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Abstract. We show first that there are intrinsic relationships among
different conditions, old and recent, which lead to some general state-
ments in both the Stieltjes and the Hamburger moment problems. Then
we describe checkable conditions and prove new results about the moment
(in)determinacy for products of independent and non-identically distributed
random variables. We treat all three cases: when the random variables are
nonnegative (Stieltjes case), when they take values in the whole real line
(Hamburger case), and the mixed case. As an illustration we characterize
the moment determinacy of products of random variables whose distribu-
tions are generalized gamma or double generalized gamma all with distinct
shape parameters. Among other corollaries, the product of two independent
random variables, one exponential and one inverse Gaussian, is moment
determinate, while the product is moment indeterminate for the cases: one
exponential and one normal, one chi-square and one normal, and one inverse
Gaussian and one normal.
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1. INTRODUCTION

There is a long standing interest in studying products of random variables; see,
e.g., (3], [I6], [23], [6], [22], [00], [27] and the references therein. The reasons
are twofold. On one hand, to deal with products leads to non-trivial, difficult and
challenging theoretical problems requiring to use diverse ideas and techniques. Let
us mention just a few sources: [I0], [], [3]. On the other hand, products of random
variables are naturally involved in stochastic modelling of complex random phe-
nomena in areas such as statistical physics, quantum theory, communication theory
and financial modelling; see, e.g., [@], [[]-[I0], [T2], [2T], [5].

In general, it is rare to find explicit closed-form expressions for the densities
or the distributions of products of random variables with different distributions. It
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is, however, possible to study successfully the moment problem for products of
independent random variables; see, e.g., [[5], [26]. Answers about the moment
(in)determinacy can be found if requiring only information about the asymptotics
of the moments or about the tails of the densities or of their distributions.

All random variables considered in this paper are defined on an underlying
probability space (€2, F,P), and we denote by E[X] the expected value of the
random variable X. A basic assumption is that the random variables we deal with
have finite moments of all positive orders, i.e. E[|X|*] < co, k= 1,2,... We
write X ~ F' to mean that X is a random variable whose distribution function is
F and denote its kth order moment by m; = E[X*]. We say that X or F is nmo-
ment determinate (M-det) if F' is the only distribution having the moment sequence
{my}72,; otherwise, we say that X or F' is moment indeterminate (M-indet).
We use traditional notions, notation and terms such as Cramér’s condition, Car-
leman’s condition, Krein’s condition, and Hardy’s condition (see, e.g., [I7], [15],
and [26]).

We use I'(+) for the Euler-gamma function, R = (—o0, 00) for the set of all
real numbers, R = [0, co) for the nonnegative numbers, the symbol O(+) with its
usual meaning in asymptotic analysis, and the abbreviation i.i.d. for independent
and identically distributed (random variables).

In Section 2 we describe useful intrinsic relationships among different old and
recent conditions involved in the Stieltjes and/or the Hamburger moment problems.
Then we present some new results under conditions which are relatively easy to
check. In Section 3 we deal with the moment determinacy of products of indepen-
dent nonnegative random variables with different distributions, while in Section 4
we consider products of random variables with values in R. Finally, in Section 5,
we treat the mixed case: products of both types of random variables, nonnegative
ones and real ones, the latter with values in R.

The results presented in this paper extend some previous results for products
of i.i.d. random variables. Here we need a more refined analysis of the densities
of products than in the i.i.d. case. As an illustration we characterize the moment
(in)determinacy of products of random variables whose distributions are general-
ized gamma or double generalized gamma all with distinct shape parameters. We
have derived several corollaries involving popular distributions widely used in the-
oretical studies and applications. Let us list a few:

(i) the product of two independent random variables, one exponential and
one inverse Gaussian, is M-det;

(ii) the product of independent exponential and normal random variables is
M-indet;

(iii) the product of independent chi-square and normal random variables is
M-indet; and

(iv) the product of independent inverse Gaussian and normal random vari-
ables is M-indet.
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2. SOME GENERAL RESULTS

In this section we present two lemmas, each containing workable conditions
which, more or less, are available in the literature. Some of these conditions are old,
while others are recent. We describe intrinsic relationships among these conditions
and use them to obtain new results; see Theorems 2.1-2.4.

Our findings in this section can be considered as a useful complement to the
classical criteria of Cramér, Carleman, Krein, Hardy and their converses, so that all
these taken together make more clear, and possibly complete, the picture of what
is in our hands when discussing the determinacy of distributions in terms of their
moments.

2.1. Stieltjes case. We present the first important lemma.

LEMMA 2.1. Let 0 < X ~ F. Then the following statements are equivalent:
Q) my = O(k?*) as k — oo.

(ii) limsupy_, . k=1 mi/(%) < 00.

(i) mp < clg (2K)!, k=1,2,..., for some constant cy > 0.

(iv) X satisfies Hardy’s condition, namely, E[e¢ X | < oo for some constant
c>0.

The equivalence of conditions (i) and (ii), a known fact for decades, can be
easily checked. Conditions (iii) and (iv) appeared recently and their equivalence to
condition (ii) was shown in [25].

THEOREM 2.1. Let 0 < X ~ F with moments growing as follows: my =
O(k™) as k — oo for some constant a € (0,2]. Then the following statements
hold:

(1) X satisfies Hardy’s condition, and hence X is M-det.

(i1) The boundary value a = 2 is the best possible for X to be M-det. In fact,
there is an M-indet random variable X > 0 such that E[X*] = O(k%) as k — oo
forall a > 2.

Proof. Part (i) follows easily from Lemma 2.1. To prove the first conclusion
of part (ii), we may consider the positive random variable X, with density f,(x) =
(P(a+1)) “lexp(—z/%), z > 0, where a > 0. Then the conclusion follows from
the facts: (i) X, is M-indet if a > 2 (see Theorem 2 in [I9]) and (ii) for a € (0, ¢),
E[X} =T((k + 1)a)/T'(a) = O(k) as k — co. As for the stronger second
conclusion of part (ii), we consider the universal X (independent of a) with density
f(x) = ¢ exp (—vz/(1+ Inz|%)), = > 0, where § > 1 and ¢ is the norming
constant. Then it can be shown that X is M-indet and, for all a > 2, E[X*] =
O(k*) as k — oo. This completes the proof. m
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REMARK 2.1. For 0 < X ~ F, let us compare the following two moment
conditions: (a) my, = O(k?*) as k — oo, and (b) my1/my = (’)((k + 1)2) as
k — oo. Here (a) is the condition in Theorem 2.1, while condition (b) was intro-
duced and used in the recent paper [15]. Both conditions are checkable and each
of them guarantees the moment determinacy of F. Just to mention that condition
(b) implies condition (a) by referring to Theorem 3 in [135], while the converse may
not be true in general.

The next result, Theorem 2.2 below, is the converse of Theorem 2.1, and deals
with the moment indeterminacy of nonnegative random variables. First we need
one condition which is used a few times in the sequel.

CONDITION L. Suppose, in the Stieltjes case, that f(x), € R4, is a density
function such that, for some fixed ¢ > 0, f is strictly positive and differentiable
for x > xg and

(@) = =7

In the Hamburger case we require the density f(x), = € R, to be symmetric.

oo as xp < x — 00.

This condition plays a significant réle in moment problems for absolutely con-
tinuous probability distributions. It was explicitly introduced and efficiently used
for the first time in [T4] and later used by several authors naming it as ‘Lin’s con-
dition’. This condition is involved in some of our results to follow.

THEOREM 2.2. Let0 < X ~ F and its moment sequence {my, k =1,2,...}
grow ‘fast’ in the sense that my > ck@tak =192 .. for some constants
c> 0 and € > 0. Assume further that X has a density function f which satisfies
the above Condition L. Then X is M-indet.

Proof. By the condition on the moments, the Carleman quantity for the mo-
ments of F' is finite. Then, applying Condition L and the second part of the proof
of Theorem 4 in [19], we conclude that indeed X is M-indet. m

REMARK 2.2. To provide one application of Theorem 2.2, let us consider, for
example, the random variable X = €27 where ¢ > 0 and & ~ Exp(1), the
standard exponential distribution. On one hand, we can use the Krein criterion
and show that X is M-indet. On the other hand, X satisfies the moment condition
in Theorem 2.2. And here is the point: instead of applying Krein’s condition, we
can prove the moment indeterminacy of X by checking that its density f satisfies
Condition L. In general, we follow the approach which is easier.

2.2. Hamburger case. We start with Lemma 2.2 establishing the equivalence
of different type of conditions involved to decide whether a distribution on the
whole real line R is M-det. Then we present some new results. Theorem 2.3 below
is a slight modification, in a new light, of a result in [], p. 92, while Theorem 2.4
is the converse of Theorem 2.3. Both proofs are omitted.
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LEMMA 2.2. Let X be a random variable taking values in R. Then the fol-
lowing statements are equivalent:

1) mop = 0((2k)2k) as k — oo.

(i) limsupy,_, . (2k)"* m%(%) < 0.
(iii) Moy < c’(‘j (2K)!, k=1,2,..., for some constant co > 0.

(iv) X satisfies Cramér’s condition: its moment generating function exists.

Proof. It is easy to check the equivalence of conditions (i) and (ii). The
equivalence of conditions (ii) and (iv) is well known, but we provide here a simple
and instructive proof based on condition (i). Indeed, by Lemma 2.1 above, con-
dition (i) is equivalent to say that the random variable Y = X? satisfies Hardy’s
condition, namely, E[exp(cvY")] = E[exp(c|X|)] < oo for some constant ¢ > 0.
The latter, however, means that X itself has a moment generating function. This is
exactly the statement (iv). Finally, applying again Lemma 2.1 to the nonnegative
random variable Y, we obtain the equivalence of (ii) and (iii). Therefore, as stated,
all four conditions (i)—(iv) are equivalent. m

THEOREM 2.3. Let X ~ F, where F has an unbounded support supp(F) C
R and its moments satisfy the condition: moj, = O((Qk)Q“k) as k — oo for some
constant a € (0, 1]. Then the following statements hold:

(1) X satisfies Cramér’s condition, and hence is M-det.

(i) The boundary value a = 1 is the best possible for X to be M-det. In
fact, there is an M-indet random variable X such that E[X?*] = O((2k)?*) as
k — oo forall a > 1.

REMARK 2.3. Let X ~ F with F having unbounded support, supp(F) C R.
We want to compare the following two moment conditions: (a) moj = (9((2]4:)%)
as k — oo, and (b) my(j41y/mak = O((kz + 1)2) as k — 0o. Here (a) is the con-
dition of the growth of the moments stated in Theorem 2.3, while condition (b) was
introduced and successfully exploited in the recent work [28)]. Both conditions are
checkable and each of them guarantees the moment determinacy of X and F. Let
us mention that condition (b) implies condition (a) by referring to Theorem 2 in
[26], while the converse may not in general be true.

THEOREM 2.4. Suppose that the moments of X ~ F grow ‘fast’ in the sense
that moy, 2> c(2k)2(1+5)k, k=1,2,..., for some positive constants c and €. As-
sume further that X has a density function f which is symmetric about zero and
satisfies the above Condition L. Then X is M-indet.

REMARK 2.4. For example, instead of applying Krein’s condition, we can use
Theorem 2.4 to prove the moment indeterminacy of X ~ F whose density is the
symmetrization of that of £17¢, where ¢ > 0 and ¢ ~ Exp(1).
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3. PRODUCTS OF NONNEGATIVE RANDOM VARIABLES

We start with two results describing relatively simple conditions on the ran-
dom variables &1, . . ., &, in order to guarantee that their product is M-det.

THEOREM 3.1. Suppose that the moments m; , = E[¢F], i = 1,... n, of the
independent nonnegative random variables &1, . . . , €, satisfy the conditions:

mi,k:O(ka"k) as k— oo, fori=1,...,n,

where ay, . .., a, are positive constants. If the constants a1, . .., ay, are such that
a1+ ...+ an < 2, then the product Z,, = &1 ... &, is M-det.

Proof. With m;, = E[Z¥] we infer, by the independence of &;, that
mE =mig...mpx = Ok . OK"F) = Ok™) as k — oo,

where a = a; + ... + a,. Since, by assumption, a < 2, we apply Theorem 2.1 (i)
to conclude the M-det property of the product Z,,. =

Similarly, we have the following result in terms of the ratio of moments.

THEOREM 3.2. Suppose that the growth rates r1,...,1y of the moments of
the independent nonnegative random variables &1, . . . , &, satisfy

mi k+1 My, k+1
— T = O0((k+1)™), ..., /T = O((k+1)™ k — oo
mik (( ) ) My (( ) ) @

where m;, = E[¢F], i =1,...,n, k= 1,2,... If the rates r1,...,ry are such
thatry + ...+ ry < 2, then the product Z, = &1 ...&, is M-det.
Let us provide now conditions under which the product Z,, becomes M-indet.
THEOREM 3.3. Let us consider n independent nonnegative random variables

&~ F,1=1,...,n,wheren > 2. Suppose that each F; has a density f; > 0 on
(0, 00) and that the following conditions are satisfied:

(i) At least one of the densities fi(x),..., fn(x) is decreasing in x > xo,
where xg > 1 is a constant.

(ii) Foreachi=1,...,n, there exists a constant A; > 0 such that the density
fi and the tail function F; = 1 — F; satisfy the relation
(3.1 filx)[Fi(x) > Ai/z for x> o,
and there exist constants B; > 0, «; > 0, 8; > 0 and real ; such that
(3.2) Fy(x) > Biz" exp(—auzP)  for z > x.

If, in addition to conditions (i) and (ii), the parameters 31, . .., By are such

that " | 1/B; > 2, then the product Z, = & ... &, is M-indet.
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Proof. We may assume, by condition (i), that f,, is the density which is
decreasing in © > x¢. Then, clearly, Z,, is nonnegative and its density, say h,, can
be written as follows: for x > 0,

o\g

(Z N 2 fi(ur) fo u2) fn—l(un—l)

0 U1 U2 Un—1

X fn (x) durdus . . . dip_1.
uLu ... Up—-1

This representation shows that h,,(z) > 0. To prove the M-indet property of Z,,,
we will show that the Krein quantity K[h,,] is finite. Thus, we need an estimate of
the lower bound of h,,.

To do this, letus define B =Y 8%, 0, = 8;'/B € (0,1),i=1,...,n,
0 = min{6y,...,0,}and vy = (2" 'z )1/9 Then for each x > xg, we take a; =
2% > xg, i = 1, ...,n — 1, which together imply that

x/(2”_1a1a2 ceip_1) = :Lﬁ”/Q”_1 > x0,

because Z?:l 0; = 1. For these = and a;, we have, by condition (i), the following:

x) N 2}1 2712 N 2a7_1 fl(’[ﬂ) fQ(UQ) - fnfl(unfl)

Uy U2 Un—1
X
X fo | ————— ) durdus . . . dup_1
ULuU2 ... Up-1

x n 240 fi(u)
G

i=1 a;

aip a2 an—1

Then, by Lemma 3.1 below (with » = 2) and (3.1) and (3.2), we have, for z > xy,

n—1 A, Fi(a;) " 8,
> - 0 1 1\ > Y _ i 0:8;
hp(x) = frn(2”) 11;[1 S0+ A) Cxexp [ Z oz,
where C:21*”An(H A/ (1+ A4) )HZ (Biandy =3"" 0i(vi — 1).

We now evaluate the Krem quantity K[h,] on (xg, 00). Recall that this is a
Stieltjes case and we have the following:

¢ —log hy, (%)

Zo

dr < 0o.

The conclusion about the finiteness of K[h,,] relies essentially on the facts that
0;0; =1/B < 1/2, i =1,2,...,n. Therefore, Z,, is M-indet by Proposition 1
in [[C7]. The proof is complete. m
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LEMMA 3.1. Let F be a distribution on R such that (i) it has density f on
the subset [a,ra], where a > 0 and r > 1, and (ii) for some constant A > 0,
f(x)/F(x) > A/z on [a,ra]. Then

rfaf(;)dx > (1 - i) lfAFia).

a

Proof. Integration by parts yields

e f(x re dF (x F(a Fl(ra " F(x
R

a a

1\ F(a) 17
>(1-=
(-0) -ty

The last inequality is due to the monotonicity of F' and the condition on the failure
rate f/F. Hence the required conclusion follows. m

EXAMPLE 3.1. For illustration of how to use Theorem 3.3, consider the class
of generalized gamma distributions. We use the notation { ~ GG(«, 3,7) if the
density function of the random variable £ is of the form

(3.3) f(z) = ca" Lexp(—az®), x>0.

Here o, 8,7 > 0, f(0) = 0if v # 1, and ¢ = 3a"/# /T'(~/B) is the norming con-
stant. We have the following statement (see also Theorem 8.4 in [I8] for a more
general result with different proof).

COROLLARY 3.1. Suppose &1, ... ,&, are n independent random variables
such that & ~ GG(«y, Biy7vi), 1 = 1,...,n, and let Z,, = & ...&,. Then Zy, is
M-det if and only if > """ | 1/5; < 2.

Proof. Note that for £ ~ GG(a, 3,7) defined by (3.3) we have two prop-
erties: (a) f(x)/F(z) = afz’~1, F(z) = [c¢/(aB)]z? P exp(—az?) as z — oo,
and (b) my = o *BT((y + k)/B) /T (v/B) = O(k¥/B) as k — oo. Hence the
sufficiency part follows from Theorem 2.1 because E[Z*] = O(kP*) as k — oo,
where B = Z?:l 1/p;. The necessity part is a consequence of Theorem 3.3. =

EXAMPLE 3.2. Consider the class of inverse Gaussian distributions. We say
that X ~ IG(p, A) if the density of X is of the form

(3.4) f(x):< A >1/2exp [—W} x>0,

23 22w

where p, A > 0 and f(0) = 0. If X ~ IG(u, \), then it has a moment generating
function. This in turn implies that the power Y = X? satisfies Hardy’s condition,
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and hence is M-det. Actually, it follows that, for real », X" is M-det if and only if
|| < 2 (see [24]). If & and & are two i.i.d. random variables with density (3.4),
then the product Z = &5 is also M-det due to Proposition 1 (iii) in [[3]. The next
result is for products of non-identically distributed random variables.

COROLLARY 3.2. Let & ~ IG(u1,\1), & ~ IG(u2, X2) and n ~ Exp(1)
be three independent random variables. Then the following statements hold:
1) Z =& is M-det.
(i) Z = &€& is M-det.
(i) Z = &1&9n is M-indet.

Proof. First, for X ~ F' = IG(u, \), it can be shown (we omit the details)
that the moment E[X*] = O(k*) as k — oo. Second, the hazard rate function
r(z) = f(x)/F(z) — \/(2u?) > 0 as x — oo. Third, the tail function F satisfies
(3.2) with the exponent 8 = 1. With these three steps we are in a position to apply
Theorems 3.1 and 3.3 to confirm the validity of (i)—(iii) as stated above. =

4. PRODUCTS OF RANDOM VARIABLES IN R

We start with two results describing relatively simple conditions on the ran-
dom variables &, ...,&, in order to guarantee that their product is M-det. The
results are similar to the above Theorems 3.1 and 3.2, however, we remember that
here we deal with the Hamburger case, so we work with the even order moments.

THEOREM 4.1. Suppose that the even order moments m; o, = E[¢2F] )i =
1,...,n, of the independent random variables &1, . . . , &, satisfy the conditions:

My ok = (’)((2]{:)2‘“’“) as k— oo, for i=1,...,n,

where a1, ..., a, are positive constants. If the constants a1, . . ., a, are such that
a1+ ...+ an, < 1, then the product Z,, = &1 ... &, is M-det.

Proof. With my, = E[Z2*] we have, by the independence of &;,
Mok =M1 2k - - . My 26 = O((2k)*1F) ... O((2k)**F) = O ((2k)***) as k — oo,

where a = a1 + ... + a,. Since, by assumption, a < 1, we apply Theorem 2.3 (i)
to conclude the M-det property of the product Z,,. =

A similar result holds in terms of the ratio of even order moments.

THEOREM 4.2. Suppose that the growth rates r1,...,ry, of the even order
moments of the independent random variables &1, . . . , &, satisfy
m m
TH2(k41) O((k+1)™), ..., n2(kt1) O((k+1)) as k — oo,

mi ok My 2k
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where m; o, = E[¢2K],i = 1,...,n, k= 1,2,... Ifthe rates 1, ..., 1y, are such
thatri + ...+ 1 < 2, then the product Z, = &1 ... &, is M-det.

Let us describe now conditions under which the product Z,, is M-indet.

THEOREM 4.3. Let us consider n independent random variables ; ~ F;, 1 =
1,...,n, where n > 2. Suppose each F; has a density f; which is strictly positive
on R and symmetric about zero. Assume further that the following conditions are
satisfied:

(i) At least one of the densities f1(x),..., fn(x) is decreasing in x > x,
where xqg > 1 is a constant.

(ii) Foreachi =1,...,n,there exists a constant A; > 0 such that (3.1) holds
and there exist constants B; > 0, a; > 0, 8; > 0 and real ; such that (3.2) holds.

If, in addition to the above conditions, Z?:l 1/B; > 1, then the product Z,, =
& ... &, is M-indet.

Proof. We may assume, by condition (i), that f,, is the density which is
decreasing in x > xg. Then the density h,, of Z, is symmetric about zero (see,
e.g., [IT]) and h,, can be written as follows: for z > 0,

A1) ho(z) =27 ;fozfc’ ‘Z’ flitlcl) fa(u2)  fo1(un-1)

U2 Up—1

X fn <ZE> du1dU2 N dun_1.
UutuU2 ... Up-1

Hence h,,(x) > 0. The remaining proof is similar to that of Theorem 3.3 (by using
Theorem 2.2 in [20] for the Hamburger case) and is omitted. m

EXAMPLE 4.1. We now apply Theorem 4.3 to the product of double gen-
eralized gamma random variables. We write { ~ DGG(a, 3,7) if £ is a random
variable in R with density function of the form

4.2) f(x) = ez Lexp(—alz|?), zeR.

Here o, 3,7 >0, f(0) = 0if v # 1, and ¢ = Ba?/#/(2T'(v/B)) is a norming
constant.

COROLLARY 4.1. Suppose &1, ..., &, are n independent random variables,
and let & ~ DGG (o, Biy7i), i@ = 1,...,n. Then the product Z,, = &1 ...&, is
M-det if and only if > | 1/8; < 1.

Proof. Note that for the moment moy = E[¢?*] of £ ~ DGG(a, B,7) de-
fined by (4.2) we have the following relation: moy = O((Qk)%/ﬁ) as k — oo.
Thus, the sufficiency part is exactly Theorem 10 in [Z26]. The same statement can
also be proved by Theorem 4.1 above. Finally, the necessity part follows from
Theorem 4.3 (we may redefine f(0) to be a positive number if necessary). m
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5. THE MIXED CASE

For completeness of our study we need to consider products of both types of
random variables, nonnegative ones and real ones. Since such a ‘mixed’ product
takes values in R, this is a Hamburger case, so we can formulate results similar to
Theorems 4.1 and 4.2. Since the conditions, the statements and the arguments are
almost as in these two theorems, we do not give details. Instead, we present now a
result in which the ‘mixed’ product Z,, = £; ... &, is M-indet.

)

THEOREM 5.1. Given are n independent random variables such that the ‘first
group, &1, ... ,&n,, consists of nonnegative variables, while the variables in the
‘second’ group, {ng+1,s - - - En, all take values in R, where 1 < ng < n. Suppose
each &; ~ F; has a density f; and assume further that f;, i = 1, ..., ng, are strictly
positive on (0,00), while f;, j =ng+1,...,n, are strictly positive on R and
symmetric about zero. Moreover, assume the following conditions are satisfied:

(i) At least one of the densities f;(x), j = no+ 1,...,n, is decreasing in
T > xo, where xg > 1 is a constant.

(ii) Foreachi = 1,..., n,there exists a constant A; > 0 such that (3.1) holds
and there exist constants B; > 0, a; > 0, 8; > 0 and real ; such that (3.2) holds.

If, in addition to (i) and (ii), the parameters 3; are such that Z?Zl 1/8; > 1,
then the product Z,, = &1 ... &, is M-indet.

To prove the theorem, it suffices to replace the coefficient 2"~ ! in the integral
form of h,, in (4.1) by 2"~ ~1_ As an application of Theorem 5.1 we derive below
two interesting corollaries.

COROLLARY 5.1. Consider two independent random variables, £ and 7,
where & ~ Exp(1) andn ~ N(0,1) (standard normal). Then Z = £ n is M-indet.

COROLLARY 5.2. (i) The product of two independent random variables, one
chi-square and one normal, is M-indet.

(ii) The product of two independent random variables, one inverse Gaussian
and one normal, is M-indet.
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