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Abstract. The paper discusses two models for non-overlapping finite
line-segments constructed via the lilypond protocol, operating here on a
given array of points P = {Pi} in R2 with which are associated directions
{θi}. At time zero, for each and every i, a line-segment Li starts growing
at unit rate around the point Pi in the direction θi, the point Pi remaining at
the centre of Li; each line-segment, under Model 1, ceases growth when one
of its ends hits another line, while under Model 2, its growth ceases either
when one of its ends hits another line or when it is hit by the growing end
of some other line.

The paper shows that these procedures are well defined and gives con-
structive algorithms to compute the half-lengths Ri of all Li. Moreover, it
specifies assumptions under which stochastic versions, i.e. models based on
point processes, exist. Afterwards, it deals with the question as to whether
there is percolation in Model 1. The paper concludes with a section contain-
ing several conjectures and final remarks.
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1. INTRODUCTION AND MODELS

Suppose given a locally finite set P = {Pi} = {(xi, yi)} of points in the
plane; associate with each point a direction θi ∈ [0, π). Write Pθ

i = (Pi, θi) and
PΘ = {Pθ

i : Pi ∈ P}. When no two directions coincide, the doubly-infinite lines
L∞i , L∞j say, drawn through Pi, Pj with respective directions θi, θj , meet at some
point Pij say, so Pij = g(Pθ

i ,P
θ
j) for some function g. A lilypond system of line-

segments is constructed by growing line-segments {Li}, one through each point
Pi in direction θi, their growth starting at the same time and at the same rate for
each segment, in such a way that Li always has Pi as its midpoint. Let PL denote
the family {(Pθ

i , Ri)}, where Ri is the half-length (‘radius’) of the line-segment Li

(we describe shortly how Ri is determined).
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Under Model 1, any given line-segment ceases growth when one of its ends
reaches any other line-segment. Thus the line-segment Li grown through Pi stops
growing when for the first time it reaches the point of intersection Pij for some
j ̸= i for which Lj has reached Pij earlier; if there is no such j, then Li grows
indefinitely.

Under Model 2, any given line-segment ceases growth at the first instant either
that one of its ends touches another line-segment or that it is touched by some other
line-segment. In contrast to Model 1, an infinite line-segment can exist only if it
does not touch any other line nor does any other line touch it.

A third system of line-segments based on PΘ leads to the so-called Gilbert
tessellation; its growth resembles Model 1 except that the two parts of the line,
one each side of Pi, each stops its growth independently by touching another line
(Noble, see [9], described this construction, basing his exposition on E. N. Gilbert’s
manuscript ‘Surface Films of Needle-Shaped Crystals’).

Models 1 and 2 with their different growth-stopping rules produce rather dif-
ferent families of line-segments (see, e.g., Figures 1 and 2 in the appendix): Model 1
produces a more densely ‘interwoven’ and more highly ‘clustered’ family of line-
segments. To describe some of these differences we use the ideas of neighbours,
clusters, doublets and cycles. Two line-segments are neighbours when they touch
each other. A family or set C of line-segments forms a cluster when (a) every line-
segment in C has a neighbour in C, and (b) to every pair of line-segments in C,
L0 and Ln say, we can find {Li, i = 1, . . . , n− 1} ⊆ C such that Lj−1 and Lj are
neighbours for j = 1, . . . , n. A cluster C is finite or infinite according to the num-
ber of line-segments it contains. For Model 1, for any given integer r = 3, 4, . . . ,
the line-segments L1, . . . ,Lr constitute an r-cycle of neighbours (an r-cycle for
short) if each of the r pairs (Lr,L1) and (Li,Li+1), i = 1, . . . , r − 1, consists of
neighbours. For Model 2, two line-segments constitute a doublet if they are neigh-
bours and of the same size. When all clusters are finite, there exist one-one corre-
spondences between clusters and cycles for Model 1, and clusters and doublets for
Model 2.

General lilypond systems of germ-grain models in Rd, of points and hyper-
spheres (called standard lilypond models below), were introduced by Häggström
and Meester [11] and (with numerical work) by Daley, Stoyan and Stoyan [6] and
Daley, Mallows and Shepp [5]; they have been considered further by Daley and
Last [4], Heveling and Last [12], and Last and Penrose [15]. A space-time version
with general convex full-dimensional grains has recently been developed by Ebert
and Last [8]. Earlier versions of the model exist in the physics literature under
the name “touch-and-stop model”; in Andrienko, Brilliantov and Krapivsky [1],
the exact one-dimensional model and solution of Daley et al. [5] were anticipated;
both papers have further distinct material. In contrast to those systems, the present
paper explores aspects of such a system in which the ‘grains’ are of lower dimen-
sion than the space in which they and the ‘germs’ are located. Models 1 and 2 both
incorporate the idea of being ‘growth-maximal’ in some way: for Model 1 a grain
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stops growing so soon as one of its ‘growth-points’ is impeded; for Model 2 a grain
stops growing so soon as it touches or is touched by any other grain. Thus, both
models can be regarded as ‘natural’ lower-dimensional analogues of the original
standard lilypond models. Model 2 can be viewed as the limit as e ↑ 1 of a full
dimensional germ-grain model in R2 with randomly oriented elliptical grains of
eccentricity e.

The paper proceeds as follows. First we give some basic examples of the Mod-
els to get some feel for the behaviour of the growth process. Section 7 details an
algorithm that constructs Model 1 for finite point sets; Figure 1 illustrates a finite
realization from Poisson distributed germs and uniformly and independently dis-
tributed directions. The algorithm can aid in understanding the Models in the more
formal setting of Sections 3 and 4 where we discuss their existence and unique-
ness based on locally finite point sets: Section 3 contains formal definitions that
correspond to our intuitive descriptions. In Section 4 we establish lilypond models
based on a broad class of marked point processes. Under the additional assumption
of stationarity we prove in Section 5 the absence of percolation in Model 2. Sec-
tion 6 contains some discussion and further results. In particular, we provide argu-
ments supporting our view that there is no percolation in Model 1 (i.e. it does not
contain an infinite cluster).

2. BASIC NOTATION AND SIMPLE EXAMPLES

Let d(P′,P′′) = |P′ − P′′| denote the Euclidean distance between two points
P′, P′′ in R2. We suppose given a set P of n+ 1 points and associated directions
(in [0, π))

(2.1) Pθ
i = (Pi, θi) =

(
(xi, yi), θi

)
(i = 0, 1, . . . , n);

let PΘ denote such a finite family of Pθ
i as in Section 1. Our analysis mostly uses

the distances

(2.2) dij := d(Pi,Pij) and dji := d(Pj ,Pij), θi ̸= θj ,

which, for lines growing about centres Pi at unit rate in directions θi, represent the
times they need to grow from their germs at Pi and Pj to reach their intersection
point Pij . In the exceptional case when θi = θj , either Pj lies on the infinite line
through Pi with direction θi and we define dij = dji :=

1
2d(Pi,Pj), i.e. the distance

between Pi and the midpoint of Pi and Pj , or the corresponding lines have an
empty intersection and we set dij = dji := ∞. Then because growth of a line
is terminated by touching another line, the half-segment length Ri must be D∞i -
valued, where D∞i = Di ∪ {∞} and the set

(2.3) Di =
{
dij : dij > dji, j ̸= i, j ∈ {0, 1, . . . , n}

}
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is a finite subset of R+. We also use mij = max{dij , dji} = mji; these appear
in our discussion of both Models 1 and 2, mostly the latter because there the
half-segment length is D(2),∞

i -valued, where D
(2),∞
i = D

(2)
i ∪ {∞} and D

(2)
i :=

{mij : j ̸= i}.
To obviate the need to refer to exceptional cases assume that all finite distances

dij are different as in Condition D below (as a contrary example, using Model 1, if
our points were on a lattice and we restricted growth to lines joining lattice points,
Condition D would be violated frequently and our arguments would be strewn with
extra cases).

DEFINITION 2.1. A locally finite marked point set PΘ satisfies Condition D
when all pairwise distances dij , i ̸= j, that are finite, are mutually distinct.

Note that in general the occurrence of parallel lines is not excluded by this
condition. As an interesting extreme case we may consider models with only two
different directions.

EXAMPLE 2.1. Lilypond line-segment system on two points. The simplest
nontrivial case consists of two points and their associated directions, PΘ={Pθ

i ,P
θ
j}

say. To avoid trivialities assume θi ̸= θj . When two line-segments grow in a lily-
pond system based on such PΘ, the point Pij is reached first by the line starting
from the point nearer to Pij , Pi say, while the line starting from Pj stops growing
when it reaches Pij where it touches the line-segment through Pi that continues
growing indefinitely (Condition D excludes the possibility that both line-segments
are finite and of the same length). By (2.2), the finite line-segment is of half-length
mij = max{dij , dji}. Specifically, if dji = mij , then Rj = dji finite, and Ri =∞
(i.e. Li = L∞i ).

Computationally, the simplest case arises when P0 is at the origin, L0 is aligned
with the x-axis, and P1 is the point of a unit-rate Poisson process closest to the ori-
gin. The probability density of mij is found in Daley et al. [3].

EXAMPLE 2.2. Lilypond line-segment systems on three points. Suppose given
the set of three marked points PΘ = {Pθ

0, P
θ
1, P

θ
2}; apply the lilypond protocol

with Model 1. To exclude exceptional cases assume that no two lines are paral-
lel, i.e. θ0 ̸= θ1 ̸= θ2 ̸= θ0. Then the three intersection points P01,P12,P20 of the
infinite lines {L∞i , i = 0, 1, 2} are well defined, and hence also the triangle ∆012

say, whose vertices are these three points. A sketch readily shows that the sides of
∆012 must overlap parts of the three line-segments {Li} constructed as a lilypond
system, with at most one of the Li of infinite length, else all Li are finite and then
include ∆012.

Turning to Model 2 based on the three-point set PΘ, we see that, even with
mutually distinct directions and the centres P all lying on the sides of ∆012,
either every line-segment touches another (and all are of finite length), or one line-
segment is of infinite length (and touches no other). But in no case can we get a
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three-cycle as in Model 1. The analogue for Model 2 of a cycle in Model 1 is a
doublet as for the standard lilypond model in, e.g., Daley and Last [4] and as de-
fined earlier (see Example 2.1 above; in the formal language of Definition 3.1(c)
below, two points form a doublet if they are mutual stopping neighbours).

Example 2.2, like Figures 1 and 2, illustrates a major difference between
Models 1 and 2: Model 1 leads to cycles coming from at least three points Pθ

i ,
while Model 2 yields doublets that come from exactly two points. Despite appar-
ently similar growth rules, the resulting Models are topologically different.

However, for clusters, the roles of cycles and doublets are similar in that
in Model 1 (resp. Model 2) every finite cluster contains exactly one cycle (resp.
doublet), and any infinite cluster that may exist contains at most one cycle (resp.
doublet).

For Model 1, Examples 2.1 and 2.2 differ in that Example 2.1 always has
a line-segment of infinite length but in Example 2.2 it is quite possible for all
three line-segments to be of finite length. Inspection of figures like Figure 1 with
increasing numbers n of marked points suggests that, for PΘ with larger n, the
occurrence of a line-segment of infinite length should be increasingly rare as n
increases.

Indeed, suppose a family L of line-segments has been constructed on n points,
under either of Models 1 and 2, and that L has given rise to a line-segment of
infinite length, Lk say, centred on the associated marked point Pθ

k. From simple
geometry, we should expect its ‘centre’ Pk to be close to the ‘boundary region’ of
L, and its direction θk to be approximately tangential to the ‘boundary’ of L. If we
have started from n Poisson points closest to the origin, at most about

√
n of them

are ‘close’ to the boundary, and θk must lie in a wedge with angle O(π/2n) to
avoid hitting a finite line-segment ‘within’ L. Then all line-segments with centres
close to the boundary are finite when all of O(

√
n ) marked points have directions

θi avoiding an angular range O(1/n), hence, the event that all line-segments are
finite has probability [1 − O(1/n)]O(

√
n). Equivalently, a line of infinite length

occurs with probability 1− [1−O(1/n)]O(
√
n) = 1− e−1/O(

√
n ) = O(1/

√
n ).

In the appendix to the paper we describe an algorithm that finds all n line-
segments produced by the lilypond protocol applied to a given marked point set
PΘ with n elements using Model 1, and allude to an analogue for Model 2. On
the basis of these we have drawn realizations in Figures 1 and 2 for n = 41 under
Models 1 and 2.

3. EXISTENCE AND UNIQUENESS OF LILYPOND LINE-SEGMENT SYSTEMS

To this point we have taken for granted the existence of a line-segment system
generated via the lilypond protocol: when PΘ is finite, this follows from Algo-
rithm A.1. But when PΘ is countably infinite, more argument is needed, for which
purpose we exploit the approach in Heveling and Last [12] (we also appeal to the
technical Condition D); our notation builds on what we have already used.
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The line-segment realization PL = {(Pθ
i , Ri) : P

θ
i ∈ PΘ} based on PΘ sat-

isfies properties that can be described in terms of pairs of lines as in Definition 3.1
below. To this end, for any θ ∈ [0, π), let u(θ) = (cos θ, sin θ) denote the unit vec-
tor in the direction θ, so that for any scalar R ­ 0, the line-segment of length 2R
in the direction θ with midpoint P = (x, y) is the set S(Pθ, R) := {P + tRu(θ) :
−1 ¬ t ¬ 1} =: [P− Ru(θ),P + Ru(θ)]; this line-segment has relative interior
S0(Pθ, R) := {P + tRu(θ) : −1 < t < 1}.

DEFINITION 3.1. Let PΘ be a locally finite marked point set satisfying Con-
dition D in Definition 2.1. Let Pθ

i 7→ R(PΘ, P
θ
i ) ≡ R(Pθ

i ) =: Ri be any [0,∞]-
valued measurable mapping on PΘ such that for every Pθ

i ∈ PΘ the mapping
determines line-segments

(3.1) Si := S(Pθ
i , Ri) :=

{
{Pi + tu(θ) : |t| ¬ Ri} if Ri <∞,

the line {Pi + tu(θi) : t ∈ R} if Ri =∞.

When θi ̸= θj , let Pij be the point of intersection of S(Pθ
i ,∞) and S(Pθ

j ,∞), let
dij = d(Pi,Pij) and dji = d(Pj ,Pij).

(a) The set {(Pθ
i , Ri) : Pθ

i ∈PΘ} is a hard-segment model (HS model) (based
on PΘ) if for any distinct Pθ

i and Pθ
j ∈ PΘ the line-segments Si and Sj have

disjoint relative interiors.
(b) Distinct Pθ

i and Pθ
j ∈ PΘ in an HS model are segment neighbours if it

follows that Si ∩ Sj ̸= ∅.
(c) For segment neighbours Pθ

i and Pθ
j , Pθ

j is a Type 1 stopping segment
neighbour of Pθ

i when

Ri = dij if dij > dji and Rj > dji;

Pθ
j is a Type 2 stopping segment neighbour of Pθ

i when

Ri = max{dij , dji} and Rj ­ dji.

For k = 1, 2, an HS model is growth-maximal of Type k (i.e. a GMHS model
of Type k) if every Pθ

i ∈ PΘ for which Ri < ∞ has a Type k stopping segment
neighbour.

Definition 3.1 is similar to one given in Heveling and Last [12] for the lilypond
systems of germ-grain models on points and hyperspheres in Rd; the quantities in
(a)–(c) above are direct analogues for line-segments in the plane but can readily be
adapted to systems of flats in Rd.

The remainder of this section is devoted to establishing the existence and
uniqueness of Models 1 and 2. We do so by showing that, for k = 1, 2, Model k
from Section 2 is a GMHS model of Type k. Proceeding first via intermediate steps,
the major part of the discussion concerns a given fixed locally finite marked point
set PΘ. We start with Model 1.



Lilypond systems of finite line-segments 227

DEFINITION 3.2 (Descending chains). Let PΘ be a locally finite marked
point set.

(a) PΘ has a descending chain of Type 1 when it contains an infinite sequence
{Pθ

0,P
θ
1, . . .} such that both inequalities in dn−1,n ­ dn,n−1 ­ dn,n+1 hold for all

n = 1, 2, . . .

(b) PΘ has a descending chain of Type 2 when it contains an infinite sequence
{Pθ

0,P
θ
1, . . .} such that the inequality dn,n−1 ­ max{dn,n+1, dn+1,n} holds for all

n = 1, 2, . . .

Here then is the result for Model 1; notice that the right-hand side of (3.3) is
a generalization of the right-hand side of (7.1) in the appendix, and that the fixed-
point equation f = T1f is an extension of (7.1).

THEOREM 3.1. Let PΘ = {Pθ
i : i = 1, 2, . . .} be a locally finite marked point

set satisfying Condition D and such that PΘ admits no descending chain of Type 1.
Then there exists a unique GMHS model of Type 1 based on PΘ, and it is the
unique solution for f ∈ F of T1f = f, where F is the space of measurable func-
tions f : PΘ 7→ [0,∞], the operator T1 : F 7→ F being defined by

T1f(P
θ
i ) := infDi(f,PΘ)(3.2)

and

Di(f,PΘ) :=
{
dij : P

θ
j ∈ PΘ \ {Pθ

i }, dij > dji and f(Pθ
j) > dji

}
.(3.3)

Theorem 3.1 is a consequence of several results given below where we omit
the phrase ‘of Type 1’ (since we shall not deal with any other Model until Theorem
3.2). We assume that PΘ satisfies Condition D and that there is no descending
chain (of Type 1).

Start by noting that an HS function is an element of F satisfying the re-
quirements of Definition 3.1(a), and a GMHS function is an HS function satis-
fying the case k = 1 of Definition 3.1(c). Proposition 3.1 below identifies the
GMHS function as the unique fixed point of the operator T1 : F 7→ F defined
in (3.2), and as usual, in (3.3), inf ∅ = ∞. Immediately, for f, g ∈ F , if f ¬ g,
then Di(g,PΘ) ⊇ Di(f,PΘ). Appeal to (3.2) proves the following monotonicity
property.

LEMMA 3.1. Let f, g ∈ F satisfy f ¬ g. Then T1f ­ T1g.

The next property gives a simple condition under which Di(f,PΘ) is a finite
set so that the infimum in (3.2) is attained.

LEMMA 3.2. Let f ∈ F and Pθ
i ∈ PΘ satisfy T1f(P

θ
i ) <∞. Then there ex-

ists Pθ
j ∈ PΘ \ {Pθ

i } such that f(Pθ
i ) = dij > dji and f(Pθ

j) > dji.

P r o o f. Because inf ∅ = ∞ > T1f(P
θ
i ), Di(f,PΘ) is a nonempty set. To

show that it is a finite set, observe that, for any nonempty triangle PiPijPj , 2mij =
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2max{dij , dji} ­ dij + dji ­ d(Pi,Pj), so for any c > 0,

(3.4) {Pθ
j ∈ PΘ : c ­ dij > dji} ⊆ {Pθ

j ∈ PΘ : 2c ­ d(Pi,Pj)};

this last set is finite because PΘ is locally finite. Take c > T1f(P
θ
i ). Then

infDi(f,PΘ) = inf
{
Di(f,PΘ) ∩ {j : c ­ dij > dji}

}
. But by (3.4) this last set

is finite, so card
(
Di(f,PΘ)

)
<∞, and the infimum in (3.2) must be attained at

an element of the set. �

LEMMA 3.3. Let f ∈ F . Then f is an HS function if and only if f ¬ T1f .

P r o o f. Let us assume that f is an HS function and take Pθ
i ∈ PΘ. To show

that f(Pθ
i ) ¬ T1f(P

θ
i ), we will argue by contradiction: assume that, for some Pθ

i ,
T1f(P

θ
i ) < f(Pθ

i ). This implies first that T1f(P
θ
i ) <∞, and then, by Lemma 3.2,

that for some j we have T1f(P
θ
i ) = dij , and so

(3.5) f(Pθ
i ) > T1f(P

θ
i ) = dij > dji and f(Pθ

j) > dji.

Then Pij is interior to both line-segments S
(
Pθ
i , f(P

θ
i )
)

and S
(
Pθ
j , f(P

θ
j)
)
, con-

tradicting the HS property in Definition 3.1 for f .
Conversely, let f ¬ T1f , and take Pθ

i ∈ PΘ and Pθ
j ∈ PΘ \ {Pθ

i }; we must
show that the relative interiors S0

i := S0
(
Pθ
i , f(P

θ
i )
)

and S0
j := S0

(
Pθ
j , f(P

θ
j)
)

have a void intersection. If these two line-segments are not parallel, any non-void
intersection S(Pθ

i , ·) ∩ S(Pθ
j , ·) consists of the point Pij which, being at distances

dij and dji from Pθ
i and Pθ

j , is not in S0
i ∩ S0

j when f(Pθ
i ) ¬ T1f(P

θ
i ) = dij for

which f(Pθ
j) > dji by the definition of T1f . If the two line-segments are parallel,

then either the infinite lines that contain them have no finite point of intersection
and S0

i ∩ S0
j = ∅, or they both lie within the same line, in which case dij = dji,

which is impossible when Condition D holds. Thus, f is an HS function. �

LEMMA 3.4. Let f ∈ F . Then f is a GMHS function if and only if T1f = f .

P r o o f. When f is a GMHS function, it is an HS function, so it is enough to
show that an HS function for which f = T1f is a GMHS function. Let Pθ

i ∈ PΘ.
Either f(Pθ

i ) = ∞ and f(Pθ
i ) = T1f(P

θ
i ), or f(Pθ

i ) < ∞. In this case, as in
the proof of Lemma 3.3, any non-void intersection of line-segments determined
by Pθ

i and Pθ
j consists of the singleton set {Pij}, and such line-segments can

have void intersection of their relative interiors only if Pij is at an extremity of
one of the segments, so for some j we have f(Pθ

i ) = dij = T1f(P
θ
j) > dji and

f(Pθ
j) > dji. �

Lemmas 3.2–3.4 imply that when a locally finite marked point set PΘ satisfies
Condition D, Model 1 generates a family of line-segments. It remains to show that
such a family is unique.

For use below we note the following corollary as a separate result.
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LEMMA 3.5. Let f be a GMHS function. Then f(Pθ
i ) ∈ {dij : dij > dji}

whenever f(Pθ
i ) <∞.

Now recursively define a sequence of functions fn ∈ F via

(3.6) f0 := 0, fn+1 = T1fn (n = 0, 1, . . .),

so that f1 =∞. By Lemma 3.2, f0 ¬ f1 implies f1 ­ f2 ¬ f3 ­ f4 ¬ . . . , while
f0 ¬ f2 and f1 ­ f3 imply that f2n ¬ f2n+2 and f2n+1 ­ f2n+3 for all n ­ 0.
Then the monotone limits

(3.7) f := lim
n→∞

f2n, g := lim
n→∞

f2n+1

are well defined, and

(3.8) f2n ¬ f2n+2 ¬ f ¬ g ¬ f2n+3 ¬ f2n+1 (n ­ 0).

Our aim now is to show that f = g, because (3.7) and (3.8) then imply that f
is the unique GMHS function. First we derive some auxiliary results.

LEMMA 3.6. Let Pθ
i ∈ PΘ satisfy f(Pθ

i ) < ∞. Then f2n(P
θ
i ) = f(Pθ

i ) for
all sufficiently large n. Similarly, if g(Pθ

j) <∞, then f2n+1(P
θ
j) = g(Pθ

j) for all
sufficiently large n.

P r o o f. The assertions follow from Lemma 3.5 and the fact that in (3.3) the
right-hand side, and hence also the left-hand side, is a finite set. �

LEMMA 3.7. T1f = g and T1g = f .

P r o o f. From f2n ¬ f and Lemma 3.1 it follows that f2n+1 ­ T1f , and
hence that g ­ T1f . Consider Pθ

i ∈ PΘ: we want to show that g(Pθ
i ) ¬ T1f(P

θ
i ).

When T1f(P
θ
i ) = ∞, it follows that g(Pθ

i ) = T1f(P
θ
i ), so we can assume that

T1f(P
θ
i ) <∞. By Lemma 3.2 there exists Pθ

j ∈ PΘ \ {Pθ
i } such that T1f(P

θ
i ) =

dij ­ dji and f(Pθ
j) > dji. Assume that f(Pθ

j) =∞. Then f2n(P
θ
j) > dji for all

sufficiently large n, and thus

f2n+1(P
θ
i ) = T1f2n(P

θ
i ) ¬ dij = T1f(P

θ
i )

for all sufficiently large n, implying that g(Pθ
i ) ¬ T1f(P

θ
i ). Assuming f(Pθ

j)<∞,
we see that Lemma 3.6 implies f2n(Pθ

j) = f(Pθ
j) > dji for all sufficiently large n.

This again implies that g(Pθ
i ) ¬ T1f(P

θ
i ).

To show that T1g = f , start from f2n+1 ­ g and Lemma 3.5 to deduce that
f2n+2 ¬ T1g, and hence f ¬ T1g. To show that f ­ T1g, take Pθ

i ∈ PΘ and as-
sume on the contrary that f(Pθ

i ) < T1g(P
θ
i ). Then f2n(P

θ
i ) = f(Pθ

i ) for all suffi-
ciently large n. By (3.5) there must be Pθ

j ∈ PΘ \ {Pθ
i } such that

f(Pθ
i ) = f2n(P

θ
i ) = dij ­ dji and f2n−1(P

θ
i ) > dji
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for infinitely many n. But then g(Pθ
j) > dji, implying that T1g(P

θ
i ) ­ dij = f(Pθ

i ),
which contradicts our assumption that f(Pθ

i ) < T1g(P
θ
i ). �

PROPOSITION 3.1. The function f is a GMHS function based on PΘ if and
only if f = g, in which case f is the unique such GMHS function.

P r o o f. Suppose f = g. From Lemma 3.7 it follows that T1f = T1g = f ,
which implies by Lemma 3.4 that f is a GMHS function. For any GMHS function
h, we must have T1h = h. But f0 ¬ h by the definition of f0, so f2n ¬ h for
every n, and therefore f ¬ h. By Lemma 3.1 we then have T1f ­ T1h = h, and
f = T1f , so f ­ h, hence f = h.

Conversely, if f = T1f , then Lemma 3.7 implies that f = g. �

Theorem 3.1 is now a consequence of the last proposition and the next one.

PROPOSITION 3.2. Under the assumptions of Theorem 3.1, f = g.

P r o o f. We use the inequality f ¬ g and Lemma 3.7 without further refer-
ence. Assume that Pθ

0 ∈ PΘ satisfies f(Pθ
0) < g(Pθ

0), and let Pθ
1 ∈ PΘ \ {Pθ

0} be
such that

f(Pθ
0) = T1g(P

θ
0) = d01 ­ d10 and g(Pθ

1) > d10.

Then f(Pθ
1) ¬ d01 because, otherwise, g(Pθ

0) = T1f(P
θ
0) ¬ d01 = f(Pθ

0).
We also have f(Pθ

1) < g(Pθ
1) because otherwise we should have f(Pθ

1) =
g(Pθ

1), so that again g(Pθ
0) = T1f(P

θ
0) ¬ d01 = f(Pθ

0).
Hence, we can repeat all steps to deduce the existence of some Pθ

2 ∈ PΘ\{Pθ
1}

such that

f(Pθ
1) = T1g(P

θ
1) = d12 ­ d21 and g(Pθ

2) > d21,

and f(Pθ
2) ¬ d21 and f(Pθ

2) < g(Pθ
2). Combining these inequalities yields the re-

lations
d01 > d10 ­ d12 > d21,

in which the strict inequalities come from the first assumption of Theorem 3.1. In
particular, Pθ

2 ̸= Pθ
1. By induction we can construct a whole sequence Pθ

0,P
θ
1, . . .

of points from PΘ satisfying

d01 > d10 ­ d12 > d21 ­ . . . ­ dn−1,n > dn,n−1 ­ . . .

and f(Pθ
n) = dn,n+1 for all n ­ 0. In particular then, f(Pθ

n) > f(Pθ
n+1), showing

that the points Pn are all different. But this means that we have constructed a
descending chain of PΘ, contrary to what is assumed in Theorem 3.1. Hence there
can be no Pθ

0 ∈ PΘ such that f(Pθ
0) < g(Pθ

0). �
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We turn now to discuss the existence of Model 2 along the lines of the proof for
Model 1: it is to be understood that the analysis for the remainder of this section
concerns Model 2, and that we should refer to the GMHS model and stopping
segment neighbours of Type 2.

THEOREM 3.2. Let PΘ = {Pθ
i : i = 1, 2, . . .} be a locally finite marked point

set satisfying Condition D and such that PΘ admits no descending chain of Type 2.
Then there exists a unique GMHS model of Type 2 based on PΘ, and it is the
unique solution for f ∈ F (as in Theorem 3.1) of T2f = f, where the operator
T2 : F 7→ F is defined by

T2f(P
θ
i ) := infD

(2)
i (f,PΘ)(3.9)

with

D
(2)
i (f,PΘ) :=

{
max{dij , dji} : Pθ

j ∈ PΘ \ {Pθ
i } and f(Pθ

j) ­ dji
}
.(3.10)

We prove Theorem 3.2 via several intermediate results as for Theorem 3.1;
assume now that PΘ satisfies Condition D and has no descending chain of Type 2.

Start with a monotonicity result, proved as for Lemma 3.1, and the attainment
of an infimum, proved as for Lemma 3.2 with {Pθ

j ∈ PΘ : c ­ dij ­ dji} replaced
by

{
Pθ
j ∈ PΘ : c ­ max{dij , dji}

}
.

LEMMA 3.8. Let f, g ∈ F satisfy f ¬ g. Then T2f ­ T2g.

LEMMA 3.9. Let f ∈ F and Pθ
i ∈ PΘ satisfy T2f(P

θ
i ) <∞. Then there ex-

ists Pθ
j ∈ PΘ \ {Pθ

i } such that T2f(P
θ
i ) = max{dij , dji} and f(Pθ

j) ­ dji.

We prove the next step via four intermediate results.

PROPOSITION 3.3. Let f ∈ F . Then f is a GMHS function if and only if
f = T2f .

LEMMA 3.10. Let f ∈ F and assume f = T2f . Then f is an HS function.

P r o o f. Suppose that f(Pθ
j) > dji and f(Pθ

i ) > dij for some i ̸= j. If dij ­
dji, then we have f(Pθ

i ) = T2f(P
θ
i ) ¬ max{dij , dji} = dij , which is a contradic-

tion. If dij < dji, we get f(Pθ
j) = T2f(P

θ
j) ¬ max{dij , dji} = dji, which again

gives a contradiction. �

LEMMA 3.11. Let f ∈ F and assume T2f = f . Then f is a GMHS function.

P r o o f. Because of Lemma 3.10 we can assume that f is an HS function.
Take i ∈ N. By Lemma 3.9 there exists j ̸= i such that T2f(P

θ
i ) = max{dij , dji}

and f(Pθ
j) ­ dji. We claim that Pθ

j is a stopping neighbour of Pθ
i . To prove this,

consider the four cases:
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(1) Suppose f(Pθ
i ) = dij and f(Pθ

j) = dji. Since all dij are different, we get
f(Pθ

i ) = dij = T2f(P
θ
i ) = max{dij , dji} > dji = f(Pθ

j). Then, by definition, Pθ
j

is a stopping neighbour of Pθ
i .

(2) Suppose f(Pθ
i ) = dji and f(Pθ

j) = dji. So f(Pθ
i ) = dji = f(Pθ

j) holds,
and the claim follows.

(3) Suppose f(Pθ
i ) = dji and f(Pθ

j) > dji. This gives f(Pθ
i ) = dji > dij and

f(Pθ
j) > dji. Since f is an HS function, this is a contradiction.
(4) Suppose f(Pθ

i ) = dij and f(Pθ
j) > dji. By assumption, T2f(P

θ
i ) =

max{dij , dji}. Since f(Pθ
i ) = dij , we get T2f(P

θ
j) ¬ max{dij , dji}. This yields

f(Pθ
i ) ­ f(Pθ

j), and the claim follows. �

LEMMA 3.12. Let f ∈ F and assume f is a GMHS function. Then f ­ T2f .

P r o o f. If f(Pθ
i ) <∞, then there exists Pθ

j ∈ PΘ \ {Pθ
i } such that f(Pθ

i ) =

max{dij , dji}, and f(Pθ
j) ­ dji. This implies that T2f(P

θ
i ) ¬ max{dij , dji} =

f(Pθ
i ). If f(Pθ

i ) = ∞, the proposition is satisfied, since T2f(P
θ
i ) takes values in

[0,∞) ∪ {∞}. �

LEMMA 3.13. Let f ∈ F and assume f is a GMHS function. Then f ¬ T2f .

P r o o f. Let i ­ 1. To show that f(Pθ
i ) ¬ T2f(P

θ
i ), it clearly suffices to as-

sume that T2f(P
θ
i ) <∞. By Lemma 3.8 there exists j ̸= i such that T2f(P

θ
i ) =

max{dij , dji} and f(Pθ
j) ­ dji. We examine two cases, supposing first that f(Pθ

j)
> dji and T2f < f . Then

dij ¬ max{dij , dji} = T2f(P
θ
i ) < f(Pθ

i )

and f(Pθ
j) > dji, which would contradict the fact that f is an HS function.

Suppose, on the other hand, that f(Pθ
j) = dji. Since f is a GMHS function, Pθ

j

has a stopping neighbour Pθ
k. In particular, f(Pθ

j) = max{djk, dkj} holds. Since
all dlm, l ̸= m, are different, we must have i = k. Therefore, the point Pθ

i must be
a stopping neighbour of Pθ

j . If we assume f(Pθ
i ) > T2f(P

θ
i ), then

f(Pθ
i ) > T2f(P

θ
i ) = max{dij , dji} ­ dji = f(Pθ

j).

This would be a contradiction since Pθ
i stops Pθ

j . �

Now define limit functions f and g as in (3.6) and (3.7) for Model 1 except
that T2 replaces T1. Then Lemma 3.14 is an analogue of Lemma 3.6, and the proof
of Lemma 3.15 is as for Lemma 3.7 except that dij is replaced by max{dij , dji}.

LEMMA 3.14. Let Pθ
i ∈ PΘ satisfy f(Pθ

i ) <∞. Then f2n(P
θ
i ) = f(Pθ

i ) for
all sufficiently large n. Similarly, if g(Pθ

j) <∞, then f2n+1(P
θ
j) = g(Pθ

j) for all
sufficiently large n.
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LEMMA 3.15. T2f = g and T2g = f .

To prove the next proposition mimic the proof of Proposition 3.1.

PROPOSITION 3.4. The function f is a GMHS function based on PΘ if and
only if f = g, in which case f is the unique such GMHS function.

Theorem 3.2 is now a consequence of the last proposition and the next one.

PROPOSITION 3.5. Under the assumptions of Theorem 3.2, f = g.

P r o o f. The proof runs along the lines of the proof of Proposition 3.2. Use
the inequality f ¬ g and Lemma 3.14 without further reference. Let Pθ

0 ∈ PΘ

satisfy f(Pθ
0) < g(Pθ

0), and let Pθ
1 ∈ PΘ \ {Pθ

0} be such that

f(Pθ
0) = T2g(P

θ
0) = max{d01, d10} ­ d10 and g(Pθ

1) ­ d10 .

Then f(Pθ
1) < d10 since, otherwise, g(Pθ

0)=T2f(P
θ
0) ¬ max{d01, d10} = f(Pθ

0).
We also have f(Pθ

1) < g(Pθ
1) because otherwise we should have f(Pθ

1) =
g(Pθ

1), so that again g(Pθ
0) = T2f(P

θ
0) ¬ max{d01, d10} = f(Pθ

0). Then, repeat-
ing all these steps, deduce the existence of some Pθ

2 ∈ PΘ \ {Pθ
1} such that

f(Pθ
1) = T2g(P

θ
1) = max{d12, d21} ­ d21 and g(Pθ

2) ­ d21,

and f(Pθ
2) < d21 and f(Pθ

2) < g(Pθ
2). Combining these inequalities yields the re-

lations
max{d01, d10} ­ d10 > max{d12, d21} ­ d21.

Since f(Pθ
0) = max{d01, d10} > f(Pθ

1) = max{d12, d21}, we get Pθ
0 ̸= Pθ

1. Use
induction to construct a whole sequence Pθ

0,P
θ
1, . . . of points from PΘ satisfying

max{d01, d10} ­ d10 > max{d12, d21} ­ d21 > . . .

> max{dn−1,n, dn−1,n} ­ dn,n−1 > . . .

and f(Pθ
n) = dn,n+1 for all n ­ 0. In particular then, f(Pθ

n) > f(Pθ
n+1), so the

points Pn are all different. But this means that we have constructed a descending
chain of PΘ, contrary to what is assumed in Theorem 3.2. Hence there can be no
Pθ
0 ∈ PΘ such that f(Pθ

0) < g(Pθ
0). �

4. STOCHASTIC MODELS

In this section we prove the existence and uniqueness for Models 1 and 2
for a special class of point processes. Let N denote the set of all countable sets
PΘ ⊂ X := R2 × [0, π) such that card

(
PΘ ∩ B × [0, π)

)
<∞ for all bounded

sets B ∈ R2. Any such PΘ is identified with a (counting) measure card(PΘ ∩ ·).
We equip N, as usual, with the smallest σ-field N making the mappings PΘ 7→
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PΘ(C) measurable for all measurable C ⊂ X . In this section and the next we
consider a marked point process Ψ, that is, a random element in N defined on
some abstract probability space (Ω,F ,P). We make the following assumptions
on Ψ. Let c be a finite positive real number, and Q a probability measure on [0, π).
Then the nth factorial moment measure α(n) of Ψ (see Daley and Vere-Jones [7])
satisfies, for each n ∈ N,

(4.1) α(n)
(
d(P1, θ1), . . . , d(Pn, θn)

)
¬ cndP1 . . . dPnQ(dθ1) . . . Q(dθn),

where dP denotes the differential of Lebesgue measure in R2. Assume also that the
ground process Φ, defined as the projection of Ψ on its first coordinate, is a simple
point process. A stationary, independently marked Poisson process with arbitrary
mark distribution satisfies (4.1). So the mark distribution could, for example, be a
sum of Dirac measures as well as a diffuse measure. Moreover, special classes of
Cox and Gibbs processes satisfy (4.1). The details on this for the standard lilypond
model are stated in Daley and Last [4] and can be adapted to our situation.

THEOREM 4.1. For k = 1, 2 and the marked point process Ψ as above, a.s.
(almost surely) there exists a unique GMHS model of Type k.

We prove the theorem by combining Propositions 4.1 and 4.2 below with The-
orem 3.1, and then Proposition 4.3 with Theorem 3.2 for the cases k = 1 and 2,
respectively (Theorems 3.1 and 3.2 from Section 3 show the growth-maximal prop-
erty for Models 1 and 2). Consequently, Theorem 4.1 gives a precise meaning to
Models 1 and 2 described in the introduction.

PROPOSITION 4.1. For the marked point process Ψ as above, a.s. there are
no distinct pairs of points Pθ

i ,P
θ
j ∈ Ψ for which dij = dji <∞.

In other words, for a Poisson process Condition D holds a.s.

P r o o f. The assertion can be proved as for Lemma 3.1 in [4], showing a
non-lattice property based on the factorial moment measure condition on the point
process. �

PROPOSITION 4.2. For the marked point process Ψ as above, a.s. there is
no descending chain of Type 1, i.e. there is no infinite sequence Pθ

0,P
θ
1,P

θ
2, . . . of

distinct points in Ψ such that, with dij = d(Pi,Pij),

(4.2) ∞ > d01 ­ d10 ­ . . . ­ dn−1,n ­ dn,n−1 ­ . . .

P r o o f. We proceed as in Section 3.2 of [4]. Let C be the set of all PΘ ∈ N
which contain a descending chain and let Wk := [−k, k]2 be a square of side length
2k. Furthermore, let B ⊂ R2 be a bounded Borel set. For s ¬ t and B ∈ B(R2),
let C(n, s, t, B) be the set of all PΘ ∈ N whose projection on the first coordinate
contains n + 1 different points P0,P1, . . . ,Pn such that P0 ∈ B and t ­ d01 ­
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d10 ­ . . . ­ dn−1,n ­ dn,n−1 ­ s, and C(s, t, B) be the set of all PΘ ∈ N whose
projection (on the first coordinate) contains an infinite series of points satisfying the
ordering condition (4.2) with P0 ∈ B. Moreover, let C(s, t) be the set of all PΘ ∈
N whose projection contains an infinite series of points satisfying the ordering
condition (4.2). Clearly, the sets C(n, t, s, B) are decreasing in n and

C(s, t, B) =
∞∪
n=1

C(n, s, t, B), s ¬ t, B ∈ B(R2),

and C(s, t,Wk) is increasing in Wk with limit C(s, t). It is sufficient to show that
there exists a sequence {ti} with limi→∞ ti =∞ such that

lim
n→∞

P{Ψ ∈ C(n, ti, ti+1, B)} = 0

for all bounded B and all i because then, using the set identities given above,
we get

P{Ψ ∈ C} = P
{
Ψ ∈

∞∪
i=1

∞∪
k=1

C(ti, ti+1,Wk)
}

¬
∞∑
i=1

P
{
Ψ ∈

∞∪
k=1

C(ti, ti+1,Wk)
}
= 0.

Using assumption (4.1) on the factorial moment measures of Ψ, as in [4] we infer
that P{Ψ ∈ C(n, s, t, B)} is bounded by

(4.3) cn
∫
. . .

∫
1{P0 ∈ B}

× 1{t ­ di−1,i ­ di,i−1 ­ s (i = 1, . . . , n)} dP0Q(dθ0) . . . dPnQ(dθn).

Now, let D(n, s, t, B) be the set of all PΘ ∈ N whose projection contains
n+1 different points P0,P1, . . . ,Pn such that P0 ∈ B and t ­ di−1,i ­ di,i−1­s
for i = 1, . . . , n. Clearly, C(n, s, t, B) ⊆ D(n, s, t, B). Therefore, the expression
in (4.3) is bounded by

(4.4) cn
∫
. . .

∫
1{P0 ∈ B}1{t ­ di−2,i−1 ­ di−1,i−2 ­ s (i = 1, . . . , n− 1)}
× 1{t ­ dn−1,n ­ dn,n−1 ­ s} dP0Q(dθ0) . . . dPnQ(dθn).

This expression is bounded in turn by

(4.5) cn
∫
. . .

∫
1{P0 ∈ B}1{t ­ di−1,i ­ di,i−1 ­ s (i = 1, . . . , n− 1)}

× 1{Pn ∈ D(|θn − θn−1|, t− s)} dP0Q(dθ0) . . . dPnQ(dθn),
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where D(θ, x) is a diamond of side-length x and inner angle θ. Now, the volume
of D(θ, l) is bounded by x2, so we can use Fubini’s theorem to deduce that this
expression is bounded by

4 (t− s)2 cn
∫
. . .

∫
1{P0 ∈ B}1{t ­ di−1,i ­ di,i−1 ­ s (i = 1, . . . , n− 1)}

× dP0Q(dθ0) . . . dPn−1Q(dθn−1).

Repeating this argument another n − 1 times, we see that the last expression is
bounded by

(4.6) 4n(t− s)2ncn
∫
1{P0 ∈ B} dP0Q(dθ0) ¬ [4c(t− s)2]

n
ℓ(B),

so P{Ψ ∈ C(n, s, t, B)} ¬ [4c(t− s)2]
n
ℓ(B). Choosing t0 := 0 and ti+1 := ti +

1/
√
5c implies that the right-hand side goes to zero as n→∞ geometrically fast,

so the proof is complete. �

We now deduce Theorem 4.1 for the case k = 2 by combining the next result
with Theorem 3.2 and get a precise meaning for Model 2.

PROPOSITION 4.3. For the random process based on the marked point pro-
cess Ψ as above, a.s. there is no descending chain of Type 2 in Ψ, i.e. there is
no infinite sequence Pθ

0,P
θ
1,P

θ
2, . . . of different points in Ψ such that, with dij =

d(Pi,Pij),

∞ > d10 ­ max{d1,2, d2,1} ­ d2,1 ­ max{d2,3, d3,2} . . .

P r o o f. The calculations are similar to those in the proof of Proposition 4.2
except that we have to replace inequalities of the type t ­ dn−1,n ­ dn,n−1 ­ s by
t ­ max{dn−1,n, dn,n−1} ­ dn,n−1 ­ s. Thus, we obtain P{Ψ ∈ C(n, s, t, B)}¬
[4c t(t− s)]nℓ(B). Choosing ti :=

1
2

√
i/c yields

[4c ti(ti − ti−1)]
nℓ(B) =

( √
i√

i+
√
i− 1

)n

ℓ(B) ¬ anℓ(B)

for some a < 1 (and a > 1
2 ). So limn→∞ P{Ψ ∈ C(n, s, t, B)} = 0 as before. �

REMARK 4.1. There are measurable mappings (PΘ,P
θ) 7→Rk(PΘ,P

θ) (k=
1, 2) from N×X to [0,∞) such that the GMHS models of Type 1 and 2 in Propo-
sition 4.3 are given by

{(
Pθ, Rk(Ψ,Pθ)

)
: Pθ ∈ Ψ

}
. These mappings can be de-

fined as the limit inferior of the recursions in Section 4. We then have the useful
translation invariance

Rk(PΘ + P,Pθ + P) = Rk(PΘ,P
θ), P ∈ R2,

where Pθ +P denotes the translation of Pθ in the first component and PΘ +P :=
{Pθ +P : Pθ ∈ PΘ}. The measurability of Rk has been implicitly assumed above.
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5. INFINITE CLUSTERS AND PERCOLATION

In this section we fix a marked point process Ψ with ground process Φ. As-
sume that Ψ satisfies the factorial moment assumption (4.1) and that Ψ is station-
ary, i.e. for all P ∈ R2 the distributions of Ψ and Ψ+ P coincide, where Ψ+ P is
the translation of Ψ by P in the first component. The intensity of Ψ (and of Φ) is
defined by λ := EΦ([0, 1]2), which is the mean number of points of Φ in the unit
square. Assume Ψ ̸= ∅ and λ <∞. We will show that a.s. there is no percolation
in Model 2, i.e. there are no infinite clusters. Since Model 2 is akin to the lilypond
model via contact between spherical grains (see Daley et al. [6]), we use the idea of
a doublet; the earlier definition can be rephrased here in our more formal language
as follows. Recall here the notation introduced in Remark 4.1.

DEFINITION 5.1. Two segment neighbours Pθ,Qθ ∈ Ψ constitute a doublet
in Model 2 if R2(Ψ,Pθ) = R2(Ψ,Qθ).

Thus, for a doublet pair {Pθ,Qθ}, Pθ and Qθ are stopping segment neighbours
of each other.

LEMMA 5.1. Almost surely, in Model 2 every Pθ ∈ Ψ has at most one stop-
ping segment neighbour.

P r o o f. When Pθ
0 ∈ Ψ has Pθ

1 ∈ Ψ as a stopping segment neighbour,
R2(Ψ,Pθ

0) = max{d01, d10} = m01. For Pθ
2 also to be a stopping segment neigh-

bour of Pθ
0, then R2(Ψ,Pθ

0) = m02. By Condition D, m01 ̸= m02, so we have a
contradiction. �

For the next result we need the following. Define a graph on Ψ as follows. Two
nodes, i.e. two points of Ψ, share an edge if one is the stopping segment neighbour
of the other in the corresponding Model 2. Every component of this graph is called
a cluster. This definition of a cluster is consistent with our earlier definition in the
introduction. An immediate consequence of Lemma 5.1 is that every cluster has at
most one doublet.

LEMMA 5.2. Let Ψ be a stationary marked point process satisfying the facto-
rial moment measure condition. Then a.s. there does not exist any infinite cluster
with a doublet.

P r o o f. The statement is proved by adapting the argument in the proof of
Theorem 5.1 of Daley and Last [4]. �

Here is the main result of this section.

THEOREM 5.1. Assume that Ψ is a stationary marked point process satisfying
the factorial moment measure condition. Then a.s. there is no infinite cluster in
Model 2.

P r o o f. Because of Lemma 5.2, it remains to show that there exists no infi-
nite cluster without a doublet, i.e. we have to show that a.s. there does not exist
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an infinite sequence {Pθ
i : i = 0, 1, . . .} such that, for every i, Pθ

i+1 is a stopping
segment neighbour of Pθ

i and {Pθ
i ,P

θ
i+1} is not a doublet.

Suppose on the contrary that such an infinite sequence exists. Then, invoking
Condition D when required and applying Definition 3.1(c) to Pθ

i with the stopping
segment neighbour Pθ

i+1 for i = 0, 1, . . . , we have

(5.1) Ri = mi,i+1 and di+1,i < Ri+1 ¬ Ri,

which together imply that Ri = di,i+1 > di+1,i, and hence that di−1,i > di,i+1.
Let B be a bounded Borel set. Denote by C ′(n, s, t, B) the set of all PΘ ∈ N

whose projection contains n+1 different points P0,P1, . . . ,Pn such that P0 ∈ B,
t ­ d01 ­ d12 ­ . . . ­ dn−1,n ­ s, Ri = di,i+1 and Ri+1 ­ di+1,i.

Let D′(n, s, t, B) be the set of all PΘ ∈ N whose projection contains n + 1
different points P0,P1, . . . ,Pn such that P0 ∈ B, t ­ d01 > d12 > . . . > dn−1,n
­ s and t ­ di+1,i for 1 ¬ i ¬ n− 1.

Combining the last three conditions of the definition of C ′(n, s, t, B), we get

C ′(n, s, t, B) ⊆ D′(n, s, t, B).

Analogously to the existence proof in Section 4, it is sufficient to show that there
exists a sequence {ti}with limi→∞ ti such that limn→∞ P{Ψ ∈ D′(n, ti, ti+1, B)}
= 0 for all B and all i.

As in Section 4, P{Ψ ∈ D′(n, ti, ti+1, B)} is bounded by

(5.2) cn
∫
. . .

∫
1{P0 ∈ B}1{t ­ d01 ­ d12 ­ . . . ­ dn−1,n ­ s}
× 1{t ­ di+1,i, 0 ¬ i ¬ n− 1} dP0Q(dθ0) . . . dPnQ(dθn).

In turn, this can be bounded by

(5.3) cn
∫
. . .

∫
1{P0 ∈ B}1{t ­ d01 ­ d12 ­ . . . ­ dn−2,n−1 ­ s}

× 1{t ­ di+1,i, 0 ¬ i ¬ n− 2}1{t ­ dn−1,n ­ s, t ­ dn,n−1}
× dP0Q(dθ0) . . . dPnQ(dθn).

The integrand can be rewritten in terms of the maximum as in the proof of Propo-
sition 4.2, and we get the result in the same manner as there. �

6. FINITE CLUSTERS AND DISCUSSION

The main concerns of this section are properties of a stationary lilypond sys-
tem of line-segments based on a stationary marked point process Ψ ̸= ∅ with in-
tensity λ and ground process Φ as in Sections 4 and 5 and for which the factorial
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moment assumption in (4.1) is satisfied. Introduce a probability measure P0
Φ (on

the underlying sample space) such that Ψ has the Palm distribution

P0
Φ{Ψ ∈ ·} = λ−1E

∫
[0,1]2

1{Ψ− P ∈ ·}Φ(dP),

where the shift Ψ − P of Ψ has been defined in Remark 4.1 and integration with
respect to Φ means integration with respect to the associated counting measure.
This probability measure describes Ψ as seen from a typical point of Φ (see Daley
and Vere-Jones [7] and Last [14] for more details on Palm distributions). Note
that P0

Φ{0 ∈ Φ} = 1. If Ψ is an independently marked stationary Poisson process
whose mark distribution Q has generic mark R, then the Slivnyak–Mecke theorem
implies that Ψ ∪ {(0, R)} has distribution P0

Φ when R is independent of Ψ. Let E0
Φ

denote the expectation operator with respect to P0
Φ.

For Model 1 we have not been able to resolve whether or not the process
of line-segments percolates in the Poisson case. In Section 5 we showed the a.s.
absence of percolation for Model 2. This is not surprising because it resembles the
standard lilypond models of Häggström and Meester [11] for which they showed
there is a.s. no percolation. We formulate our belief as follows.

CONJECTURE 6.1. In the Model 1 lilypond system of line-segments based on
a stationary planar Poisson process, there is a.s. no percolation.

This hypothesis was formulated on the basis of simulation work, and is sup-
ported by its truth having been shown in the special case of lines oriented in just one
of two directions by Hirsch [13]. Evidence from simulations is based on examining
large numbers of realizations for finite systems of an increasing number of points
and recording the mean number of points in the cluster to which the line-segment
through the origin belongs. In these we found no evidence of an increasing mean
cluster size as might be anticipated if a.s. an infinitely large cluster exists when
there is an infinite set of germs.

The conjecture can be cast as a random directed graph problem in which, for
each realization, the nodes are the points P and each node P′, say, has exactly
one outward-directed edge, namely to the node P′′ which is the centre of the line-
segment that stops the growth of the line-segment passing through P′. Resolving
Conjecture 6.1 is the same as determining whether or not such a graph can (with
positive probability) have an infinitely large component.

With each Pi of a realization of a system as in Conjecture 6.1 associate the
vector Xi := PijPjk, where Pθ

i has Pθ
j as its stopping segment neighbour and Pθ

j

has Pθ
k as its stopping segment neighbour (in the notation of Algorithm A.1 in

Section 7, j = J(i), k = J(j)). Then tracing the successive ‘steps’ {Xi} within
a cluster that has no infinite line-segment resembles tracing the steps of a random
walk whose mean step-length E(Xi) = 0 (by rotational symmetry and the fact,
from Proposition 6.2 below, that |Xi| has an exponentially bounded tail). These
steps are not independent (because of their construction), but they have the property
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of successive steps ending in a cycle unless they are part of an infinite cluster. If
we regard such ‘terminal’ behaviour as indicating a propensity for recurrence (as
holds for a random walk in R2 with no drift), then this is further evidence to support
Conjecture 6.1.

As in Section 1, call a finite sequence Pθ
1, . . . ,P

θ
n ∈ Ψ an r-cycle (in Model 1)

if Pθ
i+1 is a stopping segment neighbour of Pθ

i for every i = 1, . . . , r, where
Pθ
r+1 := Pθ

1. Clusters in Model 1 are as earlier. It is easy to see that a.s. any fi-
nite cluster has exactly one cycle while any infinite cluster has at most one cycle.
The next result may be a first step towards proving Conjecture 6.1. Its proof is
similar to the proof of Theorem 5.1.

PROPOSITION 6.1. In Model 1, a.s. there is no infinite cluster with a cycle.

REMARK 6.1. We indicated in Section 1 that there exists at least a third pos-
sible interpretation of “growth-maximality” with respect to hard-core models; it is
variously called a Gilbert tessellation or crack growth process (see Schreiber and
Soja [16] for references). In this model a line-segment stops growing only in the
direction in which it is blocked; it is stopped in the other direction when it hits
another line-segment. Consequently, this model leads to a tessellation. Schreiber
and Soja [16] prove stabilization and a central limit theorem for the Gilbert model.

While the two ends of a line-segment act “independently” of each other in this
Gilbert model and that is clearly not the case for our Models 1 and 2, one can prove
the following result along the lines of Theorem 2.1 of [16]. Under P0

Φ let R0 denote
the radius of the (typical) line-segment centred at zero.

PROPOSITION 6.2. Consider a stationary marked planar Poisson process with
non-degenerate mark distribution Q0. Then there are α, β > 0 such that

P0
Φ{R0 > t} ¬ α exp(−βt2), t ­ 0.

In the general case the (Palm) mark distribution of Ψ is the probability measure
Q0 satisfying E

[
Ψ
(
d(P, ϑ)

)]
= λ dPQ0(dϑ). We then have the following weak

version of Proposition 6.2.

PROPOSITION 6.3. Let the process Ψ of Proposition 6.2 be ergodic, and sup-
pose that Q0 is diffuse. Then a.s. there exists no segment of infinite length, i.e.
P0
Φ{R0 <∞} = 1.

P r o o f. Let Ψ∗ := {Pθ ∈ Φ : R(Pθ,Ψ) =∞} ⊆ Ψ denote the marked point
process of line-segments of infinite length, where R(·, ·) refers to one of Models 1
and 2. Observe that {Ψ∗(X ) =∞} is an invariant event, so it has probability zero
or one; suppose for the sake of contradiction that it has full probability. Then there
is a random direction ϑ ∈ [0, π) such that all segments in Ψ∗ have this direction
(the presence of a second direction would contradict the hard-core property). Ψ is
ergodic, so ϑ is non-random, and hence Q0 has an atom at ϑ. This is impossible
for diffuse Q0. �
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For any P ∈ Φ, let C(P) ≡ C(Ψ,P) denote the cluster containing the line-
segment centred at P, and ν(P) ≡ ν(Ψ,P) be the number of neighbours of this
line-segment. For Model 1, let Z(P) denote the unique cycle ⊆ C(P) when
card

(
C(P)

)
<∞, else set Z(P) = ∅. For Model 2, let D(P) ⊆ C(P) denote the

doublet of C(P). In developing certain mean value formulae in the next two propo-
sitions we use

for Model 1, ϖr = P0
Φ{O ∈ Z(O), cardZ(O) = r},(6.1)

for Model 2, ϖ = P0
Φ{O ∈ D(O)},(6.2)

being the Palm probabilities that the line-segment through the origin O is an ele-
ment of an r-cycle for Model 1 or an element of a doublet for Model 2.

PROPOSITION 6.4. In Model 1, E0
Φν(O) = 2. In Model 2, E0

Φν(O) = 2−ϖ.

P r o o f. For P,Q ∈ Φ, let κ(P,Q) := 1 if Q is a stopping segment neigh-
bour of P, and κ(P,Q) := 0 otherwise. Let B := [0, 1]2. By the mass-transport
principle (see, e.g., Last [14], equation (3.44)) we have

(6.3) E
∫ ∫

1B(P)κ(P,Q)Φ(dQ)Φ(dP)

= E
∫ ∫

1B(Q)κ(P,Q)Φ(dP)Φ(dQ).

Because a.s. any line-segment has exactly one stopping neighbour, the left-hand
side above equals the intensity λ. For Model 1, the right-hand side equals

E
∫ ∫

1B(Q) [ν(Q)− 1]Φ(dQ) = λE0
Φ[ν(O)− 1],

implying the first result. We find the result for Model 2 by evaluating the right-hand
side of (6.1):

E
∫
1B(Q)1{Q ∈ D(Q)}ν(Q)Φ(dQ)

+ E
∫
1B(Q)1{Q /∈ D(Q)} [ν(Q)− 1]Φ(dQ)

= λE0
Φν(O)− λP0

Φ{O /∈ D(O)} = λE0
Φν(O)− λ(1− p). �

Because of the tree structure of any infinite cluster and by analogy with a
critical branching process, Proposition 6.4 provides further evidence supporting
Conjecture 6.1.

Let Φc :=
{
l
(
C(P)

)
: P ∈ Φ, card

(
C(P)

)
<∞

}
denote the stationary point

process of finite clusters, where l(A) denotes the lexicographic minimum of a fi-
nite set A ⊂ R2; let λc := E

[
cardΦc([0, 1]

2)
]

denote its intensity. Because finite
clusters are in one-one correspondence with cycles for Model 1 and doublets for
Model 2, Φc can equally well be called a point process of cycles or doublets. Then

µ := E
∫

[0,1]2
card

(
C(P)

)
Φc(dP)

can be interpreted as the mean size of the typical finite cluster.
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PROPOSITION 6.5. For Model 1 the mean size µ of the typical finite cluster is
given by

µ = P0
Φ{cardC(O) <∞}

( ∞∑
r=3

ϖr

r

)−1
and in Model 2 by µ = 2/ϖ = (ϖ/2)−1, where ϖr and ϖ are defined in (6.1) and
(6.2), respectively.

P r o o f. Consider Model 1. For P,Q ∈ Φ let κ(P,Q) :=
(
cardZ(P)

)−1 if
P ∈ Z(P) and Q = l

(
Z(rP )

)
, and κ(P,Q) := 0 otherwise. Then the left-hand

side of (6.3) equals

λE0
Φ1{O ∈ Z(O)}card

(
Z(O)

)−1
= λ

∞∑
n=3

ϖr

r
,

and the right-hand side equals λc = EΦc([0, 1]
2) because this intensity is the

same as the intensity of the cycles. Since µ is the quotient of the intensity of
all points in finite clusters and the intensity λc, and the first intensity is given by
λP0

Φ{cardC(O) <∞}, the first result follows.
The result for Model 2 follows by the same argument, as the intensity of clus-

ters is given by λϖ/2, and by Theorem 5.1 there are no infinite clusters. �

Last and Penrose [15] established various properties for the standard lilypond
model in Rd, notably stabilizing properties, a central limit theorem and frog per-
colation. We believe that analogous results should be available for both Models 1
and 2 for line-segments, more easily for Model 2 because the techniques they used
should continue to be applicable. A major task in adapting their proofs is to find
an upper bound on the length of a given line-segment as this may then be used to
replace the nearest-neighbour distance which they used as an upper bound on the
radius of a given hypersphere.

7. APPENDIX: FINDING LINE-SEGMENT LENGTHS FOR FINITELY MANY POINTS

We give here algorithmic descriptions of Model1 and (much more briefly) Mod-
el 2. The algorithmic strategy is similar to that in Daley et al. [6]: use a sequence
of lower bounds on Ri to find the earliest time at which the line Li must cease
growing. The algorithm is generally applicable to a finite marked point set PΘ.

Given a point Pi0 with index i0, the aim is to identify a chain of line-segments
with midpoints Pi0 , . . . ,Pin+r with indices i0, i1, . . . , in, . . . , in+r for which, for
t = 0, . . . , n + r − 1, Lit stops growing when it touches Lit+1 , and Lin+r stops
growing when it touches Lin+1 (the chain ends in an r-cycle), and Rit = dit,it+1 .
The indices are identified sequentially, but we must allow for the possibility that
one Lit grows forever; further, en route from Pit while Pit+1 is being found, there
may be branch chains with indices j1, j2, . . .

In fact, Algorithm A.1 below determines all Ri for a given finite set PΘ. It
is more efficient and more informative about the structure of a system of line-
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segments and was used to generate data underlying Figure 1. Figure 2 was gener-
ated much more recently.

Figure 1. All lilypond line-segments grown through 41 Poisson distributed points

We have already noted above (2.3) that because Li stops growing by hitting
another line-segment Lj say, and hence at the intersection point Pij as in Exam-
ple 2.1, Ri must be one of the half-lengths in the set Di defined in (2.3), implying
that Ri ­ infDi provided Di is nonempty, else Ri =∞. If Ri = dij , then as well
as dij ∈ Di the line Lj must have grown at least to Pij , so Rj > dji. Combining
these two facts implies that {Ri} must satisfy the fixed-point relation

(7.1) Ri = inf{dij : dij > dji and Rj > dji}.

Define J(i) = arg inf{dij : dij > dji and Rj > dji}. Then Ri = di,J(i), and in
terms of the chain i0, . . . , in+r introduced earlier, J(it) = it+1 for t = 0, . . . , n+
r − 1 and J(in+r) = in+1. [We digress momentarily to Model 2, for which Di in
(2.3) is replaced by the larger set D(2)

i = {mij : j ̸= i} and (7.1) becomes

(7.2) Ri = inf
{
mij = max{dij , dji} : j ̸= i and Rj ­ dji

}
.]

Suppose elements i0, . . . , it of the chain are known; to identify J(it) = it+1

say, we exploit variants of (7.1) and the function J(·). Write i = it and ‘approxi-
mate’ both Ri and J(i) via lower bounds R̃j = infDj and ‘trial’ elements J̃q =

arg infDJ̃q−1
for q = 1, 2, . . . , with J̃0 = i; strictly, J̃q = J̃q(i). As the ‘solution’

evolves, the various sets Dj may contract (as potential solutions dij are rejected
because Rj < dji) and the branch chain J̃0, J̃1, . . . , apart from J̃0 = i, may also
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change until Ri is determined. The steps below yield both the chain i0, . . . , in+r

and the cycle length r.

Figure 2. Model 2 version of Figure 1

ALGORITHM A.1. Let the index i = i0 of some point Pi0 be given; we seek
the chain i0, i1, . . . as above, ending either with an infinite line or an r-cycle for
some r that is also to be found. Set t = 0.

STEP 1. Set q = 0, J̃0 = i := it, and construct the range-set for Ri, namely
Di = {dij : dij > dji}.

STEP 2. If DJ̃q
is empty, go to 6.4. Otherwise, identify the possible stopping

index J̃q+1 := arg infDJ̃q
and lower bound R̃J̃q

= dJ̃q J̃q+1
; set q → q + 1.

2.1. If q = 1, construct (next) DJ̃q
and repeat Step 2.

STEP 3. If DJ̃q
known, go to 3.2; otherwise, construct it.

3.1. Identify J̃q+1 := arg infDJ̃q
, set R̃J̃q

= infDJ̃q
= dJ̃q J̃q+1

, go to Step 4.

3.2. If RJ̃q
known, go to Step 5; otherwise, go to Step 4.

STEP 4 (Weak test). If R̃J̃q
< dJ̃q J̃q−1

, then set q → q + 1, construct DJ̃q
and

return to 3.1.
4.1. Otherwise, R̃J̃q

> dJ̃q J̃q−1
so that RJ̃q−1

is found; set q → q − 1 and go
to Step 6.

STEP 5 (Strong test). If RJ̃q
< dJ̃q J̃q−1

, delete dJ̃q−1J̃q
from DJ̃q−1

, q → q− 1

and return to Step 2.
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5.1. Otherwise, RJ̃q
> dJ̃q J̃q−1

so that RJ̃q−1
is found; set q → q − 1 and go

to Step 6.
STEP 6. If q ­ 1, return to Step 5.
6.1. Otherwise, Rit = dJ̃0J̃1 is found. If t = 0 or 1, go to 6.3.

6.2. If J̃1 = it+1−u for some u = 3, 4, . . . , t, then u =: the cycle length r and
Exit. Otherwise, go to 6.3.

6.3. Set it+1 = J̃1 =: J(it), set t → t + 1, and return to Step 1 with new
i = it.

6.4. Rit =∞ and no cycle. Exit.

ALGORITHM A.2. To find {Ri} in Model 2, use the steps of Algorithm A.1 but
with (cf. (7.1) and (7.2)) dij replaced by mij = max{dij , dji} and Di by D

(2)
i :=

{mij : j ̸= i}, as appropriate.

We constructed Figures 1 and 2 using the algorithm described above for deter-
mining all Ri for a given finite set PΘ in which P0 is at the origin, L0 is aligned
with the x-axis, Pθ

1, . . . ,P
θ
n are the n points closest to the origin of a simulated

unit-rate marked planar Poisson process and the directions are i.i.d. r.v.s uniform on
(0, π), so that Condition D is met a.s. (see Section 4). In this case the algorithm can
be used for the purpose of simulating characteristics of a family of line-segments
under a Palm distribution for PΘ.

We estimated the Palm distribution of a half-line segment Ri in Model 1 by
simulation. Arguably, it is not Ri but πR2

i that should be used as a measure of the
‘space’ occupied by a line-segment. This is borne out by the closeness of the tail of
this distribution to that of the tails of the ‘volume’ of hyperspheres in the standard
lilypond germ-grain models in Rd (see Figure 6 in Daley et al. [6]). The approxi-
mate commonality of these distributions is presumably attributable to the facts that
(1) the ‘germs’ {Pi} come from a stationary Poisson process in the ‘host’ space,
and (2) the ‘grains’ grow ‘maximally’ as shown by the fixed-point equations (here,
equations (7.1) and (7.2) and, for the radii ri of hyperspheres in Rd in standard
models,

(7.3) ri = sup{x : x+ rj ¬ d(Pi,Pj) (all j ̸= i)},

the solution of which satisfies di := infj ̸=i{d(Pi,Pj)} ­ ri ­ 1
2di as in [6]).
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mers University, Göteborg; she noted the existence of cycles in what is our
Model 1. His subsequent work was done in part while visiting the Mittag-Leffler
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