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Abstract. The local structure of q-Ornstein–Uhlenbeck process and q-
Brownian motion are investigated for all q ∈ (−1, 1). These are classical
Markov processes that arose from the study of noncommutative probability.
These processes have discontinuous sample paths, and the local small jumps
are characterized by tangent processes. It is shown that, for all q ∈ (−1, 1),
the tangent processes in the interior of the state space are scaled Cauchy
processes possibly with drifts. The tangent processes at the boundary of
the state space are also computed, but they are not well-known processes
in classical probability theory. Instead, they can be associated with the free
1/2-stable law, a well-known distribution in free probability, via Biane’s
construction.
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1. INTRODUCTION

In this paper, we investigate the trajectories, particularly the jumps, of certain
Markov processes that recently have drawn interest from both classical and non-
commutative probability communities. These processes, known as q-Gaussian pro-
cesses, arose from the intriguing connection between noncommutative probability
and classical probability described in the seminal work by Bożejko et al. [8]. Since
then, the connection has motivated many advances on both Markov processes and
their counterparts in noncommutative probability, see, for example, [1], [7], [9],
[12]. Here, we take the classic probability point of view, and we are interested in
the local structure of these Markov processes.

In particular, we focus on the so-called q-Ornstein–Uhlenbeck process and
q-Brownian motion for q ∈ (−1, 1). The marginal distribution of the q-Ornstein–
Uhlenbeck process is a symmetric probability measure supported on the closed
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interval −2/
√
1− q ¬ x ¬ 2/

√
1− q and has probability density function

(1.1) p(x) =

√
1− q · (q)∞

2π

√
4− (1− q)x2

∞∏
k=1

[(1 + qk)2 − (1− q)x2qk],

where (q)∞ =
∏∞

k=1(1− q
k). This distribution is sometimes called the q-normal

distribution and appears also as the orthogonality measure of the q-Hermite poly-
nomials ([15], Section 13.1). The marginal distribution of the q-Brownian motion
is just a dilation of (1.1) due to the relation (1.3) below.

It is known that the q-normal distribution interpolates between several im-
portant distributions as q varies between −1 and 1. When q = 0, it becomes the
celebrated Wigner semicircle law that plays a fundamental role in random ma-
trix theory; when q goes to 1, it converges to the standard normal distribution
that is ubiquitous in classical probability theory; and when q goes to −1, it con-
verges to the symmetric discrete distribution on {±1} which is sometimes called
the Rademacher distribution.

Next, at the process level the transition probabilities of the two Markov pro-
cesses were identified in [8], Theorem 4.6. Szabłowski ([19], Section 4) pointed
out that they are Feller Markov processes with a càdlàg (right-continuous and a
left limit exists) version. Throughout the paper we consider only càdlàg versions of
stochastic processes. One can also easily show that as q goes to 1, the two processes
converge in distribution to Brownian motions and Ornstein–Uhlenbeck processes,
respectively. This roughly says that the paths of q-Brownian motion are close to
those of the Brownian motion for q close to 1, as illustrated by Figure 1. However,
while it is well known that Brownian motions have almost surely continuous paths
(see, e.g., [17]), it has been a folklore that the trajectories of q-Brownian motions
have jumps, as can also be seen in Figure 1. Our motivation is to understand better
these jumps, and hence also the trajectories of q-Gaussian processes.

In this paper, we use the notion of tangent process [14] to characterize the lo-
cal structure of q-Gaussian processes and confirm that while large jumps become
unlikely for q close to 1 (see Remark 2.3), the two processes are locally approx-
imated by the Cauchy process for every fixed q < 1, with a possible drift and a
multiplicative constant depending on q. In order to accomplish our goal, we mod-
ify slightly a general framework from Falconer [14] to allow for dependence on
location at time s ­ 0. Namely, let Z = {Zt}t­0 be a càdlàg Markov process, for
s > 0 and x in the support of a random variable Zs, let P(· | Zs = x) be the law
of the Markov process conditioning on Zs = x, and we say that ζ = {ζt}t­0 is a
tangent process of Z at time s and location x if under the law P(· | Zs = x) we
have the weak convergence

(1.2)
{
Zs+ϵt − Zs

ϵβ

}
t­0
⇒ {ζt}t­0

as ϵ ↓ 0, for some β > 0 appropriately chosen, in D
(
[0,∞)

)
equipped with Sko-

rokhod topology. While Zs+ϵ converges to Zs in probability as ϵ ↓ 0 for a càdlàg
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Figure 1. Three trajectories of discretized (in time) q-Brownian motions {W (q)

4i/n}i=0,...,n

with q = 0, 0.5 and 0.95, respectively, with n = 2000, simulated in R. The solid parabolic
line (w2 = 4t) is the boundary of the support of the free Brownian motion (q = 0)

process Z, the tangent process in (1.2) provides information on the rates and local
fluctuations of the convergence. To establish (1.2), for the two processes it suffices
to work with the conditional transition probability densities of {Zt}t­s given Zs,
so that the left-hand side induces a unique probability measure on D

(
[0,∞)

)
(see

[19]). When the tightness is difficult to establish, we consider only convergence of
finite-dimensional distributions.

Our main results consist of identifying tangent processes for both q-Brownian
motions and q-Ornstein–Uhlenbeck processes, denoted byW (q) = {W (q)

t }t­0 and
X(q) = {X(q)

t }t∈R respectively throughout the paper. It is well known that for
the same q ∈ (−1, 1), these two processes can be mapped onto each other by a
deterministic transformation

(1.3)
{
X

(q)
t

}
t∈R =

{
e−tW

(q)
e2t

}
t∈R.

It is more convenient to work with the q-Ornstein–Uhlenbeck process as it is a sta-
tionary Markov process on the state space [−2/

√
1− q, 2/

√
1− q]. Our findings

are summarized as follows.

(i) For q-Ornstein–Uhlenbeck process, we first prove that for all q ∈ (−1, 1),
the tangent process in (1.2) exists at all location x ∈ (−2/

√
1− q, 2/

√
1− q) with
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β = 1, and is a Cauchy process up to a multiplicative constant (Theorem 2.1).
In other words, locally the q-Ornstein–Uhlenbeck process behaves like a Cauchy
process for all q ∈ (−1, 1). It is somehow surprising to see that, although the local
jumps disappear in the limit as q → 1, they persist in such a qualitative manner.

(ii) We investigate the tangent process of q-Ornstein–Uhlenbeck process at the
left boundary point of the state space x− = −2/

√
1− q. In this case, the tangent

process still exists as in (1.2), but with scaling parameter β = 2, and is a different
Markov process (Proposition 2.1).

(iii) The Markov process obtained as the tangent process at the boundary point
seems to have not been well investigated in classical probability theory, to the best
of our knowledge. Instead, somehow unexpectedly, we identify this process as the
Markov process (up to a quadratic drift) associated with the free 1/2-stable law via
the construction of Biane [4], after whom we name the process 1/2-stable Biane
process (Proposition 3.1). This connection is irrelevant to the path properties of the
processes, but it is of its own interest.

(iv) For the q-Brownian motion, since it is not stationary and has inhomo-
geneous transition probabilities, the situation is slightly more subtle. The tangent
process of the q-Brownian motion in the interior of the support of W (q)

s is still
Cauchy, but with a linear drift (Proposition 2.2). The tangent process at time s at
the boundary of the support x− = −2

√
s/(1− q) this time, however, instead of in

the common form (1.2), appears as the limit of{
W

(q)
s+tϵ +

(
s(1− q)

)−1/2 · tϵ−W (q)
s

ϵ2

}
t­0

as ϵ ↓ 0 under the law P(· | W (q)
s = x−) (Proposition 2.3). The tangent process

turns out to be the 1/2-stable Biane process up to a multiplicative constant.

The paper is organized as follows. Section 2 establishes limit theorems for
the tangent processes at both inner and boundary points for both processes. The
connection to noncommutative probability, and particularly the identification of
the 1/2-stable Biane process, is provided in Section 3 in a self-contained manner.

2. CONVERGENCE TO TANGENT PROCESSES

We first introduce the two processes that appear, with appropriate scalings
and drifts, as the tangent processes of q-Gaussian processes. Both processes are
Markov processes. The first is Cauchy process (symmetric 1-stable Lévy process),
starting from zero with transition probability density

f
(1)
t1,t2

(y1, y2) =
1

π

t2 − t1
(y2 − y1)2 + (t2 − t1)2

, 0 ¬ t1 < t2 <∞, y1, y2 ∈ R.
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The second also starts from zero and has transition probability density

(2.1) f
(1/2)
t1,t2

(y1, y2) =
(t2 − t1)

√
4y2 − t22

2π [(y2 − y1)2 − (t2 − t1)(t1y2 − t2y1)]
,

0 ¬ t1 < t2 <∞, y1 >
t21
4
, y2 >

t22
4
.

Note that the support of the second process at time t is [t2/4,∞). The two pro-
cesses are denoted by Z(α) = {Z(α)

t }t­0 with α = 1, 1/2, respectively, and the
marginal distributions are given in (3.2) and (3.6) below. Both processes are self-
similar with parameter 1/α in the sense that

(2.2)
{
Z(α)
λt

}
t­0

f.d.d.
= λ1/α

{
Z(α)
t

}
t­0, λ > 0, α = 1, 1/2.

Furthermore, Z(1) has independent and stationary increments as a Lévy process.
The process Z(1/2) has non-stationary increments, but with a drift and time scal-
ing {Z(1/2)

2t − t2}t­0 is self-similar with time-homogeneous transition probability
density

(2.3) p
(1/2)
t1,t2

(y1, y2) =
2 (t2 − t1)

√
y2

π [(y2 − y1)2 + 2(y1 + y2)(t2 − t1)2 + (t2 − t1)4]
,

y1, y2, t1, t2 > 0.

Both processes also arise from free probability. In particular, Z(1) and Z(1/2)

are the Markov processes associated with free 1-stable and 1/2-stable semigroups,
respectively. For the sake of simplicity, we call Z(1/2) the 1/2-stable Biane process
in the sequel. We explain this connection to free probability in Section 3. The
discussion there is independent of the rest of this section but is of its own interest.

Below, we first consider the tangent processes first of q-Ornstein–Uhlenbeck
processes and then of q-Brownian motions.

2.1. Tangent processes of q-Ornstein–Uhlenbeck processes. Fix q ∈ (−1, 1),
and letX(q) = {X(q)

t }t∈R denote a q-Ornstein–Uhlenbeck process. That is,X(q) is
a stationary Markov process with càdlàg trajectories, with the marginal probability
density function p(x) given by (1.1), and with the transition probability density
function ps,t(x, y) given by, for x, y ∈ [−2/

√
1− q, 2/

√
1− q],

(2.4) ps,t(x, y) = (e−2(t−s); q)∞
∞∏
k=0

1

φq,k(t− s, x, y)
· p(y)

with

φq,k(δ, x, y) = (1− e−2δq2k)2 − (1− q)e−δqk(1 + e−2δq2k)xy

+ (1− q)e−2δq2k(x2 + y2).
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Here and below, we write

(a; q)∞ :=
∞∏
k=0

(1− aqk) for all a ∈ R, q ∈ (−1, 1).

The above densities can be found in [11], Corollary 2, and [19], equation (2.9).
Two bounds on φq,k are useful. First, observe that φq,k(δ, x, y)=a(x

2 + y2)
− bx+ c has a quadratic form with b/2a > 1. Thus,

min
|x|,|y|¬2/

√
1−q

φq,k(δ, x, y) = (1− e−δqk)4 ­ (1− |q|k)4, k ∈ N0, δ > 0.

At the same time,

φq,0(δ, x, y) = (1− e−2δ)2 − (1− q)e−δ(1 + e−2δ)xy + (1− q)e−2δ(x2 + y2)

(2.5)

= e−2δ
[
4 sinh2(δ) + (1− q)(x− y)2 + 2(1− q)xy

(
1− cosh(δ)

)]
­ e−2δ

[
4 sinh2(δ) + 8

(
1− cosh(δ)

)
+ (1− q)(x− y)2

]
= e−2δ[16 sinh4(δ/2) + (1− q)(x− y)2],

where in the inequality above we used the fact that 1− cosh(δ) ¬ 0. In particular,

(2.6)
∞∏
k=0

1

φq,k(δ, x, y)
¬ e2δ

[16 sinh4(δ/2) + (1− q)(x− y)2](|q|)4∞
.

We first look at the tangent process in the interior of the state space. Consider
the process

Y
(ϵ)
t :=

X
(q)
ϵt −X

(q)
0

ϵ
.

THEOREM 2.1. For all q ∈ (−1, 1), x ∈ (−2/
√
1− q, 2/

√
1− q), under the

law P(· | X(q)
0 = x), we have{

Y
(ϵ)
t

}
t∈[0,∞)

⇒ cq,x
{
Z(1)
t

}
t∈[0,∞)

with cq,x =

√
4

1− q
− x2

in D
(
[0,∞)

)
as ϵ ↓ 0, where Z(1) is the Cauchy process.

P r o o f. For x ∈ (−2/
√
1− q, 2/

√
1− q), let p̃(ϵ,x)t1,t2

(y1, y2) denote the tran-

sition probability density function of Y (ϵ), conditioning on X(q)
0 = x. Then, writ-

ing δ := t2 − t1, we obtain

(2.7) p̃
(ϵ,x)
t1,t2

(y1, y2) = pϵt1,ϵt2(x+ y1ϵ, x+ y2ϵ)ϵ

=
ϵ
√
1− q · (e−2ϵδ; q)∞(q)∞

2π

√
4− (1− q)(x+ y2ϵ)2

φq,0(ϵδ, x+ y1ϵ, x+ y2ϵ)

×
∞∏
k=1

ψq,k(x+ y1ϵ)

φq,k(ϵδ, x+ y1ϵ, x+ y2ϵ)
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with ψq,k(x) = (1+ qk)2− (1− q)x2qk. We factorize p̃(ϵ,x)t1,t2
in this way because in

the analysis below, when computing the limiting probability densities, the infinite
product is easy to deal with and contributes asymptotically only to a constant, while
the square-root term and φq,0 contribute to the limiting density and are treated
separately. This pattern of calculations will repeatedly show up in all derivations
of tangent processes below.

(i) We first prove the convergence of finite-dimensional distributions. For this
purpose, by Scheffé’s theorem ([5], Theorem 16.12) it suffices to prove pointwise
convergence of joint probability densities. In particular, we prove

(2.8) lim
ϵ↓0

p̃
(ϵ,x)
t1,t2

(y1, y2) = f
(1)
t1,t2

(
y1
cq,x

,
y2
cq,x

)
1

cq,x
.

Write δ := t2 − t1. Observe that as ϵ ↓ 0, recalling (2.5),

φq,0(ϵδ, x+ y1ϵ, x+ y2ϵ) ∼ ϵ2
[
(1− q)(y2 − y1)2 + δ2

(
4− (1− q)x2

)]
and

∞∏
k=1

ψq,k(x+ y1ϵ)

φq,k(ϵδ, x+ y1ϵ, x+ y2ϵ)

∼
∞∏
k=1

(1 + qk)2 − (1− q)x2qk

(1− q2k)2 − (1− q)qk(1 + q2k)x2 + 2(1− q)q2kx2

=
∞∏
k=1

(1 + qk)2 − (1− q)x2qk

(1− qk)2(1 + qk)2 − (1− q)x2qk(1− qk)2
=
∞∏
k=1

1

(1− qk)2
.

Here y1, y2 ∈ R are fixed. To pass to the limit, we use the fact that |q| < 1 and
|x| < 2/

√
1− q, so the product is bounded by a convergent product uniformly over

all small enough ϵ. The term “small enough” means that
√
1− q|x+ y1ϵ| < 2 and√

1− q|x+ y2ϵ| < 2.
Finally, we note that

(e−2ϵδ; q)∞ = (1− e−2ϵδ)
∞∏
k=1

(1− e−2ϵδqk) ∼ 2ϵδ
∞∏
k=1

(1− qk) = 2ϵδ(q)∞.

Combining all the calculation above, we have thus shown that

lim
ϵ↓0

pϵt1,ϵt2(x+ y1ϵ, x+ y2ϵ)ϵ =
δ
√
1− q

√
4− (1− q)x2

π
[
(1− q)(y2 − y1)2 + δ2

(
4− (1− q)x2

)] ,
which is the same as (2.8).

Since our Markov processes start at zero, the univariate densities also con-
verge, as they are just the transition densities evaluated at y1 = 0 and t1 = 0. We
have thus proved the convergence of finite-dimensional distributions.
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(ii) Next we prove the tightness. We show that, for all 0 ¬ t1 < t2 ¬ T <∞,
ϵ > 0, independent of x and y1,

(2.9) Ex(|Y (ϵ)
t2
− Y (ϵ)

t1
|2 ∧ 1 | Y (ϵ)

t1
= y1) ¬ CT,q(t2 − t1)

for some constant CT,q depending only on T and q. Then, the tightness of the
processes {Y (ϵ)}ϵ>0 under the measure Px follows from Ethier and Kurtz [13],
Chapter 3, Theorem 8.6, Remark 8.7. In particular, conditions (8.29) and (8.33)
therein are satisfied for our processes.

To prove (2.9), recall (2.6). It then follows that there exists a constant CT,q

such that for all 0 ¬ t1 < t2 ¬ T, ϵ > 0, uniformly in x, y1, ϵ,

p̃x,ϵt1,t2
(y1, y2) ¬ CT,q

t2 − t1[
(y2 − y1)2 + 16 sinh4

(
ϵ(t2 − t1)/2

)
/
(
ϵ2(1− q)

)] ,
whence

Ex(|Y (ϵ)
t2
− Y (ϵ)

t1
|2 ∧ 1 | Y (ϵ)

t1
= y1)

¬ CT,q(t2 − t1) +
∫
|z|>1

CT,q(t2 − t1)
1

z2
dz = CT,q(t2 − t1).

We have thus proved (2.9) and the tightness. �

Observe that the proof of Theorem 2.1 does not apply to the boundary points
x = ±2/

√
1− q. At the same time, as x→ ±2/

√
1− q, we have cq,x → 0. These

observations raise the question on the tangent process at the boundary and suggest
that for a non-degenerate limit to exist we need to work with a different scaling.
Consider the process

Ỹ
(ϵ)
t :=

X
(q)
ϵt −X

(q)
0

ϵ2
.

Let x− = −2/
√
1− q denote the left boundary point.

PROPOSITION 2.1. For all q ∈ (−1, 1), under P(· | X(q)
0 = x−),{

Ỹ
(ϵ)
t

}
t­0

f.d.d.
=⇒ 4√

1− q

{
Z(1/2)
t − t2

4

}
t­0

as ϵ ↓ 0, where Z(1/2) is the 1/2-stable Biane process with transition probability
densities (2.1).

REMARK 2.1. Here and in Propositions 2.2 and 2.3, we only prove the con-
vergence of finite-dimensional distributions.

A d d e d i n p r o o f. The tightness is proved in a forthcoming paper Extremes
of q-Ornstein–Uhlenbeck processes by the second author.
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P r o o f. The proof is similar to the first part of the proof of Theorem 2.1 and
consists of verification that the transition density converges. The transition density
of {Ỹ (ϵ)

t }t­0 is pϵt1,ϵt2(x− + y1ϵ
2, x− + y2ϵ

2)ϵ2. With δ = t2 − t1, the density
factors as in (2.7) with x replaced by x−, and we compute the corresponding terms
one by one. The infinite product

(q)∞
∞∏
k=1

(1− qke−2ϵδ)ψq,k(x− + y1ϵ
2)

φq,k(ϵδ, x− + y1ϵ2, x− + y2ϵ2)

converges again to one as ϵ ↓ 0, and the factor

ϵ2
√
1− q · (1− e−2ϵδ)

2π

√
4− (1− q)(x− + y2ϵ2)2

φq,0(ϵδ, x− + y1ϵ2, x− + y2ϵ2)

contributes to the limit. As previously, (1− e−2ϵδ) ∼ 2ϵδ, but at the boundary we
have √

4− (1− q)(x− + y2ϵ2)2 ∼ 2ϵ 4
√
1− q√y2,

and

φq,0(ϵδ, x− + y1ϵ
2, x− + y2ϵ

2)

∼ ϵ4
[
(1− q)(y2 − y1)2 + 2

√
1− q(y1 + y2)(t1 − t2)2 + (t1 − t2)4

]
.

It then follows that

lim
ϵ↓0

pϵt1,ϵt2(x− + y1ϵ
2, x− + y2ϵ

2)ϵ2

=
2 (t2 − t1)

√
y2(1− q)3/4

π
[
(1− q)(y2 − y1)2 + 2

√
1− q(y1 + y2)(t2 − t1)2 + (t2 − t1)4

]
= f

(1/2)
2t1,2t2

(√
1− q · y1 + t21,

√
1− q · y2 + t22

)√
1− q, y1, y2 > 0.

The desired result now follows from self-similarity (2.2). �

REMARK 2.2. LetX = {Xt}t­0 be a general process. Falconer [14] actually
considers the annealed tangent process, {(Xs+tϵ −Xs)/ϵ

β}t­0 for s ­ 0, while
we consider the quenched tangent process conditioning on the value of Xs. From
our results, the annealed tangent process (without conditioning) can then be de-
rived easily as a mixture of Cauchy process. We omit the details. The same applies
to the tangent process of the q-Brownian motion in Proposition 2.2.

According to Falconer [14], for almost all time points s at which the general
process X has a unique annealed tangent process, the tangent process must be
self-similar with stationary increments. Here we have an example indicating that
one cannot drop the ‘almost all’ part of the statement. Indeed, fixing τ > 0 and
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considering Xt = X
(q)
τ+t with law P(· | X(q)

τ = x−), we just showed that for this
process at s = 0, the tangent process exists, is self-similar, but has non-stationary
increments. There is no contradiction since, as discussed above, for any s > 0
the annealed tangent process is a mixture of Z(1) and is thus self-similar with
stationary increments.

2.2. Tangent processes of q-Brownian motions. In this section, consider the
q-Brownian motion {W (q)

t }t­0 with transition probability density (see [12], equa-
tion (55))
(2.10)

κ
(q)
t1,t2

(y1, y2) =
(1− q)3/2(t2 − t1)

2π

√
4t2 − (1− q)y22

φ∗q,0(t1, t2, y1, y2)

∞∏
k=1

ψ∗q,k(t1, t2, y2)

φ∗q,k(t1, t2, y1, y2)
,

where

ψ∗q,k(t1, t2, y2) = (t2 − t1qk)(1− qk+1)[t2(1 + qk)2 − (1− q)y22qk], k ­ 1,

and

φ∗q,k(t1, t2, y1, y2) = (t2 − t1q2k)2 − (1− q)qk(t2 + t1q
2k)y1y2

+ (1− q)(t1y22 + t2y
2
1)q

2k, k ­ 0.

We first consider the tangent process at the interior point of the support of W (q)
s .

For s > 0, ϵ > 0 consider the process

{
V

(ϵ,s)
t

}
t­0 :=

{
W

(q)
s+tϵ −W

(q)
s

ϵ

}
t­0

.

PROPOSITION 2.2. For s > 0 and x ∈
(
− 2

√
s/(1− q), 2

√
s/(1− q)

)
, un-

der the law P(· |W (q)
s = x),

{
V

(ϵ,s)
t

}
t­0

f.d.d.
=⇒ cq,s,x

{
Z(1)
t +

x√
4s/(1− q)− x2

· t
}

t­0

as ϵ ↓ 0, where Z(1) is the Cauchy process and

cq,s,x =
1

2s

√
4s

1− q
− x2.

P r o o f. The transition probability density of V (ϵ,s) conditioning onW (q)
s =x

is defined as

κ
(ϵ,s,x)
t1,t2

(y1, y2) := κ
(q)
s+t1ϵ,s+t2ϵ

(x+ y1ϵ, x+ y2ϵ)ϵ.
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One can show that, for all fixed x ∈
(
− 2

√
s/(1− q), 2

√
s/(1− q)

)
,

lim
ϵ↓0

√
4t2 − (1− q)y22 =

√
4s− (1− q)x2,

lim
ϵ↓0

φ∗q,0(s+ t1ϵ, s+ t2ϵ, x+ y1ϵ, x+ y2ϵ)

ϵ2

= (t2 − t1)2 + (1− q)[s(y2 − y1)2 − (t2 − t1)(y2 − y1)x],

and

lim
ϵ↓0

ψ∗q,k(s+ t1ϵ, s+ t2ϵ, x+ y2ϵ)

φ∗q,k(s+ t1ϵ, s+ t2ϵ, x+ y1ϵ, x+ y2ϵ)
=

1− qk+1

1− qk
, k ­ 1.

As previously, the infinite product converges uniformly in ϵ for all ϵ close enough
to zero. It then follows that

lim
ϵ↓0

κ
(ϵ,s,x)
t1,t2

(y1, y2) =
1

2π

√
1− q(t2 − t1)

√
4s− (1− q)x2

(t2 − t1)2 + (1− q)[s(y2 − y1)2 − (t2 − t1)(y2 − y1)x]

= f (1)τ1,τ2

(
y1 −

t1x

2s
, y2 −

t2x

2s

)
with τj = τj(q, s, x) = cq,s,xtj , j = 1, 2. So the limiting process equals in distri-
bution{

Z(1)
cq,s,xt +

x

2s
t

}
t­0

f.d.d.
= cq,s,x

{
Z(1)
t +

x√
4s/(1− q)− x2

· t
}

t­0

by self-similarity (2.2). �

Next we consider the tangent process at the boundary of the support. Consider
the left end-point x− = −2

√
s/(1− q) of the support of the q-Brownian motion

at time s and the process

(2.11) Ṽ
(ϵ,s)
t :=

W
(q)
s+tϵ + atϵ−W (q)

s

ϵ2
with a = − 2

(1− q)x−
=

1√
s(1− q)

.

PROPOSITION 2.3. For all s > 0, under the law P(· |W (q)
s = x−),{

Ṽ
(ϵ,s)
t

}
t­0

f.d.d.
=⇒ 1

s3/2
√
1− q

{
Z(1/2)
t

}
t­0

as ϵ ↓ 0, where Z(1/2) is the 1/2-stable Biane process with transition probability
densities (2.1).
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P r o o f. The transition probability density of Ṽt(ϵ, s) under P(· |W (q)
s = x−)

is of the form

κ
(ϵ,s)
t1,t2

(y1, y2) = κ
(q)
s+t1ϵ,s+t2ϵ

(x− − at1ϵ+ y1ϵ
2, x− − at2ϵ+ y2ϵ

2)ϵ2.

Again from (2.10), by straightforward calculation one obtains, as ϵ ↓ 0,

√
4(s+ t2ϵ)− (1− q)(x− − at2ϵ+ y2ϵ)2 ∼ ϵ

√
4
√
s(1− q)y2 −

t22
s
,

φ∗q,0(s+ t1ϵ, s+ t2ϵ, x− − at1ϵ+ y1ϵ
2, x− − at2ϵ+ y2ϵ

2)

∼ ϵ4
[
s(1− q)(y2 − y1)2 −

√
1− q
s

(t2 − t1)(t1y2 − t2y1)
]
,

and

lim
ϵ↓0

ψ∗q,k(s+ t1ϵ, s+ t2ϵ, x− aϵ+ y2ϵ
2)

φ∗q,k(s+ t1ϵ, s+ t2ϵ, x− aϵ+ y1ϵ2, x− aϵ+ y2ϵ2)
=

1− qk+1

1− qk
, k ­ 1.

Again, the infinite product of ψ∗q,k/φ
∗
q,k converges uniformly for ϵ small enough as

before. We thus arrive at

lim
ϵ↓0

κ
(ϵ,s)
t1,t2

(y1, y2) =

√
1− q
2π

(t2 − t1)
√
4
√
s(1− q)y2 − t22/s

s(1− q)(y2 − y1)2 −
√
1−q√
s
(t2 − t1)(t1y2 − t2y1)

= f
(1/2)
t1,t2

(√
s3(1− q)y1,

√
s3(1− q)y2

)√
s3(1− q).

The desired result now follows. �

REMARK 2.3. The tangent processes are established for fixed q, and they do
not capture the behavior of large jumps as q varies. To see what happens as q
approaches one, we only mention here an explicit estimate

(2.12) P( sup
S¬t¬T

|W (q)
t− −W

(q)
t | > a) ¬ 1− q

a4
(T 2 − S2), 0 ¬ S < T, a > 0,

which indicates that large jumps become unlikely when q is close to one or when
the time interval T − S is small. However, the inequality only provides an up-
per bound. A precise estimate of the asymptotic probability of large jumps will be
established in the form of a Poisson limit theorem in another paper.

To prove (2.12) we use the formula

E(W (q)
t −W (q)

s )4 = (2 + q)(t− s)2 + 2(1− q)s(t− s), 0 ¬ s < t,
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which can be read out from [19], formula (4.14). With ti = S + i(T − S)/n, we
have

(2.13) P( max
i=1,...,n

|W (q)
ti
−W (q)

ti−1
| > a) ¬ 1

a4

n∑
i=1

E(W (q)
ti
−W (q)

ti−1
)4

=
2 + q

a4

n∑
i=1

(ti − ti−1)2 +
2(1− q)
a4

n∑
i=1

ti−1(ti − ti−1)

→ 2(1− q)
a4

T∫
S

t dt as n→∞.

For every trajectory, it follows that maxi=1,...,n |W (q)
ti
−W (q)

ti−1
| converges to

supS<t¬T |W
(q)
t− −W

(q)
t | because for every ε > 0 and every a càdlàg function

there exists a finite partition of [0, T ] into intervals on which the modulus of con-
tinuity is less than ε (see, e.g., [6]). Since the process (W

(q)
t ) is continuous in

probability,
sup

S<t¬T
|W (q)

t− −W
(q)
t | = sup

S¬t¬T
|W (q)

t− −W
(q)
t |

with probability one. Thus (2.12) follows from (2.13).

3. CONNECTION TO FREE PROBABILITY

In this section, we explain how the tangent processes Z(1/2),Z(1) are con-
nected to free probability. For this purpose, we first recall the notion of free con-
volution and free-convolution semigroup in free probability. Free convolution of
measures is a free-probability analog of the convolution of measures. While con-
volution describes the law of the sum of independent random variables, free con-
volution describes that law of the sum of free noncommutative random variables.
Both operations can also be introduced analytically: convolution corresponds to
multiplication of the characteristic functions, and free convolution corresponds to
addition of the so-called R-transforms.

To recall the analytic definition of free convolution, denote by

Gν(z) =
∫ ν(dx)

z − x

the Cauchy–Stieltjes transform of a probability measure ν on the Borel sets of the
real line. It is known that Gµ is a well-defined analytic function in the complex up-
per plane z ∈ C+ = {z = x+ iy : y > 0} with the right inverseKν(z) = G−1ν (z)
which is well defined for z in a Stolz cone of the form {z=x+iy : |x| < αy,
|z| ¬ β}. The R-transform of the probability measure ν is then defined as

(3.1) Rν(z) = Kν(z)− 1/z,
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and the free convolution of two measures µ and ν is a (unique) probability mea-
sure, denoted by µ � ν, with the R-transform Rµ(z) + Rν(z) on the common
domain. These results, at increasing levels of generality, have been established by
Voiculescu [20], Maassen [16], and Bercovici and Pata [2].

A free-convolution semigroup {νt}t­0 is the family of measures such that
νt+s = νt � νs with ν0 = δ0 is a degenerate measure. For example, the family of
Cauchy measures

(3.2) ν
(1)
t (dx) =

t

π(x2 + t2)
dx, t > 0,

with Cauchy–Stieltjes transformsG
ν
(1)
t

(z) = 1/(z + it) andR
ν
(1)
t

(z) = it on C+,
is a free-convolution semigroup, see [3], Section 7, or [4], Example 5.1.

In the seminal paper [4], Biane associated with every free-convolution semi-
group {νt}t­0 a classical Markov process {Zt}t­0 such that the marginal distribu-
tion at time t is νt, and the transition probabilities Qs,t(x, dy) are determined as
follows. Fix s < t and x ∈ R. Let F be an analytic function on C \ R such that

(3.3)
∫ νt(dx)

z − x
=
∫ νs(dx)

F (z)− x
for z ∈ C+.

(Note that F depends on s < t but not on x.) Biane [4] proved that such a mapping
exists and is uniquely determined by the requirements that
(3.4)

F (z̄) = F (z), F (C+) ⊂ C+, ℑF (z) ­ ℑz and lim
y→∞

F (iy)

iy
= 1.

Furthermore, Biane showed that C+ ∋ z 7→ 1/
(
F (z) − x

)
∈ C− is a Cauchy–

Stieltjes transform, so it defines a unique probability measureQs,t(x, dy) such that

(3.5)
∫ 1

z − y
Qs,t(x, dy) =

1

F (z)− x
.

The probability measures {Qs,t(x, dy) : s ¬ t, x ∈ R} satisfy Chapman–Kolmo-
gorov equations, are Feller (i.e. the map x 7→ Qs,t(x, dy) is weakly continuous)
and Q0,t(0, dy) = νt(dy); hence they are transition probabilities of a Markov pro-
cess, denoted by {Zt}t­0. We refer to the so-determined Markov process {Zt}t­0
as to the Biane process associated with the free-convolution semigroup {νt}t­0.

Now recall the processes Z(1) and Z(1/2) described in Section 2. First, for the
Cauchy process Z(1), it is well known that Cauchy distribution generates also the
free 1-stable semigroup and, by [4], Section 5.1, the Cauchy process is indeed the
Markov process associated with the free 1-stable semigroup (3.2). So the Cauchy
process is the 1-stable Biane process. Second, the free 1/2-stable semigroup den-
sity appears in Bercovici and Pata [2], p. 1054, see also [18], Example 3.2. The
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corresponding free-convolution semigroup of measures is then easily determined
from rescaling, which gives

(3.6) ν
(1/2)
t (dx) =

t
√
4x− t2
2πx2

1(t2/4,∞)dx, t > 0.

We show that Z(1/2) defined by (2.1) is the Biane process associated with
{ν(1/2)t }t­0.

PROPOSITION 3.1. The Biane process associated with (3.6) is Z(1/2).

P r o o f. To determine transition probabilities of the Markov process Zt, we
start from the Cauchy–Stieltjes transform

(3.7) Gt(z) :=
∫ ν

(1/2)
t (dx)

z − x
=
t
√
t2 − 4z − t2 + 2z

2z2

of the free 1/2-stable law (3.6). The Cauchy–Stieltjes transform of the closely re-
lated measure µt(A) = ν

(1/2)
t (−A), A ∈ B(R), appears explicitly in [10], p. 590.

We will present a straightforward calculation of (3.7) using basic complex analysis
at the end of this section.

Next, we use the standard branch of the square root, and (3.7) simplifies to

(3.8) Gt(z) = −
4(√

t2 − 4z + t
)2 .

The latter is the most convenient form for equation (3.3) which says that Gt(z) =

Gs

(
F (z)

)
. Using (3.8), we first solve (

√
t2 − 4z + t)2 =

(√
s2 − 4F (z) + s

)2
for real z < t/2 fixed, seeking the real negative solution F (z) < s/2. The equation
becomes

t− s+
√
t2 − 4z =

√
s2 − 4F (z).

Since s < t, both sides are positive, so we get

(3.9) F (z) =
1

4

[
s2 −

(
t− s+

√
t2 − 4z

)2]
.

Formula (3.9) has a unique analytic extension to all complex z from the slit plane
C \ [t2/4,∞); the extension amounts to choosing the standard branch of the square
root. One can check that with this choice of the root, F (z) given by (3.9) satisfies
the uniqueness conditions (3.4). Therefore, (3.5) determines the transition proba-
bilities of the Markov process (Zt) and specifies their Cauchy–Stieltjes transform
as follows:

4

s2 − 4x− (t− s+
√
t2 − 4z)2

.
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The calculations turn out to be easier if we work with the process {Z(1/2)
2t − t2}t­0

by recasting (3.5) via changing the variables in the above Cauchy–Stieltjes trans-
form, first by replacing s, t by 2s, 2t and then replacing x by s2 + x, and z by
z + t2. This results in a somewhat simpler identity

(3.10)
∞∫
0

1

z − y
p
(1/2)
s,t (x, y)dy =

1

−x− (t− s+
√
−z)2

=: Hs,t,x(z)

that we need to prove, with p(1/2)s,t (x, y) as in (2.3). One way to verify (3.10) is to
apply the Stieltjes inversion formula and show that

− 1

π
lim
ε↓0
ℑHs,t,x(y + iε) = p

(1/2)
s,t (x, y).

This can be done by straightforward calculation and is thus omitted. �

P r o o f o f (3.7). By self-similarity, it suffices to work with t = 1. By defi-
nition,∫ ν

(1/2)
1 (dx)

z − x
=
∞∫
1/4

√
4x− 1

2πx2
1

z − x
dx =

2

π

∞∫
0

√
y

(y + 1)2
1

z − (y + 1)/4
dy

=
4

π

π/2∫
0

sin2 α

z − (4 cos2 α)−1
dα =

1

π

2π∫
0

sin2 θ

2(1 + cos θ)z − 1
dθ,

where we used change of variables 4x − 1 7→ y, y 7→ tan2 α, 2α 7→ θ consecu-
tively. Transforming the last expression into a complex integral, we arrive at

∫ ν
(1/2)
1 (dx)

z − x

=
1

π

∮
|ζ|=1

( ζ−ζ
2i

)2
2
(
1 + ζ+ζ

2

)
ζ − 1

dζ

iζ
= − 1

4πi

∮
|ζ|=1

1

z

(ζ2 − 1)2

ζ2
[
ζ2 + 2z−1

z ζ + 1
]dζ.

The integrand above has poles at

ζ0 = 0, ζ1 =
1 +
√
1− 4z

1−
√
1− 4z

and ζ2 =
1−
√
1− 4z

1 +
√
1− 4z

,

and ζ0 are ζ2 are within the unit disc for z ∈ C+ (we take the standard branch of
square root). We then write the complex integral as∮

|ζ|=1

(ζ2 − 1)2

zζ2(ζ − ζ1)(ζ − ζ2)
dζ =:

∮
|ζ|=1

hz(ζ)dζ
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and obtain

Resζ0hz =
1

ζ

(
1

ζ1
+

1

ζ2

)
=

1− 2z

z2
, Resζ1hz =

(ζ22 − 1)2

zζ22 (ζ2 − ζ2)
= −
√
1− 4z

z2
.

The desired result now follows from the residue theorem:∫ ν
(1/2)
1 (dx)

z − x
= − 1

4πi

∮
|ζ|=1

1

z

(ζ2 − 1)2

ζ2
[
ζ2 + 2z−1

z ζ + 1
]dζ

= − 1

4πi
2πi(Resζ0hz +Resζ2hz) =

√
1− 4z − 1 + 2z

2z2
. �

Acknowledgments. WB thanks Chris Burdzy for pointing out the close rela-
tion between the trajectories of the free Brownian motion and the Cauchy process.
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[8] M. Bożejko, B. Kümmerer, and R. Speicher, q-Gaussian processes: non-commutative

and classical aspects, Comm. Math. Phys. 185 (1) (1997), pp. 129–154.
[9] W. Bryc, Stationary random fields with linear regressions, Ann. Probab. 29 (1) (2001), pp.

504–519.
[10] W. Bryc and A. Hassair i, One-sided Cauchy–Stieltjes kernel families, J. Theoret. Probab.

24 (2) (2011), pp. 577–594.
[11] W. Bryc, W. Matysiak, and P. J . Szabłowski, Probabilistic aspects of Al-Salam–

Chihara polynomials, Proc. Amer. Math. Soc. 133 (4) (2005), pp. 1127–1134 (electronic).
[12] W. Bryc and J. Wesołowski, Conditional moments of q-Meixner processes, Probab. The-

ory Related Fields 131 (3) (2005), pp. 415–441.
[13] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence,

Wiley, New York 1986.
[14] K. J . Falconer, The local structure of random processes, J. London Math. Soc. (2) 67 (3)

(2003), pp. 657–672.
[15] M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclo-

pedia Math. Appl., Vol. 98, Cambridge University Press, Cambridge 2009.
[16] H. Maassen, Addition of freely independent random variables, J. Funct. Anal. 106 (2) (1992),

pp. 409–438.
[17] P. Mörters and Y. Peres, Brownian Motion. With an appendix by Oded Schramm and Wen-

delin Werner, Cambridge University Press, Cambridge 2010.



352 W. Bryc and Y. Wang

[18] V. Pérez-Abreu and N. Sakuma, Free generalized gamma convolutions, Electron. Com-
mun. Probab. 13 (2008), pp. 526–539.

[19] P. J . Szabłowski, q-Wiener and (α,q)-Ornstein–Uhlenbeck processes. A generalization of
known processes, Theory Probab. Appl. 56 (4) (2012), pp. 634–659.

[20] D. Voiculescu, Addition of certain noncommuting random variables, J. Funct. Anal. 66 (3)
(1986), pp. 323–346.

Włodzimierz Bryc
Department of Mathematical Sciences
University of Cincinnati
2815 Commons Way
Cincinnati, OH, 45221-0025, USA
E-mail: wlodzimierz.bryc@uc.edu

Yizao Wang
Department of Mathematical Sciences

University of Cincinnati
2815 Commons Way

Cincinnati, OH, 45221-0025, USA
E-mail: yizao.wang@uc.edu

Received on 30.12.2015;
revised version on 15.2.2016


	1 Introduction
	2 Convergence to tangent processes
	2.1 Tangent processes of q-Ornstein–Uhlenbeck processes
	2.2 Tangent processes of q-Brownian motions

	3 Connection to free probability
	References

