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A MAXIMAL INEQUALITY FOR STOCHASTIC INTEGRALS∗

BY
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Abstract. Assume that X is a càdlàg, real-valued martingale starting
from zero, H is a predictable process with values in [−1, 1] and Y =

∫
HdX.

This article contains the proofs of the following inequalities:
(i) If X has continuous paths, then

P(sup
t­0

Yt ­ 1) ¬ 2E sup
t­0

Xt,

where the constant 2 is the best possible.
(ii) If X is arbitrary, then

P(sup
t­0

Yt ­ 1) ¬ cE sup
t­0

Xt,

where c = 3.0446... is the unique positive number satisfying the equation
3c4 − 8c3 − 32 = 0. This constant is the best possible.
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1. INTRODUCTION

Since the classical works of Kolmogorov, Hardy, Littlewood, Wiener and Doob
from the first half of the twentieth century, maximal inequalities have played an im-
portant role in probability and analysis. The purpose of this paper is to establish
sharp versions of some weak-type inequalities arising in the context of stochastic
integrals with respect to càdlàg martingales.

Let (Ω,F ,P) be a probability space and (Ft)t­0 be a filtration satisfying the
usual conditions, i.e., it is right-continuous and Ft is complete for every t­ 0.
Let (Xt)t­0 be an adapted, càdlàg, real-valued martingale starting from zero and
let (Ht)t­0 be a predictable process with values in [−1, 1]. We put Yt =

∫ t

0
HsdXs

and X∗t = sups¬tXs for all t ­ 0. We will also use the notation X∗ = supt­0Xt

and, analogously, |X|∗ = supt­0 |Xt|. Furthermore, ⟨X⟩will stand for the quadrat-
ic covariance process of X; see Dellacherie and Meyer [8] for the definition and
some basic properties of this object.

∗ Research supported in part by the NCN grant DEC-2014/14/E/ST1/00532.
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Various inequalities between X and Y satisfying the above assumptions have
been studied intensively in the literature. For example, Burkholder proved (see [6])
the sharp bound on the Lp-norm, i.e.,

(1.1) sup
t­0

(E|Yt|p)1/p ¬ max

(
p− 1,

1

p− 1

)
sup
t­0

(E|Xt|p)1/p , 1 < p <∞,

and the corresponding weak-type inequality for 1 ¬ p ¬ 2:

(1.2) P(|Y |∗ ­ 1) ¬ 2

Γ(p+ 1)
sup
t­0

E|Xt|p.

When p ­ 2, the corresponding sharp estimate was established by Suh [15]:

P(|Y |∗ ­ 1) ¬ pp−1

2
sup
t­0

E|Xt|p.

For an overview of results in this direction, consult [16] or the monograph [12] and
the references therein; see also [1]–[4], [9], [10] for applications in the study of
various classes of Fourier multipliers.

There exist also maximal versions of the above estimates. In [7] Burkholder
proved the sharp inequality

sup
t­0

E|Yt| ¬ cE|X|∗,

which can be regarded as a substitute of (1.1) for p = 1. Here c = 2.536... is the
unique solution of the equation

c− 3 = − exp

(
1− c

2

)
.

If X is assumed to be nonnegative, then the optimal constant decreases to 2 +
(3e)−1 = 2.1226..., see Osękowski [11]. The paper [14] contains the proof of a
one-sided maximal version of (1.2), i.e.,

(1.3) P(|Y |∗ ­ 1) ¬ cEX∗,

and identifies the best absolute constant c in this inequality. It is equal to−1/h(1)=
3.4779..., where h is the solution of the equation

2(1− y)(2− y)h′′(y) + (3− 2y)h′(y) + h(y) = 0,

with the initial conditions h(0) = −1 and h′(0) = 1.
The proofs of all the above inequalities were carried out by using the same

general technique, invented by Burkholder (cf. [7]), and its modifications. This
method relies on coming up with a special function satisfying certain majorization
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and concavity conditions and then deducing the estimate from the existence of
such a function. More information on this topic can be found in [12] and [13].
In the present article we will employ the same method to prove a modification of
(1.3) where we bound P(Y ∗ ­ 1) instead of P(|Y |∗ ­ 1). We will consider both
the case where X has continuous paths and the case without this assumption. We
will also deal with the case where the process (X,Y ) starts from an arbitrary point
(x, y) ∈ R2 rather than from (0, 0). The precise formulation is given in the two
theorems below.

THEOREM 1.1. Assume that X is a continuous, real-valued martingale start-
ing from zero, H is a predictable process with values in [−1, 1] and Y =

∫
HdX .

Then

(1.4) P(Y ∗ ­ 1) ¬ 2EX∗,

and the constant 2 is the least possible. Moreover, if for any x, y ∈ R we define
X ′t = x+Xt and Y ′t = y + Yt, then

(1.5) P
(
(Y ′)∗ ­ 1

)
¬ 2E(X ′)∗ + U(x, y, x),

where U is given in Section 2.1 below.

Notice that while (1.4) follows immediately from what is proven in [14], the
inequality (1.5) is a new result.

THEOREM 1.2. Assume that X is a càdlàg, real-valued martingale starting
from zero, H is a predictable process with values in [−1, 1] and Y =

∫
HdX .

Then

(1.6) P(Y ∗ ­ 1) ¬ cEX∗,

where c = 3.0446... is the unique positive number satisfying 3c4 − 8c3 − 32 = 0.
The constant is the best possible. Moreover, if for any x, y ∈ R we define X ′t =
x+Xt and Y ′t = y + Yt, then

(1.7) P
(
(Y ′)∗ ­ 1

)
¬ cE(X ′)∗ + U(x, y, x),

where U is given in Section 3.2 below.

Both (1.6) and (1.7) are novel results.
The reminder of the article is split into two parts. In the next section we study

the continuous case and establish Theorem 1.1. The final part of the paper is de-
voted to the proof of Theorem 1.2.

2. CONTINUOUS CASE

2.1. A special function. The primary goal of this section is to study the in-
equality

P(Y ∗ ­ 1) ¬ 2EX∗.
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As we have already mentioned in the previous section, it follows directly from
(1.3), but our analysis will provide an additional insight, which will lead to impor-
tant extensions. Using a standard stopping time argument (see, e.g., [14]), we see
that the above bound follows from the estimate

P(Yt ­ 1) ¬ 2EX∗t , t ­ 0.

The latter bound can be rewritten in the equivalent form

(2.1) EV (Xt, Yt, X
∗
t ) ¬ 0, t ­ 0,

where V : R3 → R is given by V (x, y, z) = 1{y­1} − 2(x ∨ z). As shown by
Burkholder (cf. [7]), the maximal inequality of this type can be deduced from the
existence of a special function, enjoying certain majorization and concavity prop-
erties. To introduce this special object, we need some extra notation.

Let D = {(x, y, z) ∈ R3 : x ¬ z}. We divide D into three parts:

D1 = {(x, y, z) ∈ D : 1− y ¬ z − x},
D2 = {(x, y, z) ∈ D : 1− y > z − x and 1− y + z − x > 1},
D3 = {(x, y, z) ∈ D : 1− y > z − x and 1− y + z − x ¬ 1}.

We see that Di are pairwise disjoint and their union is D.
Introduce a function U : D → R by the formula

U(x, y, z) =


1− 2z for (x, y, z) ∈ D1,

−2z + 2(z−x)
z−x+1−y for (x, y, z) ∈ D2,

1− 2z − (1− y + x− z)(1 + y + x− z) for (x, y, z) ∈ D3.

Later on, we will need the following properties of U :

LEMMA 2.1. U satisfies the following conditions:
1. U is continuous.
2. U(x, y, z) ­ V (x, y, z) for all (x, y, z) ∈ D.
3. For all (x, y, z)∈D and H ∈ [−1, 1] the function fx,y,z,H : (−∞, z−x]

→ R given by
fx,y,z,H(t) = U(x+ t, y +Ht, z)

is concave.
4. U is nonincreasing in z.
5. U(0, 0, 0) = 0.

P r o o f. This is elementary. Let us handle each property separately below.
1. It is obvious that U is continuous in the interior of every Di, so it is enough

to check that the formulas for U match on the boundaries. This simple check is left
to the reader.
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2. In D1 we have U(x, y, z) = 1− 2z ­ 1{y­1} − 2z = V (x, y, z). In D2 we
have V (x, y, z) = −2z and U(x, y, z)>−2z because both z−x and z− x+1− y
are positive. In D3 we have (1− y + x− z)(1 + y + x− z) ¬ (1 + x− z)2 ¬ 1,
so we get

V (x, y, z) = −2z ¬ 1− 2z − (1− y + x− z)(1 + y + x− z) = U(x, y, z).

3. Notice that U is smooth in the interior of each Di. First we will check
that f ′′(t) ¬ 0 if (x + t, y + Ht, z) belongs to the interior of some Di. Since
fx,y,z,H(t+ s) = fx+t,y+Ht,z,H(s) for all s, t, it suffices to check the sign of f ′′(0).
To simplify calculations we will perform a change of variables. Fix z. Let Ū :
{(u, v) ∈ R2 : u + v ­ 0} → R be given by the formula Ū(u, v) = 1 − 2z +
min

(
0, (u/v)

(
1− (v − 1)21{v¬1}

))
(this minimum equals zero for u ­ 0 only).

If we put u = z − x − 1 + y, v = z − x + 1 − y, then we will have Ū(u, v) =
U(x, y, z). Therefore, f(t) = Ū

(
u− (1−H)t, v − (1 +H)t

)
. This means that

f ′′ = a2Ū ′′uu + 2abŪ ′′uv + b2Ū ′′vv,

where a = −(1−H), b = −(1 +H). Simple calculation shows that this expres-
sion is nonpositive for any a, b ¬ 0.

So, to complete the verification of the concavity of f , we need to check that

f ′x,y,z,H(0−) ­ f ′x,y,z,H(0+)

for all (x, y, z) on a common boundary of Di and Dj , i ̸= j. A little calculation
shows that on the boundary between D2 and D3 left and right derivatives of f at
zero are equal:

f ′(0−) = −(1−H) + u(1 +H) = f ′(0+).

On the boundary between D1 and D2 ∪D3 the inequality f ′(0−) ­ f ′(0+) follows
from the fact that the minimum of two concave functions is concave.

4. Since U is continuous, it suffices to check the sign of U ′z inside D1, D2

and D3. In D1 we have U ′z = −2 ¬ 0. In D2 we have

U ′z =
2(1− y)

(z − x+ 1− y)2
− 2.

Notice that 1− y ¬ 1− y + z − x < (1− y + z − x)2, so U ′z < 0. In D3 we have
U ′z = −2(z − x) ¬ 0.

5. This is trivial. �

The proof of (1.4) will rest on the application of Itô’s formula to the process(
U(Xt, Yt, X

∗
t )
)
t­0.
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At the first glance, this operation is not permitted as U does not have the necessary
smoothness; to overcome this difficulty, we use a standard mollification argument.
Let g : R3 → [0,∞) be a C∞-function such that

suppg ⊂ B(0, 1) and
∫

B(0,1)

g = 1.

Next, for any δ > 0, consider the function U δ : {(x, y, z) ∈ R3 : x ¬ z + δ} → R
given by

U δ(x, y, z) =
∫

B(0,1)

U(x− δu, y − δv, z + 3δ − δw)g(u, v, w)dudvdw.

Analogously, we define

V δ(x, y, z) =
∫

B(0,1)

V (x− δu, y − δv, z + 3δ − δw)g(u, v, w)dudvdw.

We immediately see that U δ inherits most of the properties of U . We formulate
the list of conditions in a separate statement.

LEMMA 2.2. The function U δ satisfies the following conditions:
1. U δ is of class C∞.
2. U δ(x, y, z) ­ V δ(x, y, z) for x ¬ z + δ.
3. For all x ¬ z + δ and |H| ¬ 1 the function fx,y,z,H,δ : (−∞, z − x + δ]

given by
fx,y,z,H,δ(t) = U δ(x+ t, y +Ht, z)

is concave.
4. U δ is nonincreasing in z.
5. limδ→0+ U δ(x, y, z) = U(x, y, z) for all (x, y, z) ∈ D.

We leave the straightforward proof to the reader.

2.2. Proof of (1.4) and (1.5). Introduce the process Zt = (Xt, Yt, X
∗
t ), t ­ 0.

The Itô formula states that U δ(Zt) = U δ(0, 0, 0) + I1 + I2 + I3 + I4, where

I1 =
t∫
0

U δ
x(Zs)dXs +

t∫
0

U δ
y (Zs)dYs,

I2 =
t∫
0

U δ
z (Zs)dX

∗
s ,

I3 =
1

2

t∫
0

U δ
xx(Zs)d⟨X⟩s +

t∫
0

U δ
xy(Zs)d⟨X,Y ⟩s +

1

2

t∫
0

U δ
yy(Zs)d⟨Y ⟩s,

I4 =
t∫
0

U δ
xz(Zs)d⟨X,X∗⟩s+

t∫
0

U δ
yz(Zs)d⟨Y,X∗⟩s+

1

2

t∫
0

U δ
zz(Zs)d⟨X∗⟩s.
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Let us study the terms I1, I2, I3 and I4. We know that

EI1 = E
t∫
0

U δ
x(Zs)dXs + E

t∫
0

U δ
y (Zs)dYs = 0

because X and Y are martingales. Next,

I2 =
t∫
0

U δ
z (Zs)dX

∗
s ¬ 0

because it is an integral of a nonpositive function with respect to a nondecreasing
process. We have Y =

∫
HdX , so

I3 =
1

2

t∫
0

U δ
xx(Zs)d⟨X⟩s+

t∫
0

U δ
xy(Zs)Hsd⟨X⟩s+

1

2

t∫
0

U δ
yy(Zs)H

2
sd⟨X⟩s

=
1

2

t∫
0

(
U δ
xx(Zs) + 2U δ

xy(Zs)Hs + U δ
yy(Zs)H

2
s

)
d ⟨X⟩s.

When s is fixed, the expression under the sign of the integral is the second deriva-
tive of

u 7→ U δ(Xs + u, Ys + uHs, X
∗
s ),

which is concave. Therefore,

U δ
xx(Zs) + 2U δ

xy(Zs)Hs + U δ
yy(Zs)H

2
s ¬ 0

and the whole integral is nonpositive. Lastly, I4 = 0 because X∗ has finite varia-
tion. Thus, we end up with EU δ(Xt, Yt, X

∗
t ) ¬ U δ(0, 0, 0). Moreover,

V δ(x, y, z) ­ 1{y­1+δ} − 2z − 8δ,

so

EU δ(Xt, Yt, X
∗
t ) ­ EV δ(Xt, Yt, X

∗
t )

­ E(1{Yt­1+δ} − 2X∗t − 8δ) = P(Yt ­ 1 + δ)− 2EX∗t − 8δ.

Now let δ go to zero. We have U δ(0, 0, 0) → U(0, 0, 0) = 0, so putting all the
above facts together yields

P(Yt > 1)− 2EX∗t ¬ 0.

To end the proof take any ϵ > 0. Notice that the process (1 + ϵ) ·X also sat-
isfies the assumptions of Theorem 1.1 and

∫
Hd

(
(1 + ϵ)X

)
= (1 + ϵ)

∫
HdX =

(1 + ϵ)Y . Therefore,

P(Yt ­ 1) ¬ P
(
Yt(1 + ϵ) > 1

)
¬ 2(1 + ϵ)EX∗t .
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Since ϵ was arbitrary, this gives P(Yt ­ 1) ¬ 2EX∗t , and the proof of (1.4) is now
complete.

In order to prove (1.5) we conduct the same reasoning as above. The Itô for-
mula yields

EV δ
(
X ′t, Y

′
t , (X

′)∗t
)
¬ EU δ

(
X ′t, Y

′
t , (X

′)∗t
)
¬ U δ

(
X ′0, Y

′
0 , (X

′)∗0
)
= U δ(x, y, x),

and letting δ → 0 gives

P(Y ′t > 1) ¬ 2E(X ′)∗t + U(x, y, x).

Then we take the processes (1 + ϵ) ·X ′ and (1 + ϵ) · Y ′ to find out that

P(Y ′t ­ 1) ¬ P
(
Y ′t (1 + ϵ) > 1

)
¬ 2(1 + ϵ)E(X ′)∗t + U

(
(1 + ϵ)x, (1 + ϵ)y, (1 + ϵ)x

)
,

which converges to 2E(X ′)∗t + U(x, y, x) as ϵ→ 0. This completes the proof.

2.3. Sharpness of the inequality. Let n be an arbitrary positive integer and let
W be a standard Wiener process. We define stopping times τ, σ, ρ by

τ = inf

{
t > 0 : Wt =

1

2n

}
, σ = inf

{
t > 0 : Wt = −

1

2

}
,

ρ = inf{t > σ : Wt = 0}.

Let Xt = Wt∧τ∧ρ and let Ht = −1 for 0 ¬ t ¬ σ and Ht = 1 for t > σ.
The above definition implies that the pair (X,Y ) evolves as follows: it starts

from (0, 0) and moves along the line of slope −1 until X gets to 1/(2n) or to
−1/2. If the first case occurs (the probability of this event is n/(n+ 1)), it stops.
In the other case the pair starts moving along the line of slope 1 and stops only if it
reaches (0, 1).

The value of Yt =
∫ t

0
HsdXs for 0 ¬ t ¬ σ is Yt = −Xt, and for σ < t we

have Yt = 1 +Xt. Hence P(Y ∗ ­ 1) = 1
n+1 and EX∗ < 1

2n , so

P(Y ∗ ­ 1)

EX∗
>

2n

n+ 1
→ 2.

This shows that the constant 2 cannot be improved.

3. GENERAL CASE

3.1. An alternative discrete-time setup. We will study the inequalities (1.6)
and (1.7) in a slightly different, discrete-time context. Let (Xn)n∈N be a martingale
with respect to (Fn)n∈N, starting from zero and let dX = (dXn)n­0 be the differ-
ence sequence of X given by dX0 = X0 = 0 and dXn = Xn −Xn−1 for n ­ 1.
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Then the one-sided maximal function of X is given by X∗ = supk­0Xk, and its
truncated version is defined by the equality X∗n = max0¬k¬nXk, n = 0, 1, 2, . . .
Let (Hn)n­0 be a predictable sequence of variables with values in [−1, 1]; here
by predictability we mean that for all n the variable Hn is F(n−1)∨0-measurable.
A martingale Y = (Yn)n­0 is the transform of X by H if for any n ­ 0 we
have the equality dYn = HndXn; alternatively, Y is given by the identity Yn =∑n

k=0HkdXk, n = 0, 1, 2, . . . We will prove that for all n = 0, 1, 2, . . .

(3.1) P(Yn ­ 1) ¬ cEX∗n,

where c is defined in Theorem 1.2. By a usual stopping time argument, this yields

P(Y ∗ ­ 1) ¬ cEX∗.

Now, there is a standard argument showing that the above bound implies (1.6):
see the paper [7], in which it is shown how the results of Bichteler [5] allow the
deduction of various inequalities for stochastic integrals from their counterparts in
the above discrete-time setting.

3.2. Definition and properties of the special function. The reasoning is similar
to that used in the preceding section, but this time the calculations will be much
more elaborate. Let V : R3 → R be given by V (x, y, z) = 1{y­1} − c(x ∨ z). We
see that (3.1) is equivalent to

EV (Xn, Yn, X
∗
n) ¬ 0, n ∈ N.

Let D = {(x, y, z) ∈ R3 : x ¬ z}. We divide D into five parts (see Figure 1):

D1 = {(x, y, z) ∈ D : y ­ 1− z + x},

D2 =

{
(x, y, z) ∈ D : y < 1− (z − x) and y < 1− 4

c
+ z − x

}
,

D3 =

{
(x, y, z) ∈ D : 1− 4

c
+ z − x ¬ y < z − x and y < 1− 8

3c
+

z − x

3

}
,

D4 =

{
(x, y, z) ∈ D : 3− 8

c
− z + x ¬ y < 1− z + x and y­1− 8

3c
+
z − x

3

}
,

D5 =

{
(x, y, z) ∈ D : z − x ¬ y < 3− 8

c
− z + x

}
.

We see that Di are pairwise disjoint and their union is D.
The following special function U : R3 → R will be crucial in the proof of the

inequality (3.1):

U |D1(x, y, z) = −cz + 1,

U |D2(x, y, z) = −cz +
2(z − x)

z − x+ 1− y
,
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Figure 1. The set D intersected with the plane z = z0. Coordinates of the intersection points
are the following: P1 = (z0, 1), P2 = (z0, 1 − 4/c), P3 = (z0 − 2/c, 1 − 2/c),

P4 = (z0, 3 − 8/c), P5 = (z0, 0), P6 = (z0 − 1.5 + 4/c, 1.5 − 4/c)

U |D3(x, y, z) = −cz −
c

4
(z − x)

(
6c(z − x+ 1− y)− 16

)1/3
+ c(z − x),

U |D4(x, y, z) = −cz +
1

16

(
8− 3c(1− y − z + x)

)1/3(
8− 3c(1− y − z + x)

− 8c(z − x)
)
+ c(z − x),

U |D5(x, y, z) = −cz +
c2

4
(6c− 16)−2/3

(
y2 − (z − x)2

)
− c

4
(6c− 16)1/3(z − x) + c(z − x),

U |R3\D(x, y, z) = U(x, y, x).

LEMMA 3.1. The function U satisfies the following conditions:
1. U is continuous.
2. U(x, y, z) = U(x+ t, y, z + t) + ct for all (x, y, z) ∈ R3 and t ∈ R.
3. For all (x, y, z) ∈ D and |H| ¬ 1 the function fx,y,z,H : (−∞, z − x]→R

given by
fx,y,z,H(t) = U(x+ t, y +Ht, z)

is concave.
4. U(x, y, z) ­ V (x, y, z) for all (x, y, z) ∈ D.

P r o o f. Essentially, the proof requires only some straightforward calculation.
1. It is clear that U is continuous in the interior of each Di, so it suffices to

check that the formulas match each other on the boundaries of Di’s. One easily
verifies that this is indeed the case.
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2. It is easy to see that U is a sum of −cz and some function depending only
on x− z and y.

3. Notice that U is smooth in the interior of each Di and

f ′ = U ′x +HU ′y, f ′′ = U ′′xx + 2HU ′′xy +H2U ′′yy.

First we will check that f ′′(t) ¬ 0 if (x + t, y +Ht, z) belongs to the interior of
some Di. Since fx,y,z,H(t+ s) = fx+t,y+Ht,z,H(s) for all s, t, it suffices to check
the sign of f ′′(0). If (x, y, z) ∈ intD1, then f ′′(0) = 0 since f is locally constant.
If (x, y, z) ∈ intD2, then

f ′′(0) =
4(1 +H)

(
H(z − x)− (1− y)

)
(z − x+ 1− y)3

.

It is nonpositive because H(z− x)− (1− y) ¬ z− x− (1− y) < 0. If (x, y, z) ∈
intD3, then

f ′′(0) = 2c2(1 +H)
(H − 2)c(z − x)− 3c(1− y) + 8(

6c(z − x+ 1− y)− 16
)5/3 .

It is not greater than zero since 1− y >
(
8− c(z − x)

)
/(3c). If (x, y, z) ∈ intD4,

then

f ′′(0) =
c2

4
(H − 1)

(H + 3)
(
8− 3c(1− y)

)
+ (7H + 5)c(z − x)(

8− 3c(1− y − z + x)
)5/3 .

In the interior of D4 we have 1 − y <
(
8 − c(z − x)

)
/(3c), so this derivative is

nonpositive. Finally, if (x, y, z) ∈ intD5, then

f ′′(0) = c2/2(6c− 16)−2/3(H2 − 1) ¬ 0.

To complete the proof of concavity of f , we have to check that

f ′x,y,z,H(0−) ­ f ′x,y,z,H(0+)

for each (x, y, z) that lies on a common boundary of Di and Dj , i ̸= j. On the
boundary between D1 and D2 we have

f ′(0+) =
2
(
H(z − x)− (1− y)

)
(z − x+ 1− y)2

¬ 0 = f ′(0−).

On the boundary between D2 and D3, given by 1− y = x− z + 4/c, we have

f ′(0−) =
c

8

(
(1 +H)c(z − x)− 4

)
= f ′(0+).
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Between the sets D3 and D4 we have

f ′(0) =
c

2

(
4c(z − x)

)−2/3
(3 +H)c(z − x)− c,

and between D1 and D4 the right derivative is

f ′(0+) =
c

16

(
2(1−H)c(z − x) + (1 +H)8

)
− c ¬ 0 = f ′(0−).

Finally, when we consider the set D5, which borders only with D3 and D4, we
calculate that

f ′(0) =
c

2
(6c− 16)−2/3

(
(1 +H)c(z − x) + 3c− 8

)
on the boundary with D3 and

f ′(0) =
c

2
(6c− 16)−2/3

(
(1 +H)(3c− 8) + (1−H)c(z − x)

)
on the boundary with D4.

4. In the previous point we have proved that U is nonincreasing in x. There-
fore, it is enough to check the inequality V (x, y, z) ¬ U(x, y, z) for x = z. So, for
y < 0 we have U(z, y, z) = −cz = V (z, y, z). For y ∈ [0, 3− 8/c) we have

U(z, y, z) =
c2

4
(6c− 16)−2/3y2 − cz ­ −cz = V (z, y, z).

For 3− 8/c ¬ y < 1 it is true that

U(z, y, z) =
1

16

(
8− 3c(1− y)

)4/3−cz­ 1

16
(6c− 16)4/3−cz­−cz=V (z, y, z).

Finally, for y ­ 1 we have U(z, y, z) = 1− cz = V (z, y, z). �

LEMMA 3.2. Take any (x, y, z) ∈ D and |H| ¬ 1. The function fx,y,z,H :
R→ R given by fx,y,z,H(t) = U(x+ t, y +Ht, z) has the following property:

(3.2) fx,y,z,H(0) + tf ′x,y,z,H(0−) ­ fx,y,z,H(t)

for all t ∈ R.

P r o o f. R e d u c t i o n 1. If t ¬ z − x, then (3.2) follows trivially from con-
dition 4 in Lemma 3.1. Indeed, setting f := fx,y,z,H , we know that f ′ is nonin-
creasing (on the set where f ′ is well defined), so for t > 0 we have

f(t)− f(0) =
t∫
0

f ′(s)ds ¬
t∫
0

f ′(0−)ds = tf ′(0−).
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Similarly, for t > 0 we have

f(0)− f(−t) =
0∫
−t

f ′(s)ds ­
0∫
−t

f ′(0−)ds = tf ′(0−).

Therefore, the nontrivial part of Lemma 3.2 is for t > z − x.
R e d u c t i o n 2. It is enough to prove (3.2) for z = x. Indeed, if z > x and

t > z − x, then

fx,y,z,H(0) + tf ′x,y,z,H(0−)

= fx,y,z,H(0) + (z − x)f ′x,y,z,H(0−) +
(
t− (z − x)

)
f ′x,y,z,H(0−)

­ fx,y,z,H(z − x) +
(
t− (z − x)

)
f ′z,y+H(z−x),z,H(0−)

= fz,y+H(z−x),z,H(0) +
(
t− (z − x)

)
f ′z,y+H(z−x),z,H(0−),

so it is enough to prove f(0) + tf ′(0−) ­ f(t) for z = x.
R e d u c t i o n 3. Condition 2 in Lemma 3.1 tells us that it is enough to study

the case x = z = 0. We put f = f0,y,0,H , B(y) = U(0, y, 0) and bH(y) = f ′(0−).
We have

f(t) = U(t, y +Ht, 0) = U(t, y +Ht, t) = U(0, y +Ht, 0)− ct

= B(y +Ht)− ct.

With this notation, (3.2) is equivalent to

(3.3) t
(
bH(y) + c

)
­ B(y +Ht)−B(y).

The formulas for B and bH are as follows:

B(y) =


1 for y ­ 1,
1
16

(
8− 3c(1− y)

)4/3 for 3− 8
c ¬ y < 1,

c2

4 (6c− 16)−2/3y2 for 0 ¬ y < 3− 8
c ,

0 for y < 0

and

bH(y) =



0 for y ­ 1,

c
4

(
8− 3c(1− y)

)1/3
(1 +H)− c for 3− 8

c ¬ y < 1,

c2

2 (6c− 16)−2/3Hy + c
4(6c− 16)1/3 − c for 0 ¬ y < 3− 8

c ,

c
4

(
6c(1− y)− 16

)1/3 − c for 1− 4
c ¬ y < 0,

− 2
1−y for y < 1− 4

c .

R e d u c t i o n 4. It suffices to show (3.3) for H = 1. Notice that B is non-
decreasing, therefore B(y + Ht) − B(y) ¬ 0 for H ¬ 0. Moreover, notice that
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bH(y) ­ −c for all y. Hence for H ¬ 0 we can write t
(
bH(y) + c

)
­ 0 ­

B(y +Ht)−B(y). Now suppose we have successfully proved the estimate

(3.4) t
(
b1(y) + c

)
­ B(y + t)−B(y)

(which is (3.3) for H = 1) and take any H ∈ (0, 1]. We can check that for each y
the inequality H

(
b1(y) + c

)
¬ bH(y) + c holds. This implies

t

H

(
bH(y) + c

)
­ t

(
b1(y) + c

)
­ B(y + t)−B(y),

and by replacing t with Ht we obtain t
(
bH(y) + c

)
­ B(y +Ht) − B(y). The

above reasoning justifies that it is enough to show (3.3) for H = 1.
The rest of the proof of Lemma 3.2 relies on checking the validity of (3.4) for

all y. This will be done in four cases:
1. y ­ 1,
2. 3− 8

c ¬ y < 1,
3. 0 ¬ y < 3− 8

c ,
4. y < 0.

There will also be subcases depending on which of the intervals contains the value
of y + t.

C a s e 1. For y ­ 1 we have t
(
b1(y) + c

)
= tc > 0 = 1 − 1 = B(y + t) −

B(y).
C a s e 2. For 3− 8/c ¬ y < 1 we have two subcases: y + t ­ 1 or y + t < 1.

Suppose y + t < 1. For t = 0 both sides of (3.4) are equal to zero, so it suffices to
compare the derivatives with respect to t. We have(

t
(
b1(y) + c

))′
= b1(y) + c =

c

2

(
8− 3c(1− y)

)1/3 ­ c

2

(the last inequality is due to y ­ 3− 8/c and c > 17/6) and, on the other hand,(
B(y + t)−B(y)

)′
=

c

4

(
8− 3c(1− y − t)

)1/3 ¬ c

2
,

so the inequality is proven. Now consider the other subcase, where y + t ­ 1. We
have

B(y + t)−B(y) = 1−B(y) = sup
s∈(0,1−y)

B(y + s)−B(y),

so this subcase follows trivially from the previous one.
C a s e 3. For 0 ¬ y < 3− 8/c we have three subcases: y + t ­ 1 or y + t ∈

[3− 8/c, 1) or y + t < 3− 8/c. The first subcase, where y + t ­ 1, is trivial and
follows from the second one in a similar fashion to Case 2. Assume that we have
y + t ∈ [3− 8/c, 1). Then the inequality (3.4) is equivalent to

(3.5)
c2

2
(6c− 16)−2/3

(
t

(
3− 8

c
+ y

)
+

y2

2

)
­ 1

16

(
8− 3c(1− y − t)

)4/3
.
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The proof of this inequality employs the following strategy of checking the values
on the boundary and differentiating: for each t we will check that the inequality is
true for the smallest possible y (which is either y = 3− 8/c− t for t < 3− 8/c or
y = 0 for t ∈ [3− 8/c, 1)) and then we will compare the derivatives of both sides
with respect to y. For t < 3 − 8/c and y = 3 − 8/c − t this inequality is equiva-
lent to

c2

2
(6c− 16)−2/3

((
3− 8

c

)2

− y2

2

)
­ 1

16
(6c− 16)4/3,

which is equivalent to 3− 8/c ­ y, and this is true. For y = 0 and t ∈ [3− 8/c, 1)
the inequality is

c2t

2
(6c− 16)−2/3

(
3− 8

c

)
­ 1

16

(
8− 3c(1− t)

)4/3
.

Notice that the function on the left is linear and the function on the right is convex.
Therefore, it is enough to check if the inequality holds at the ends of the interval
(namely, in t = 3 − 8/c and t = 1) to know that it is true on the whole interval.
We have already checked t = 3− 8/c, and for t = 1 the inequality is equivalent to

c

4
(6c− 16)1/3 ­ 1

or
3c4 − 8c3 − 32 ­ 0,

which is true from the definition of c. This is actually the only point of the whole
proof when we use the exact value of c. Now we derive that the y-derivatives of
both sides of (3.5) are given by

d

dy

c2

2
(6c− 16)−2/3

(
t

(
3− 8

c
+ y

)
+

y2

2

)
=

c2

2
(6c− 16)−2/3(t+ y),

d

dy

1

16

(
8− 3c(1− y − t)

)4/3
=

c

4

(
8− 3c(1− y − t)

)1/3
.

Let us put u = y+ t ∈ [3− 8/c, 1). As we have announced above, we will be done
if we show that

c2u

2
(6c− 16)−2/3 ­ c

4

(
8− 3c(1− u)

)1/3
.

It is easy to check that this inequality holds for u = 3− 8/c, and by differentiating
with respect to u we obtain

c2

2
(6c− 16)−2/3
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on the left and
c2

4

(
8− 3c(1− u)

)−2/3
on the right. But we easily see that the inequality

c2

2
(6c− 16)−2/3 ­ c2

4

(
8− 3c(1− u)

)−2/3
is true for u ­ 3− 8/c, and this ends the proof of the subcase. For the third subcase
assume that y + t < 3− 8/c. The inequality (3.4) reads

c2

2
(6c− 16)−2/3

(
t

(
3− 8

c

)
+ ty +

y2

2
− (y + t)2

2

)
­ 0,

which is equivalent to 3 − 8/c ­ t/2. This is clearly true since both y and t are
nonnegative, and thus y + t ­ t/2.

C a s e 4. For y < 0 and y + t ¬ 0 the inequality is trivial:

t
(
b1(y) + c

)
> 0 = 0− 0 = B(y + t)−B(y).

If y < 0 and y + t > 0, consider the following reasoning. Suppose that

t2
(
b1(y + t1) + c

)
­ B(y + t1 + t2)−B(y + t1)

and
t1
(
b1(y) + c

)
­ B(y + t1)−B(y)

are true for some t1, t2 > 0. Then, since B is nondecreasing, we may write

(t1 + t2)
(
b1(y) + c

)
­ t2

(
b1(y) + c

)
+B(y + t1)−B(y)

= t2
(
b1(y + t1) + c

)
+B(y + t1)−B(y) + t2

(
b1(y)− b1(y + t1)

)
­ B(y + t1 + t2)−B(y) + t2

(
b1(y)− b1(y + t1)

)
­ B(y + t1 + t2)−B(y)

provided that b1(y) ­ b1(y + t1). Notice that the least value of b1 is at y = 0:

inf b1(y) = b1(0) =
c

4
(6c− 16)1/3 − c;

so if we put t1 = −y and t2 = t + y in the above inequality, then we will end up
with t

(
b1(y) + c

)
­ B(t + y) − B(y). Since we have already dealt with all the

cases where y = 0 and t > 0, this completes the whole proof. �
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3.3. Proof of (3.1) and its extension. We have

E
(
U(Xn+1, Yn+1, X

∗
n+1)|Fn

)
= E

(
U
(
Xn + dXn+1, Yn +Hn+1dXn+1, X

∗
n ∨ (Xn + dXn+1)

)
|Fn

)
= E

(
fXn,Yn,X∗n,Hn+1(dXn+1)|Fn

)
¬ E

(
fXn,Yn,X∗n,Hn+1(0) + f ′Xn,Yn,X∗n,Hn+1

(0−)dXn+1|Fn
)

= fXn,Yn,X∗n,Hn+1(0) = U(Xn, Yn, X
∗
n).

We take the expected value of both sides and infer that the sequence

EU(Xn, Yn, X
∗
n), n = 0, 1, 2, . . . ,

is nonincreasing. Therefore,

EV (Xn, Yn, X
∗
n) ¬ EU(Xn, Yn, X

∗
n) ¬ EU(X0, Y0, X

∗
0 ) = U(0, 0, 0) = 0.

This completes the proof of (3.1). Observe that if we set X ′ = x + X and
Y ′ = y + Y , then an analogous reasoning shows that

EV (x+Xn, y + Yn, x+X∗n) ¬ EU(x+Xn, y + Yn, x+X∗n) ¬ U(x, y, x)

or
P
(
(Y ′)n ­ 1

)
¬ cE(X ′)∗n + U(x, y, x).

3.4. Sharpness of the inequality. Finally, let us address the optimality of the
constant c. Take any K,M,N ∈ N. Let us put δ = (4 − c)/(2cN) and η = Kδ.
Introduce the function G : [3− 8/c, 1]→ R2 by the formula

G(y) =

(
3c(1− y)− 8

4c
,
c(3 + y)− 8

4c

)
.

Observe that G(y0) is the intersection point of the line given by y−x = y0 with the
line y = (3c− 8− cx)/(3c). Notice that had we put zero on the third coordinate,
then the image of G would be the boundary between D3 and D4 intersected with
the plane {(x, y, 0) : x, y ∈ R}. Moreover, G−1(x, y) = y − x. We define a few
subsets of R2:

A0 = {(0, 0), (−2η,−2η)},

A1 =

{
(−2δ, y − 2δ) : 3− 8

c
< y < 1

}
,

A2 =

{
(0, y) : 3− 8

c
< y < 1

}
,

A3 =

{
G(y) + (δ, δ) : 3− 8

c
< y < 1

}
,
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A4 =

{
G(y) : 3− 8

c
< y < 1

}
,

A5 = {(M,y) : y < 0} ∪ {(0, y) : y < 0} ∪ {(0, 1), (1, 1), (−M, 1−M)},
A6 = {(x, 1 + x) : −1 < x < 0}.

Consider a discrete-time Markov martingale (Xn, Yn)n∈N with values in the
union of the above sets, whose distribution is uniquely determined by the following
conditions:

1. (X0, Y0) = 0.
2. (X1, Y1) = (−2η,−2η) or (X1, Y1) = (1, 1).
3. If (X1, Y1) = (−2η,−2η), then (X2, Y2) = (0,−4η) or (X2, Y2) = (δ, δ)

+G(3− 8/c+ 8η + 4δ).
4. If (Xn, Yn) ∈ A1, then (Xn+1, Yn+1) = (0, Yn −Xn) or (Xn+1, Yn+1) =

G(Yn −Xn).
5. If (Xn, Yn) ∈ A2, then (Xn+1, Yn+1) = (−2δ, Yn + 2δ) or (Xn+1, Yn+1)

= (M,Yn −M).
6. If (Xn, Yn) ∈ A3, then (Xn+1, Yn+1) = G (Yn −Xn) or (Xn+1, Yn+1) =

(0, Yn −Xn).
7. If (Xn, Yn) ∈ A4, then (Xn+1, Yn+1) is either G (Yn −Xn + 4δ) + (δ, δ)

or (0, Xn + Yn).
8. If (Xn, Yn) ∈ A5, then (Xn+1, Yn+1) = (Xn, Yn).
9. If (Xn, Yn) ∈ A6, then (Xn+1, Yn+1) is either (0, 1) or (−M, 1−M).
Although we do not write the formulas for Hn explicitly, it is clear that Y has

the form Y =
∑

HdX for some H satisfying the assumptions of (3.1). We do
not specify the transition probabilities, as they are uniquely determined by (X,Y )
being a martingale.

This martingale is constructed in such a way (see Figure 2) that in every step
the pair (X,Y ) moves along such a line of slope 1 or −1 that U(·, ·, 0) is nearly
linear on this line. This will allow us to bound the difference

U(Xn, Yn, X
∗
n)− E

(
U(Xn+1, Yn+1, X

∗
n+1)|Fn

)
(which we already proved to be nonnegative) by an expression proportional to δ2.

The difference Y2n − X2n is increasing unless we reach an absorbing state.
Indeed, notice that after the first two steps, if (X2n, Y2n) is in A1 or in A3, then
(X2n+1, Y2n+1) is in A2 or in A4, and Y2n −X2n = Y2n+1 −X2n+1. Moreover,
after the first two steps, if (X2n−1, Y2n−1) is in A2 or A4, then (X2n, Y2n) either
goes directly to A5 and reaches an absorbing state or (X2n, Y2n) is in A1 or A3

and Y2n −X2n = Y2n−1 −X2n−1 + 4δ. The difference Yn −Xn is at most one
provided that (Xn, Yn) ̸∈ A5. Actually, Y2n −X2n = 3− 8/c+ (4n+ 8K)δ pro-
vided that (X2n, Y2n) ̸∈ A5. Therefore, (X2N , Y2N ) ∈ A5, which means that this
maringale stops after at most 2N steps.

Now we will find a bound on U(Xn, Yn, X
∗
n)−E

(
U(Xn+1, Yn+1, X

∗
n+1)|Fn

)
.
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Figure 2. The pair (X,Y ) moves along the black lines

C a s e 1. (Xn, Yn) ∈ A1. We have

U(Xn, Yn, X
∗
n) = E

(
U(Xn+1, Yn+1, X

∗
n+1)|Fn

)
because X∗n = X∗n+1 = 0 and U(·, ·, 0) is linear on the interval from (0, Yn −Xn)
to G(Yn −Xn).

C a s e 2. (Xn, Yn) ∈ A2. We will need a simple auxiliary inequality: if a > 0,
then for sufficiently small ϵ > 0 the following inequalities are true:

6a2ϵ2 ­ 6a2ϵ2 − 8aϵ3 + 3ϵ4 = a4 − (a+ 3ϵ)(a− ϵ)3

=
(
a4/3 − (a+ 3ϵ)1/3(a− ϵ)

)
×

(
a8/3 + a4/3(a+ 3ϵ)1/3(a− ϵ) + (a+ 3ϵ)2/3(a− ϵ)2

)
­

(
a4/3 − (a+ 3ϵ)1/3(a− ϵ)

)
· 2a8/3.

Therefore,

(3.6) a4/3 − (a+ 3ϵ)1/3(a− ϵ) ¬ 3a−2/3ϵ2.

If (Xn, Yn) = (x, y) ∈ A2, then

U(Xn, Yn, X
∗
n) = U(0, y, 0) =

1

16

(
8− 3c(1− y)

)4/3
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and

E
(
U(Xn+1, Yn+1, X

∗
n+1)|Xn = x, Yn = y

)
=

2δ

M + 2δ
U(M,y −M,M) +

M

M + 2δ
U(−2δ, y + 2δ, 0)

=
M

(
1
16

(
8− 3c(1− y) + 12cδ

)1/3(
8− 3c(1− y)− 4cδ

)
+ 2cδ

)
− 2cMδ

M + 2δ
.

To simplify things, we put a = 8− 3c(1− y) and ϵ = 4cδ. Then

E
(
U(Xn, Yn, X

∗
n)− U(Xn+1, Yn+1, X

∗
n+1)|Xn = x, Yn = y

)
=

1

16
a4/3 +

2cMδ

M + 2δ
+

M

M + 2δ
· 1
16

(a+ 3ϵ)1/3(a− ϵ)− M

M + 2δ
· 2cδ

=
M

M + 2δ

1

16
(a+ 3ϵ)1/3(a− ϵ) ¬ 1

16
3a−2/3ϵ2 ¬ 3(6c− 16)−2/3δ2 < 20δ2.

C a s e 3. (Xn, Yn) ∈ A3. Here the reasoning is analogous to that of Case 1.
C a s e 4. (Xn, Yn) ∈ A4. This case relies solely on the analysis of the deriva-

tive of U along a certain line. For y0 ∈ (3 − 8/c, 1) and (x1, y1) = G(y0) we
define f : [x1 − 2δ, 0] → R by f(x) = U(x, x1 + y1 − x, 0). Explicit values of
(x1, y1) are:

x1 =
3(1− y0)

4
− 2

c
, y1 =

3 + y0
4
− 2

c
, f(x) = U

(
x,

3− y0
2
− 4

c
− x

)
.

We have f ′ = U ′x − U ′y, which implies

f ′(x) =
c

4

(
8− 3c(1− y0)

)1/3 − c for x1 ¬ x < 0

and

f ′(x1− 2δ) =
c

4

(
8− 3c(1− y0)+ 12cδ

)1/3 ·(1− 4cδ

8− 3c(1− y0) + 12cδ

)
− c.

From property 4 in Lemma 3.1 we know that f is concave, and so f ′ is nonincreas-
ing, therefore on the interval (x1 − 2δ, x1) we have f ′(x) ¬ f ′(x1 − 2δ). This
means that for x ∈ (x1 − 2δ, x1) we have

0 ¬ f ′(x)− f ′(x1) ¬ f ′(x1 − 2δ)− f ′(x1)

=
c

4

(
8− 3c(1− y0) + 12cδ

)1/3 · (1− 4cδ

8− 3c(1− y0) + 12cδ

)
− c

4

(
8− 3c(1− y0)

)1/3
¬ c

4

((
8− 3c(1− y0) + 12cδ

)1/3 − (
8− 3c(1− y0)

)1/3)
¬ c

4
· 1
3

(
8− 3c(1− y0)

)−2/3 · 12cδ ¬ c2(6c− 16)−2/3δ < 7δ.
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We are now ready to write the inequality (assume (Xn, Yn) = (x1, y1) ∈ A4):

E
(
U(Xn, Yn, X

∗
n)− U(Xn+1, Yn+1, X

∗
n+1)|Xn = x1, Yn = y1

)
= U(x1, y1, 0)−

−x1
2δ − x1

U(x1 − 2δ, y1 + 2δ, 0)− 2δ

2δ − x1
U(0, x1 + y1, 0)

= f(x1)−
−x1
−x1 + 2δ

f(x1 − 2δ)

= f(x1)−
−x1
−x1 + 2δ

(
f(0)−

0∫
x1−2δ

f ′(x)dx
)

= f(x1) +
−x1
−x1 + 2δ

0∫
x1−2δ

f ′(x)dx

= f(x1) +
−x1
−x1 + 2δ

( 0∫
x1

f ′(x)dx+
x1∫

x1−2δ
f ′(x)dx

)
= f(x1) +

−x1
−x1 + 2δ

(
− x1f

′(x1) +
x1∫

x1−2δ

(
f ′(x)− f ′(x1)

)
dx+ 2δf ′(x1)

)
= f(x1)− x1f

′(x1) +
−x1
−x1 + 2δ

x1∫
x1−2δ

(
f ′(x)− f ′(x1)

)
dx < 2δ · 7δ = 14δ2.

C a s e 5. (Xn, Yn) ∈ A5. There is nothing to prove since (X,Y ) is already in
an absorbing state.

C a s e 6. (Xn, Yn) ∈ A6. Here the reasoning is analogous to that of Case 1.
C a s e 7. (Xn, Yn) ∈ A0. This only happens for n ∈ {0, 1}, and these are ac-

tually two separate subcases. Assume n = 0. Then (X0, Y0) = (0, 0) and

U(0, 0, 0)− EU(X1, Y1, X
∗
1 ) = −

2η

1 + 2η
U(1, 1)− 1

1 + 2η
U(−2η,−2η)

=
2η(c− 1)

1 + 2η
+

1

1 + 2η

(
cη

2
(6c− 16 + 24cη)1/3 − 2cη

)
=

2η

1 + 2η

(
c

4
(6c− 16 + 24cη)1/3 − 1

)
¬ 2η

1 + 2η

(
c

4
· 1
3
(6c− 16)−2/3 · 24cη +

c

4
(6c− 16)1/3 − 1

)
=

2η

1 + 2η

(
2c2η(6c− 16)−2/3

)
< 25η2.

Now let us assume n = 1 and (X1, Y1) = (−2η,−2η). The step from (X1, Y1)
to (X2, Y2) can be divided into two substeps: firstly (X,Y ) goes to the point
G(3 − 8/c + 8η) or to (0,−4η) and secondly it either performs the routine for
(Xn, Yn) ∈ A4 if it went to G(3 − 8/c + 8η) or for (Xn, Yn) ∈ A5 if it went to
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(0,−4η). The first substep is trivial (analogously to Case 1) and the second substep
is something we have already dealt with in Cases 4 and 5.

All the above cases prove that U(Xn, Yn, X
∗
n)−E

(
U(Xn+1, Yn+1, X

∗
n+1)|Fn

)
< 20δ2 except for the case n = 0, where we bounded U(0, 0, 0)−EU(X1, Y1, X

∗
1 )

by 25η2. This means that

EU(X2N , Y2N , X∗2N ) > −2N · 20δ2 − 25η2 = −40(4− c)2

4c2N
− 25η2

> −2/N − 25η2.

Notice that (X2N , Y2N ) ∈ A5 and for any point (x, y) ∈ A5 we have V (x, y, 0) =
U(x, y, 0) with the only exception of (−M, 1−M), where V (−M, 1−M, 0) =
0 < 1 = U(−M, 1 −M, 0). But we have P

(
(X2N , Y2N ) = (−M, 1 −M)

)
<

1/M , so

EV (X2N , Y2N , X∗2N ) > EU(X2N , Y2N , X∗2N )− 1/M > −2/N − 1/M − 25η2

or

(3.7) P(Y2N ­ 1)− cEX∗2N > − 2

N
− 1

M
− 25η2.

Notice that in the first step (X,Y ) jumps to (1, 1) with probability 2η/(1 + 2η),
so we have

(3.8) P(Y2N ­ 1) ­ 2η

1 + 2η
.

Both sides of (3.7) are negative and both sides of (3.8) are positive, so we can
divide the inequalities to obtain

(3.9) 1−
cEX∗2N

P(Y2N ­ 1)
> −1 + 2η

2η

(
2

N
+

1

M

)
− 1 + 2η

2
· 25η.

Take N = M = K2 and let K go to infinity. The number η is of order K/N =
1/K, and hence it is clear that the right-hand side above converges to zero. There-
fore, for any ϵ > 0 there exist K,M,N such that

1−
cEX∗2N

P(Y2N ­ 1)
> −ϵ

or, equivalently,
P(Y2N ­ 1) >

c

1 + ϵ
EX∗2N .

This shows that the constant c cannot be improved.
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[2] R. Bañuelos and A. Osękowski, Martingales and sharp bounds for Fourier multipliers,
Ann. Acad. Sci. Fenn. Math. 37 (2012), pp. 251–263.
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