗ This research was funded by the Budget of Ministry of Science and Higher Education, the
Republic of Poland, as a research project N N201 414139.
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In the situation when pn is larger than n, least squares estimators for regres-
sion coefficients are not unique and regression models are not identifiable. We need
some prior knowledge, e.g. concerning the number of nonzero coefficients p0n. In
many applications we assume the sparsity, i.e. that p0n/pn is very small. The ap-
propriate asymptotic assumption under which we examine theoretical properties
of model selection criteria (consistency, the optimality) is p0n/pn → 0. This as-
sumption was used to construct modifications of BIC: mBIC [7], mBIC2 ([14],
[15], [18]) and EBIC [11]. In 2011, Chen and Luo [13] proved weak consistency
of EBIC. In this paper we use techniques from [13] and in a similar way we prove
weak consistency of mBIC and mBIC2.

2. MODIFIED VERSIONS OF BIC

We consider the following linear model:

(2.1) yi =
pn∑
j=1

βnjxij + ϵi, i = 1, . . . , n,

where ϵi’s are independent variables with normal distribution N (0, σ2). Equiva-
lently, we can write

(2.2) yn = Xnβn + ϵn,

where yn = (y1, . . . , yn)
T ,Xn = (xij)i=1,...,n,j=1,...,pn , βn = (βn1, . . . , βnpn)

T ,
ϵn = (ϵ1, . . . , ϵn)

T . We denote by s a subset of {1, . . . , pn}, by M(s) the set of
explanatory variables with indices in s, and by v(s) the number of elements in s.
Finally, let s0n =

{
j : βnj ̸= 0, j ∈ {1, . . . , pn}

}
and p0n = v(s0n).

Our goal is the identification of important predictors. One of the most popular
model selection criteria is the Bayesian Information Criterion (BIC, Schwarz 1978)
which suggests choosing the model minimizing the following formula:

(2.3) BIC(s) = n ln
(
RSS(s)

)
+ v(s) lnn,

where RSS(s) is the residual sum of squares.
BIC was derived in the Bayesian context and it is used to approximate the log-

arithm of the posterior probability of the given model. The posterior probability of
the model M(s) is proportional to m(s)πM(s), where m(s) is the integrated likeli-
hood of the data given the model M(s) and πM(s) is the prior probability of M(s).
BIC neglects πM(s) which correspond to assigning the same prior probability to
all models. As a result, the prior on the number of the nonzero coefficients p0n
is B(pn, 12), where B is a binomial distribution. This distribution is concentrated
almost entirely on [pn/2 − 2

√
pn, pn/2 + 2

√
pn], which does not agree with the

assumption that p0n is small and leads to the overestimation of the number of re-
gressors.
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We can modify BIC using an informative prior distribution on p0n. In 2004,
Bogdan et al. [7] proposed the modification of BIC, called mBIC. In this criterion
the prior distribution on p0n is B

(
pn, (Ep0n)/pn

)
, where Ep0n is the expected

value of p0n. The resulting formula for mBIC is

(2.4) mBIC(s) = n ln
(
RSS(s)

)
+ v(s) lnn+ 2v(s) ln

pn
c
,

where c = Ep0n. If we do not know Ep0n, we can use c = 4 (to control the overall
type I error at the level below 10%). Good properties of mBIC were documented
based on simulation studies and real data analysis in many papers, e.g. [2], [3], [8].
In 2011, Frommlet et al. [14] showed consistency and the asymptotic optimality
(ABOS) of mBIC under sparsity and when the design matrix Xn is orthogonal.
Specifically, they showed that mBIC is ABOS if Ep0n = const (i.e. it does not in-
crease when n→∞).

In Bogdan et al. [8] and Frommlet et al. [14] it is shown that the additional
penalty in mBIC is closely related to the Bonferroni correction for multiple test-
ing. While the Bonferroni correction has been shown to have some asymptotic
optimality properties under very sparse designs, Abramovich et al. [1] and Bogdan
et al. [6] prove that it is substantially worse than the popular Benjamini–Hochberg
procedure [4] for multiple testing, which is asymptotically optimal in a much wider
range of sparsity parameters. Exploiting these good properties of the B–H proce-
dure, several new model selection criteria for multiple regression have been pro-
posed (see, e.g., [1], [16]). In this paper we will analyze one of these criteria,
mBIC2, proposed in Frommlet et al. ([14], [15]). The formula for mBIC2 is

(2.5) mBIC2(s) = n ln
(
RSS(s)

)
+ v(s) lnn+ 2v(s) ln pn − 2 ln

(
v(s)!

)
.

In 2011, Frommlet et al. [14] showed that mBIC2 is ABOS when the de-
sign matrix Xn is orthogonal and when Ep0n = const or Ep0n → ∞ so that
Ep0n/pn → 0. Simulation studies confirm these good properties and show that
mBIC2 usually performs better than mBIC.

In 2008, Chen and Chen [11] proposed another modification of BIC, called
EBIC. Let Sj be the set of all combinations of j indices in {1, . . . , pn} and let
τ(Sj) be the size of Sj ,

τ(Sj) =

(
pn
j

)
.

We assume that the probability of choosing the model s is

P (s) =

(
pn
j

)−γ
if the model s has the size j. This assumption gives the formula for EBIC family:

(2.6) EBICγ(s) = n ln
(
RSS(s)

)
+ v(s) lnn+ 2γ ln

(
pn
v(s)

)
,
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where γ ­ 0. Simulation studies and genetic data analysis showed good properties
of this criterion ([17], [19]). In 2008, Chen and Chen [11] showed that EBIC is
consistent for p0n = const and when the maximum size of searched models is
limited. In 2011, Chen and Luo [13] extended this result and proved consistency
of EBIC for p0n →∞.

In this paper we use techniques from [13] to confirm the good properties of
mBIC and mBIC2 under the nonorthogonal design by proving their consistency.

3. WEAK CONSISTENCY OF MBIC AND MBIC2

To present the theorems about consistency, we need to introduce some ad-
ditional notation. We denote by Xn(s) the matrix composed of columns of Xn

with indices in s. Let Hn(s) be the matrix of the orthogonal projection on the
space spanned by columns of Xn(s), Hn(s) = Xn(s)[Xn(s)

TXn(s)]
−1Xn(s)

T .
Let ∆n(s) = µT

n [In −Hn(s)]µn, where µn = Eyn = Xn(s0n)βn(s0n).
In our case, when the number of available regressors is much bigger than the

sample size, almost every column in the experimental matrix can be represented as
a linear combination of others. Therefore, some models with small number of pre-
dictors can be represented by more than one combination of available regressors.
To prevent this situation, we need a condition guaranteeing the identification of
“small models.” Such conditions are presented e.g. in [5] and [10] and depend on
the experimental matrix. Here we use the following identifiability condition from
[13], which assumes the identification of the true model and depends on the vector
of expected values µn.

IDENTIFIABILITY CONDITION:

lim
n→∞

min

{
∆n(s)

p0n ln pn
: s0n ̸⊂ s, v(s) ¬ kn

}
=∞,(3.1)

where kn = kp0n for some fixed k > 1.

According to [13], the identifiability condition (3.1) is implied by√
n

p0n ln pn
min{|βnj | : j ∈ s0n} → ∞(3.2)

and the sparse Riesz condition:

0 < cmin ¬ min

{
λmin

(
1

n
Xn(s)

TXn(s)

)
: v(s) ¬ kn

}
(3.3)

¬ min

{
λmax

(
1

n
Xn(s)

TXn(s)

)
: v(s) ¬ kn

}
¬ cmax <∞,

where λmin and λmax denote the smallest and the largest eigenvalues, respectively.
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The first of the theorems says that the probability of finding the “true model”
using mBIC goes to one when n goes to infinity. Notice that we have to limit the
number of searching models to kp0n.

THEOREM 3.1. Assume the model (2.1), the identifiability condition (3.1) and
that p0n ln pn = o(

√
n). Then

P
(

min
s:v(s)¬kn
s̸=s0n

mBIC(s) > mBIC(s0n)
)
→ 1.

P r o o f. Let s be any submodel. We want to show that with probability con-
verging to one the difference mBIC(s)−mBIC(s0n) is greater than zero if n is
big enough. Similarly as in Chen and Luo [13], we can write

mBIC(s)−mBIC(s0n) = T1 + T2,(3.4)

where

T1 = n ln
yTn

(
In −Hn(s)

)
yn

yTn
(
In −Hn(s0n)

)
yn

,(3.5)

T2 =
(
v(s)− p0n

)
lnn+ 2

(
v(s)− p0n

)
ln pn.(3.6)

Assume without loss of generality that σ2 = 1 and consider s0n ̸⊂ s. Chen
and Luo [13] showed that

T1 = n ln

(
1 +

∆n(s)

n

(
1 + op(1)

))
.(3.7)

We can write

(3.8) mBIC(s)−mBIC(s0n)

= n ln

(
1 +

∆n(s)

n

(
1 + op(1)

))
+

(
v(s)− p0n

)
lnn+ 2

(
v(s)− p0n

)
ln pn

­
[
n ln

(
1 +

Cp0n ln pn
n

(
1 + op(1)

))
− p0n lnn− 2p0n ln pn

]
­

[
n ln

(
1 +

Cp0n ln pn
n

(
1 + op(1)

))
− 3p0n ln pn

]
=

[
Cp0n ln pn ln

(
1 +

1

n/(Cp0n ln pn)

(
1 + op(1)

))n/(Cp0n ln pn)

− 3p0n ln pn

]
because ∆n(s) > Cp0n ln pn for any large C > 0 if n is large enough, by the
consistency condition. The expression(

1 +
1

n/(Cp0n ln pn)

(
1 + op(1)

))n/(Cp0n ln pn)

(3.9)
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goes to e because p0n ln pn = o(
√
n), so when C is large enough, the difference

above is greater than zero for all s with v(s) ¬ kn.
Chen and Luo [13] showed that when s0n ⊂ s, we have

T1 ­ −2j
(
ln pn + ln(j ln pn)

)(
1 + op(1)

)
,(3.10)

where j = v(s)− p0n and op(1) goes to zero faster than
c

2j
(
ln pn + ln(j ln pn)

)qkn−p0nn

with c > 0 and qn → 0. Consequently,

(3.11) mBIC(s)−mBIC(s0n)

­ −2j
(
ln pn + ln(j ln pn)

)(
1 + op(1)

)
+ j lnn+ 2j ln pn

= −2j ln pnop(1) + 2j ln(
√
n)− 2j ln(j ln pn)

(
1 + op(1)

)
.

We have −2j ln pnop(1)→ 0 and under the assumption that p0n lnn = o(
√
n) it

follows that ln
(√

n/(j ln pn)
)
→∞, so the difference above is greater than zero

uniformly for all s with v(s) ¬ kn with probability converging to one. �

The second theorem says that the probability of finding the “true model” using
mBIC2 goes to one when n goes to infinity.

THEOREM 3.2. Assume the model (2.1), the identifiability condition (3.1) and
that p20n ln pn = o(

√
n). Then

P
(

min
s:v(s)¬kn
s̸=s0n

mBIC2(s) > mBIC2(s0n)
)
→ 1.

P r o o f. Consider s0n ̸⊂ s. We can estimate n ln
(
RSS(s)

)
−n ln

(
RSS(s0n)

)
in the same way as before, so we have

(3.12) mBIC2(s)−mBIC2(s0n)

= n ln

(
1 +

∆n(s)

n

(
1 + op(1)

))
+

(
v(s)− p0n

)
lnn

+ 2
(
v(s)− p0n

)
ln pn + 2 ln(p0n!)− 2 ln

(
v(s)!

)
­ n ln

(
1 +

Cp0n ln pn
n

(
1 + op(1)

))
− p0n lnn− 2p0n ln pn − 2kp0n ln(kp0n)

because −2 ln
(
v(s)!

)
­ −2 ln

(
(kp0n)!

)
­ −2kp0n ln(kp0n). The last inequality

is the result of (kp0n)! ¬ (kp0n)
kp0n . Next, we can write

(3.13) − p0n lnn− 2p0n ln pn − 2kp0n ln(kp0n)

­ −3p0n ln pn − 2kp0n ln pn ­ −(2k + 3)p0n ln pn,
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so in the same way as before we show that mBIC2(s)−mBIC2(s0n) is greater
than zero (we only need larger C).

Now consider s0n ⊂ s. We can estimate n ln
(
RSS(s)

)
− n ln

(
RSS(s0n)

)
in

the same way as before, so we have

(3.14) mBIC2(s)−mBIC2(s0n)

­ −2j
(
ln pn + ln(j ln pn)

(
1 + op(1)

)
+ j lnn

)
+ 2j ln pn + 2 ln(p0n!)− 2 ln

(
v(s)!

)
= −2j ln pnop(1) + 2j ln

( √
n

j ln pn

)(
1 + op(1)

)
+ 2 ln(p0n!)− 2 ln

(
v(s)!

)
.

Since lnn! ­ n lnn− n and lnn! ¬ n lnn, we obtain

(3.15) ln(p0n!)− ln
(
v(s)!

)
­ p0n ln p0n − p0n − (j + p0n) ln(j + p0n)

­ p0n ln p0n − p0n ln e− p0n ln(kp0n)− j ln(kp0n)

= p0n ln

(
p0n

ekp0n

)
− j ln(kp0n)

­ −j ln(ek)− j ln(kp0n) = −j ln(ek2p0n).

Thus,

(3.16) mBIC2(s)−mBIC2(s0n)

­ −2j ln pnop(1) + 2j ln

( √
n

kp0n ln pn

)(
1 + op(1)

)
− 2j ln(ek2p0n).

We have −2j ln pnop(1) → 0 and under the assumption that p20n lnn = o(
√
n)

we get

ln

( √
n

ek3p20n ln pn

)
→∞,

so the difference above is greater than zero uniformly for all s with v(s) ¬ kn with
probability converging to one. �

The assumptions for consistency of EBIC are weaker, p0n ln pn can be o(n)
(see [14]). Assumptions for consistency of mBIC2 are stronger than mBIC.

4. DISCUSSION

We proved weak consistency of mBIC and mBIC2 in the sparse regression
problem under some assumptions on the design matrix (the identifiability condi-
tion) and limitations of the total number of the available regressors and the nonzero
coefficients. These theorems formally explain the good properties of mBIC and
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mBIC2 when identifying significant regressors in large data bases, e.g. in the prob-
lem of locating QTLs. However, consistency does not mean that a criterion is good
at prediction, e.g. BIC is consistent but AIC is better if we want to predict response
variables. In a further research we plan to analyze properties of mBIC and mBIC2
in terms of prediction and construct the criteria which will be optimal with respect
to prediction under sparsity.

Frommlet et al. [14] showed that mBIC and mBIC2 are asymptotically opti-
mal in the Bayesian context (ABOS) when the design matrix Xn is orthogonal. We
expect that the current study will be useful in proving that these criteria are ABOS
under nonorthogonal design.

Acknowledgments. I thank Z. Chen and Z. Luo for sharing the early version
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discussions.
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