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Abstract. The paper deals with a new class of random walks strictly
connected with the Pareto distribution. We consider stochastic processes
in the sense of generalized convolution or weak generalized convolution.
The processes are Markov processes in the usual sense. Their structure is
similar to perpetuity or autoregressive model. We prove the theorem which
describes the magnitude of the fluctuations of random walks generated by
generalized convolutions.

We give a construction and basic properties of random walks with
respect to the Kendall convolution. We show that they are not classical Lévy
processes. The paper proposes a new technique to cumulate the Pareto-type
distributions using a modification of the Williamson transform and contains
many new properties of weakly stable probability measure connected with
the Kendall convolution. It seems that the Kendall convolution produces a
new class of heavy tailed distributions of Pareto-type.
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1. INTRODUCTION

In 2009 Nguyen Van Thu in [19], considering only the Kingman convolution,
showed that each generalized convolution, together with an infinitely divisible dis-
tribution with respect to this convolution, defined a Markov process, which could
be treated as a Lévy process in the sense of this convolution. The most important
example is the Bessel process defined by the Kingman convolution (sometimes
called also the Bessel convolution) — widely applied and intensively studied in
many different areas of mathematics.

The Lévy processes with respect to generalized convolutions and weak gen-
eralized convolutions were introduced in [I]. The paper deals with the Lévy pro-
cesses constructed as the Markov processes in the usual sense.

We consider here the Markov chain {X,,: n € Ny}, where Ny = N U {0},
given by the construction proposed in [I].
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The possibility of many different interpretations of the cumulation of indepen-
dent steps A X7, ..., AXy into the state Xj-cumulation, which is not just a simple
addition, promises wide applicability of such processes. Similarly to the classical
theory, the discrete time processes can be built on the basis of any step distribu-
tion (in the sense that distribution of the unit step does not have to be infinitely
divisible in any sense). The main generalization is that instead of classical addition
we consider here two binary operations. The first one is the generalized convolu-
tion, which is an associative and commutative operation on the set of probability
measures on the Borel subsets of the positive half line. We also consider general-
ized convolution extended to the Borel subsets of the real line in the sense given
in [B], in particular, weak generalized convolution. Since weakly stable probability
measure, which is strictly connected with the weak generalized convolution, is a
natural generalization of symmetric a-stable distribution, it is worth investigating
and it can be used in applications.

The next section deals with the definition and the existence of the Markov
chains based on generalized convolutions and weak generalized convolutions. We
recall construction given in [[I]. A theorem describing the magnitude of the fluctu-
ations of constructed random walks will be proved.

In the third section we study properties of random walks under the Kendall
generalized and weak Kendall generalized convolutions. The main tool which we
use is a transform called homomorphism:

h(8) = (1— %)
for o > 0. For weakly stable probability measure with the characteristic function,

fia(t) = (1 [t]*):

for 0 < o < 1, we arrive at random walks on the real line.
In the Kendall generalized convolution case we obtain the following random
walk:
Xns1 = (X VAXp41) 037 ae,

where V denotes maximum, (6,,) is a proper i.i.d. sequence with the Pareto distri-
bution with density
Toq(dz) = 2a/x2a+11(1700)d:c

such that 6,, is independent of (X,, V AX,,4+1). The random variables (Q,,) take
values zero and one provided that we know the position of (X,, V AX,,11).

We show that the obtained random walks are not the Lévy processes in the
usual sense. Their structure is similar to the first order random coefficients autore-
gressive model (see, e.g., [2]) but with a different dependence structure.

We also present many new properties of the weakly stable probability measure
lha, 0 particular, we obtain a characterization of the Pareto distribution o, in
terms of p, for 0 < a < 1.
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In order to start our constructions we give some basic facts on generalized
convolution and weak generalized convolution.

The main mathematical tool used here is the generalized convolution defined
by Urbanik (see [IX]) on the set P, of probability measures on the Borel subsets
of the positive half line. For simplicity, we will use the notation 7}, for the rescaling
operator defined by (7,\)(A) = A(A/a) for every Borel set A when a # 0, and
To\ = dg is the probability measure concentrated at zero.

DEFINITION 1.1. A commutative and associative P, -valued binary operation
¢ defined on Pi is called a generalized convolution if for all A\, A1, Ay € P, and
a > 0 we have:

(1) dgo A= X
(i) (pA1 4+ (1 =p)A2) o A =p(A1 o A) + (1 — p)(A2 © A) whenever p €
0, 1];

(i) T,( A1 0 X2) = (Tuh1) © (Tuh2);

@iv) if {\, :n > 1} C Py with A,, — A, then A\, on — Aonforalln € Py
(here — denotes a weak convergence of probability measures);

v) there exists a sequence (¢, )nen Of positive numbers such that the se-
q € p
quence T, 05" converges to a probability measure different from dy.

We call the set (P4, ©) a generalized convolution algebra. A continuous map-
ping i : Py — R such that
h(pA+ (1 —p)v) =ph(A) + (1 —p)h(v) and h(Aov) = h(A)h(v)

forall \,v € Py and p € (0,1) is called a homomorphism of (P, ). For every
probability measure A € P, we have

h(A) = @f h(52)A(dz).

The algebra (P, ©) is regular if it admits a non-trivial homomorphism, i.e.
such an h that b # 0 and h # 1. Since for all A1, Ay € P; we have

A1 0)\2(14) = f f p;p,y(A))\l(di’«"))\2(dy);
Ry Ry

every generalized convolution is uniquely determined by the probability kernel
Pay = 0z © 0y.

Evidently, it follows that for all z,y,c > 0
* Pz,0 = Oz
* Pxy = Py,z»
* LePxy = Pex,cys

o oy =Topz1, Wherev=axVy, z=(xAy)/(x Vy).
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The origin of the generalized convolution can be found in the Kingman pa-
per [IT], where the first example of random walk under generalized convolution
(called the Kingman or Bessel convolution) is considered. The Kingman convo-
lution has a natural interpretation at the interference phenomena (see [20]). In
the series of papers (see [I'/] and [I8]) Urbanik developed the theory of general-
ized convolutions. In [2T] and [22] Vol’kovich was investigating this theory. Many
open problems connected with generalized convolutions were given by Vol’kovich,
Toledano-Kitai and Avros (see [23]), Hazod [4] or Van Thu [I9]. In 2012 the paper
[Z] appeared about generalized convolutions in the non-commutative probability
theory. Hence, it can be supposed that the results obtained here will also be useful
in the non-commutative probability theory. On the other hand, the general theory
of the Lévy processes in the generalized convolution sense was first established in
[[I]. In this paper we develop that theory giving an explicit recipe for random walks
with respect to the Kendall convolution, presenting new results on this topic and
proposing a new technique of the Williamson transform to investigate constructed
stochastic processes.

EXAMPLE 1.1. The best known examples of generalized convolutions are the
following:

+ a-convolution x,, for o > 0 given by the formula §, *, 9, = d., where ¢* =
a® + b%; the corresponding homomorphism h(d;) = exp{—t*};

« max-convolution ., given by &, xo dp = 0., Where ¢ = a V b; the corre-
sponding homomorphism £(d;) = 11 1)(%);

« symmetric convolution x; 1 given by d, *1.1 0y = %6a+b + %5‘%,}‘; the cor-
responding homomorphism h(d;) = cos(t);

« the Kendall convolution A\, for & > 0 with the probability kernel §,/\,d, =
(1 —a®/b%) 0p + (a®/b*)Tymaq for 0 < a < b, where o, is the Pareto distribu-
tion with the density mq (dz) = 20/t o) (x)dx and h(5;) = (1 — ) 4

» the Kingman convolution % g (8 > 1) given by

(5(1 *1.8 (Sb(d.fU) =

~11 22 — (a—b)2) ((a + b)2 — 22)]B~3)/2
=5 <B 2 ’2> — )(2(25)5—3) ) Ljja—b),a+t)(x)dx

and
B/2-1
w0 =12 (3] Tanale)

where Jg/5_1(t) is the Bessel function of order 3/2 — 1, and B(a, b) is the beta
function with parameters a and b;
« the Kucharczak convolution o, (0 < « < 1) given by

sin(ma) - (ab)*(2x —a —b
- (x(a;(— a)_(b)))a ((x " a)- (a)c — b)l[(a“—kbﬁ)l/a,oo) (x)dx

5(1 O« 5b(dx) =



Kendall random walks 169

and h(d;)(t) = I'(a)"'T(«, t), where T'(a,t) is the incomplete I'-function; for
more details see [17].

In [6] one can find the definition and basic properties of generalized convo-
Iution on the set P of probability measures on the Borel subsets of the real line.
An example of such an object is a weak generalized convolution connected with
weakly stable distribution. We recall the definition of weak stability of probability
measures.

DEFINITION 1.2. A probability measure u € P is weakly stable if

Vabe RINeP TousxThu=pol

or, equivalently,
VAL A €PINEP podi*xpody=pol,

where (0 N)(A) = [ (A/s)\(ds) for every Borel set A.

From Theorem 6 in [I6] we know that if i is a weakly stable probability
measure on a separable Banach space E, then either there exists a € E such that
ft = &, or there exists a € E \ {0} such that y = (8, + 6_,) or p({a}) = 0 for
every a € E. In this paper we consider non-trivial weakly stable measures, i.e.
weakly stable probability measures without any atoms. In [15] Misiewicz defined
a weak generalized convolution:

DEFINITION 1.3. For a weakly stable measure p, a weak generalized convo-
lution of A1 and )3 (denoted by A\; ®,, A2) is defined by the formula

A @ Ny — A if p is non-symmetric,
PEnz |A| if p is symmetric,

where |\| = L£(]0]) if A = L£(#). Instead of |\| € P, we can take its symmetriza-
tion A = 1|A| + 37_1|)| since in both cases we have uniqueness of Ay ®,, 2. We

will consider only the case of weak generalized convolution defined by A, which is
more convenient.

It can be shown that, for each weakly stable probability measure p, weak gen-
eralized convolution ®,, has properties (i)—(iv) on P but it does not have to satisfy
condition (v). A wide discussion on condition (v) for generalized convolution on
‘P can be found in [6]. In particular, if a weakly stable measure belongs to the
domain of attraction of some strictly stable measure, then it generates weak gen-
eralized convolution having property (v). Similarly to the generalized convolution
theory every weak generalized convolution ®,, is uniquely determined by a weak
probability kernel:

Pz1 = (52 ®u 517



170 B. H. Jasiulis-Gotdyn

since pry = Topan for v = la| V lyl, z = (Ja| A lyl)/(J] V [y]) for all 2,y € R,
where V and A denote maximum and minimum, respectively. Moreover,

AL @y Ao(A) = Lﬂ{%ﬂx,y(A)Al(dm)A2(dy)

for all A1, A2 € P. It follows that it is sufficient to define p, ; for |z| < 1.

EXAMPLE 1.2. The most popular examples of weakly stable distributions are
the following:

« symmetric a-stable measure -y, with the characteristic function 7, (t) =
exp{—A|t|*}+, where A is a constant, for 0 < a < 2, defines weak generalized
convolution ®-,, by

5@ ®7a 5b - 507
where |c|* = |a|* + |b|®, since
ToYo * ToYa = TeYa;

« probability measure with the characteristic function i, (t) = (1 — [¢|*)+
generates the Kendall convolution ®,,, (0 < o < 1):

al®\ ~ al®
0a D 5b=< _||b|‘a> 5b+uTbﬂ'2a

for |a| < |b|, where Ty, is the symmetrization of the Pareto distribution with the
density oo (dz) = a/|z[**T11 4 o) (|2])de, since

Tapha * Topra = Tepto  forall a,b € R;

o uniform distribution on the unit sphere S,_1 C R" corresponding to the
Kingman convolution;

« every k-dimensional projection of a weakly stable random vector is weakly
stable;

« distributions introduced by Cambanis, Keener and Simons in [3].

Notice that we can produce new classes of weak generalized convolutions gen-
erated by generalized convolution. For details see [[7] or [T2]. The weak generalized
convolution theory contains many open problems. Jarczyk and Misiewicz [8] con-
sider pseudoisotropic distributions connected with weak stability and solve many
open problems from the point of view of functional equations. In [I3] Mazur-
kiewicz describes weakly stable distributions connected with distributions intro-
duced by Cambanis, Keener and Simons. The recipe for weak generalized convo-
lution connected with these distributions is still an open problem.
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2. THE MARKOV CHAIN UNDER GENERALIZED
AND WEAK GENERALIZED CONVOLUTION

Following paper [I] we consider here a discrete time Lévy process (indepen-
dent increments random walk) in the sense of generalized convolution. More pre-
cisely: we investigate {X,, : n € Ny}, where Xy = 0 and Ny = NU {0}, based on
the set of i.i.d. random variables {AX}, : k¥ € N} with distribution v € Py. The
random element X, is a kind of cumulation of variables AX1, AX,,...,AX, in
the following sense:

L(X,)=L(AX1)o...0L(AX,,) foralln > 1.

Moreover, we assume that the increment of the process from X,, to X,, ;1 in the
sense of generalized convolution depends only on AX,,11,..., AX, 1k, i.€.

,C(Xn) & ﬁ(AXn_H) L0 E(AXn+k) = /-:(Xn+k) for all n, k >1
The existence theorem of the process { X, : n € Ny} was proved in [[I].

THEOREM 2.1. There exists a Markov process { Xy, : n € No} with the tran-
sition probabilities

Pin(x,A) = P(X,, € A|X}), = ) := 6, 0 " F(A),
where x > 0,n,k € Nand A € B((0,0)).
On the other hand, we can consider stochastic processes generated by a weakly
stable probability measure y (in the sense of weak generalized convolution ®,,).
Then we construct two associated processes {X,, : n € Ny} and {S,, : n € Ny}

such that {)an :n € Ny} is defined as the above process { X, : n € Ny} but on the

real line. We assume, without loss of generality, that X = 0. This means that the
families {AX},} and {AXk .} are also specified so that (AX})gen are ii.d. with

distribution v € P and X, kL AX k,n forevery k € N and n > k. Additionally, for
a sequence Y, (Y;)ien, of i.i.d. random variables with weakly stable distribution
we define

Z (AX, - Y3,

where (Y;)ien, and (AX;)sen are independent. Since Xo = 0, we have Sy = 0.
Notice that {S,, : n € Ny} is a discrete time Lévy process in the classical sense

such that §n 4 )A(;nY.
In much the same way as in the previous one, for all k,n € N, k£ < n, and the
Borel set A € B(RR), we see that the transition probabilities are given by

Pon(z,A) = P(X,, € A|X), = 2) == 6, ®, V" *(A), zeR.

The proof of the next corollary is basically the same as the proof of Theorem PTI.
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COROLLARY 2.1. Let ji be a non-trivial weakly stable probability measure.
Then {X,,: n € No} is a Markov process.

Using the characterizing exponent
s = s(p) =sup {p € 0,2]: [ |z[Pu(dz) < oo}
R

for the weakly stable distribution p we can prove the following theorem describing
the magnitude of the fluctuations of random walk under weak generalized convo-
lution. The parameter »(j) plays a similar role to the parameter « for a-stable
distribution. More information about characterizing exponent can be found in [9].

THEOREM 2.2. Let ji be a non-trivial weakly stable probability measure with
#(p) > 0 and let {X,, : n € No} be the random walk, under weak generalized

convolution ®,,, defined above with i.i.d. increments (Af(i)ieN with distribution v.
Let Y, Y1,Ys,... be an i.i.d. sequence of random variables with distribution i,
which is independent of (AX;);en. If there exist sequences of positive numbers
(an)nen and (by)nen such that a,, / », b, — oo and

lim sup by, 'E(|Sp|%) = ¢ € (0, 00),

n—o0

then for every sequence of positive numbers (¢, )nen such that

— 1
> ot <o,
n=1

o(0.0{m () )

where d,, = E|Y|*".

we have

Proof. LetA4, = {|)?n|a" > cpby/dy}and ay, /" 32, by, — o0. Since S,, 1=
ZZZI(A)?k - Y%) 2 XY for X,,, Y independent, we have

E(15n]™) = E(|Xa|*)E(Y]*").
By the Tchebyshev inequality there exists ng € Ny such that

P(A,) < dpE (| Xn|") _ E(|Sn]™) < <

bncn bncn Cn

for every n > ng. Since Y - | ¢t < oo, we arrive at y_ - | P(A,) < oo. Now it
is sufficient to apply the Borel-Cantelli lemma. =
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3. RANDOM WALK UNDER THE KENDALL GENERALIZED CONVOLUTION

In 2011 in [R] the authors showed that the Kendall convolution for ¢, and
01 is the unique generalized convolution which can be written as a convex linear
combination of two fixed probability measures such that only coefficients of this
combination depend on x. Moreover, it can be shown (see Theorem 1 in [K]) that
if 0 < a < 1, then the Kendall convolution is a weak generalized convolution with
respect to a symmetric weakly stable measure p,, with the density function

1
Ha(dy) = — [ sin(ty)t* " dedy
Ty b

and the characteristic function i, () = (1 — [¢|¥) 4.

In [T4] one can find connections between the Kendall convolution and the
Archimedean copulas theory, i.e. a generator of Archimedean copula is the homo-
morphism of the Kendall convolution. It follows that we can also use the William-
son transform (see [4]) to get our results.

For a random variable X ~ v with cumulative distribution function F', the
classical Williamson transform is defined by

e £\ 41 JEQ -/ X)) ift >0,
MyF(t) = J; (1 — a:) dF(z) = {1 — F(0) i ift =0,

where d > 2 is an integer.

In this paper we investigate the random walks under the Kendall convolution
using the technique of homomorphism (respectively, characteristic function) for
given generalized convolution (respectively, weak generalized convolution), which
is strictly connected with a modification of the Williamson transform. To see this
notice that the homomorphism

h(d) = (1 —t)+

is the Williamson transform for probability measure §; and d = 2.
We use a modification of the Williamson transform given by

D, (t) = h(Tyv) = [ (1~ (ts)*)_ v(ds)

o3

_ 1 _ al/t « _ al/t a—1
_F<t) t {s v(ds) = at {5 F(s)(ds),

which is easy to invert. Since

a1, (1) = zso‘_lF(s)(ds),
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Ft)=9a, <1> +alt % [q)y <1)]

This section is devoted to the random walk under the Kendall convolution
Aq, a > 0, with unit step with distribution v concentrated on the positive half
line. Next, we extend our construction to obtain the random walk under the weak
Kendall convolution with unit steps having distribution on the real line. In partic-
ular, we consider a random walk under the Kendall convolution in case v = d; or
v = 471 under the weak Kendall convolution.

Let (AX;);en be a sequence of i.i.d. random variables with distribution v €
P, and let (6;);en, be a sequence of i.i.d. random variables with the Pareto dis-
tribution e, such that 6,, is independent of X,, and A X, for all n € N. The
Markov chain {X,, : n € No} with AX; ~ v is such that

we have

Mona(V) = L(X,) = pBan
for n € Ny and v220 = §.

Our construction of random walk implies that X, and AX;, ,, 1 are indepen-

d
dent and X}, = AX,, 4 forall n, k > 0.
Without loss of generality we can assume that we start from zero, i.e. Xg =0
a.e. It remains to find the measures Ao, o (v) for n > 2.

PROPOSITION 3.1. Let v € P4. For each natural number n > 2 and o > 0

we have
&N 1 —1 d n 1
Aon,a(v)(0,2) = @) <m> + « x% <<bl, (z))

or, equivalently,

Nona)(0,2) = (s (571

78 s=x’
where

O, (1) = h(Tw) =

o8

(1- (xt)o‘)+y(da:)
is the homomorphism of the unit step variable A\ X1.

Proof. Since i, is weakly stable, we have

®Ha n

(1o o V)™ = pia 0 v

It follows that
o7 (t) = f (1 — (a:t)a)Jr)\o,n,a(u)(dx),
0
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ie.
q)LL (t) — @VAan (t)

Consequently, if we convert the transform, we get

Noma()(0,2) = D" (;) + ofla:% (@3 (i))

In order to obtain an equivalent equation it is sufficient to calculate the derivative. m

COROLLARY 3.1. Let B4 be the beta distribution with parameters a,b > 0,
i.e. the distribution with the density function

Bup(dr) = mas“—lu ) Mo (@)

Then for each natural number n > 2 and o > 0 the distribution function of the
measure \on.o(Bap) is given by

4 [s (B(a, p, sty - Llata)lla+b) Bla + a,b, sl/a)ﬂ

ds sT(a)l(a+ b+ ) ego
where I b)
_pTla+d) o0 et
B(a,b,s) = { (@) (1 —z)" dx.

In particular, for the uniform distribution U(0, 1) we have

Panalm)(©.0) = (727) (1+2) e 10n(e)

a+1

COROLLARY 3.2. Let vy, p be the gamma distribution with parameters a, b >0
with the density

oo
Va,b(dx) = %l‘ le bxl(O,oo)(x)d"E'

Then for each natural number n > 2 and o > 0 the measure \o 5. (Vap) has the
cumulative distribution function

% [8<F(a, b, s1/) Wf(a +ab, sl/a)ﬂ

s=x%
where
ba

a—1_—bx
dzx.
F(a) X e X

I'(a,b,s) =

o—n
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For v = 6, itis clear that P(X; = 1) = 1 and X» < 0;.

COROLLARY 3.3. For each natural number n > 2 and real number o > 0

_ n—2
(Romalon)) (da) = 2 =D (1 . 1) 1) o (2)da.

;UOZ

Notice that
0,2,0(01) = m2q

is the Pareto distribution and by weak stability of 1, we have
Ha * o = Ha © T2q-

In the terms of transforms we arrive at

Pry,, )" = ‘I)Ao,Qn,a((sl) (t).

It means that we are able to cumulate the Pareto distributions in the Kendall con-
volution algebra.

Now we construct random walk under the Kendall convolution with the unit
step A X7 with distribution 6.

THEOREM 3.1. The Markov process { X,,: n € No}, with Xo=0and X1~ 01,
based on the Kendall convolution /\, has the following properties:

Xy = 91, Xn+1 =X, (922" a.e.,
where 0y, is independent of X,, forn > 1 and

1/X5% fork =1,
P(Qu= kX, = VK ok

1-1/Xy  fork=0.
Moreover,

Pyin(z,A) =P(X, € Al X1 =12)

_ xiap(xen_g € A)+ (1 - 1) La(x)

v
for every Borel set A C [0, 00).
Proof. By construction the transition probabilities are given by
P(X, € A|X, 1 =1z) =06, 06" F(A)

1 1
= wfap(l'gn_l S A) + (1 — xa>1A(x)'
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We see that

forall A € B((0,00)) and n > 2. By Corollary 5.11 in [I0] we can find sequences
{6, } and {Q@,, } such that

Xog1 =X, - 09 ace.
Finally, X,, has distribution Ao 5, o(61). =

In the next theorem we give generalization of Theorem B for A X; with any
distribution v concentrated on the positive half line.

THEOREM 3.2. The Markov process {X, : n € N} with AX; ~v € Py
based on the Kendall convolution N\, o > 0, has the following properties:

Xo=0, X1 = AX1, Xpp1 = (X, VAX, 1) - 09" ae.,
where 0,, is independent of (X, V AX,11) forn > 1 and

2( X, AX i)™ ork =1,
P(Qn = kX, AXpar) = 4 +1) J

1—2(Xp, AXp41)* fork=0
for z(z,y) = (x ANy)/(x V y). Moreover,

Po_in(z,y,A) :=P(X, € Al X1 =2,0X, =y)
= z(:r,y)aP(v(x, Y) - Op_o € A) + (1 — z(x,y)o‘)lA (v(x,y))

forv(z,y) = x V y and every Borel set A C [0, 00).

Proof. Asin the proof of Theorem Bl we can show that
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Then, substituting v(z,y) = v and z(z,y) = z, we obtain
f f (70 (=% (4188062) + (1 = 2% 81) ) (4) Cou-1,0(+)) (d)(dy)

(zO‘P('UHn_l € A)+(1—2%) 14 (v(x, y))) (Mom—1.0(v)) (dz)v(dy)

I
o3 _
o3

forall A € B((0,00)) and n > 2. It yields, by Corollary 5.11 in [I0],
X1 =0 (Xn, AXpy1) - 09" ae.

for Q,, with desired distribution, the proper sequence {6, }, and X, has distribution
)‘O,n,a (Z/) | |

One would think that the Markov chain { X, : n € Ny} with respect to a gen-
eralized convolution ¢, with unit step distribution v € P, is a kind of the Lévy
process in the classical sense. The following two propositions give a negative an-
swer to such a hypothesis.

PROPOSITION 3.2. Let Ay be the Kendall convolution and {X,, : n € N} be
a random walk under /\1 with unit step distribution §1. Then

2
P(Xp.1—-X =1-—E((1 Y)~2
(X1 — Xi < w) F (1+wY)™?)

forevery k € N, whereY has distribution 33 j,_1, which means that the increments
of this chain are not stationary in time.

Proof. Notice that, by constructing the random walk given in Theorem B2,
we have
k—1

P(Xpy1 = Xp) = {P (Qk = 01Xk = 5) (Mo .0 (01)) (ds) = ;=

The continuous part of the distribution of (X}, X;1) has the weight 2/(k + 1)
and the density

B k-2
f(u,v) _ (k? + 1)k(k 1) <1 _ i) 1{1gu<v}'

w2v3

Since X7 ~ d; and

1 00 u+w

k
P(Xpi1 — X <w) = k+1+fffuvdvdu

:1—k(k—1)of (u— 1)

7d
L uF (u4w)? “

the Markov process { X, : n € Ny} does not have stationary increments. =
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PROPOSITION 3.3. The increments of the Markov chain {X,, : n € N} with
respect to the Kendall convolution /\1, with unit step d1, are not independent. In
particular, for each k € N the random variables X, and X1 — X}, are not in-
dependent.

Proof. By simple computation we obtain

P(Xk+1 — X <w, Xp < Z) =

= P(Xi1 — Xip <w, Xy < 2| X1 = Xp) P(Xpy1 = X)
+ P(Xpp1 — Xp < w, X < 2, Xpy1 > Xp)

— T Mokal0) (10, 2)) + %[1 — B3, k—1,271)

k+1 +1
2 1 k:(k:—l) heo, k-1
_ 1—y dy = /\ (o 0,
2
+m[1_B(3vk_17 k+1 <1—|—wY2 {w:Y (w )>1/w}))

where Y ~ B3 %1, and B(3,k — 1,271) is the function given in Corollary BI.
In particular,

1 2
P(Xg—X2<w,X2<Z):1—— 1+ -
322 z

_Q[M(wﬂ))ﬂ = )]

w3 2(1+w z(w+ 2)(1 +w)

forw >0,z > 1and P(X3 < z) =1 — 1/2% for z > 1. Moreover,

2 1 w 3 1 )
P<X3‘X2<w>:3‘2{w2‘1+w+w2<1+w>2‘w1“(1+w>]

for w > 0, which implies that X9 and X3 — X5 are not independent. m

Notice that in the same manner we can construct a family of random walks
{fo) : n € N} under the Kendall convolution such that

78 = X

forevery k € N. For every fixed k the unit step of this random walk has distribution
Ao,k,a (V) given in Proposition Bl In particular, one can prove that probability
measures which belong to the family {\o ;o (01) : & € N} are heavy tailed and
0,2,0(01) = T2q.

In a similar way we construct random walk under the Kendall weak gener-
alized convolution ®,,, where a € (0, 1]. Let Y, (Y;);en, be a sequence of i.i.d.
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random variables with weakly stable distribution e, (A)?i)ieNO be a sequence
of i.i.d. random variables with distribution  which are concentrated on the real
line. Let (ez)zeNo be a sequence of i.i.d. random variables with distribution 7o,
such that 9 is independent of X and AXn+1 for all n € N. Moreover, let the
sequences Y, (Y;)ien, and (6; )ien, be independent. Then X,, means the position
of moving particle at the n-th step such that the unit step has distribution v and X,
has distribution being symmetrization of Ao ,, .« (v), i.e.

XO,n,a(V) = Ona”

where X(],n,a(u) is the probability measure on the real line and Xo,(],a(u) = §p. Just
as in the case of the random walk under the Kendall generalized convolution we
can get the series of dual results for random walk with respect to ®,,,:

LEMMA 3.1. For each natural number n > 2 and « € (0, 1] the probability
measure /\07n7a(51) has the density

an(n

_ _ - n—2
Gonal@) o) = Gt (1= o) Lo lebie

Eds

The above lemma is a modification of Corollary except that here we take
the characteristic function of ., as the kernel of the corresponding homomor-
phism. In the next theorem we construct the Markov process with distribution
Ao,n,o (V) at the n-th step.

THEOREM 3.3. The Markov process {X, : n € No} with AX| ~ v has the
following properties:

Xo=0, X1 = AX1, Xni1 = (| Xl |AXns1]) - w( X, AXnp1) - 09" ae.

for n =1, where 0, is independent of v(|X,|,|AXns1]) - w(Xn, AXpi1),
v(@,y) =z Vy, 2(z,y) = (@ Ay)/(zVy),

_ Jsen(x)  for |z| = |yl
wEy) = {sgn@) forlyl > lo

and ) .
2) v > 2(| Xnl, |IAX, ¢ ork =1,

POy = kT 5% 1) = § G [BXnt D)7 S
1= (Z(‘XTLL’AXTL—HD) fork =0.

Moreover, )A(:n has distribution X07n7a(y)f0r everyn € N and
Po-in(@,y, A) = P(X, € Al X1 = 2,AX, =)

= (=(lal, lyD)“P(u(z,y) - v(|], [y]) - On—2 € A)

+5(1- (=0l |y\>)“)1g<u<w7y> o(lal, o))

for every Borel set A C R, where Ais symmetrization of A.
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Proof. In order to prove this theorem it is sufficient to follow the proof of
Theorem B2, substituting ®,,, instead of A, and integrating over R but using the
probability kernel of the weak Kendall convolution. It is easy to see that for every
Borel set A € B(R) we have

(o)) = [ [ (el 1) Pluev) - oallol) G-z € 4)
+ (1= (2l 1yD)* ) 3a (@, v) - ol y) ) v(dy) Ron-1.0()) (d). =

In particular, for v = 51 we have the following construction.

COROLLARY 3.4. The Markov process {X,, : n € N} with AX, ~ 01 has
the following properties:

XQ =0, X1 AXl, X2 —91, n+1 Xngf?” a.e.
forn = 2, where 0, is independent of X and

~ o 11X, fork =1,
P(@Qn = klXn) = {1 —1/|Xn|*  fork =0.

Moreover, X, has distribution XO,n,a (51) foreveryn € N and
Py iz, A) = P(X, € A|X,, 1 =)

= repGae )+ (1 ) 1)

2 x|

for every Borel set A € B(R), where Ais symmetrization of A.

Notice that using the sequence (Y;);en we have constructed also a random
walk in the usual sense {S,, : n € Ny} associated with the random walk {X,,

n € Np} under the weak Kendall convolution ®1, with unit step AX 1 ~ 01. The
unit step .57 has distribution (., and

So=0,8,=Y1+Ya+...+Y,ae.

The relation between {S,, : n € No} and {X,, : n € No} is given by the following
distribution equation:
§n 4 Y)~(n, where Y ~ g,
for every n € Np.
In the next few lemmas we give some propertles for the random walk {S

n € Ny} associated with {X,, : n € Np}, where AX| ~ 4. In particular, we have
the following relation between g, and 1.
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LEMMA 3.2. Let 0 < o < 1 and let uo be a weakly stable probability mea-
sure which induces the Kendall convolution. Then

fho = Ji1 © (ozgl +(1- a)7~ra).

Proof. In order to find a probability measure v € P such that i, = py ov
we have to solve the integral equation

(L= [t%) 4 = [ (1= |ts]), v(ds).

R

This equation can be solved in the same manner as in the proof of Proposition BT,
however, it would be much simpler to check that for the measure v = ad; +
(1 — )7, the desired equality holds. m

PROPOSITION 3.4. Let 0 < o < 1 and let (Y);en, be the sequence of i.i.d.

random variables with distribution (. Then Sn =Y1+Yo+...+Y, has the
distribution

pa' = (M o (Oégl +(1- oa)%a))*n =H10 (0431 +01- a)%a)&”n’
where

(agl +(1- a)%a)&”n(dm)

an 1\ an —1
2|x|a+1 ( |x|a) |: o+ |:x|a :| (1,oo)(|55|) T

Proof. By LemmaB2it follows that the characteristic function of the mea-
sure i1 o (ady + (1 — )74 ) is given by the formula

G(l/t) = aﬁl(t) + (1 - O‘)Ml/ﬁa(t) = ﬁa(t)'

Since

00 1/t
(G/t)" = [(1 - ta); Fu(da) —th )dz,
0

where F,, denotes the distribution function of (agl +(1- a)%a)@)”ln, s0 substi-
tuting x := 1/t, we get

Fo(@) = - [aGa)").

which leads to the explicit formula for F;,. =
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The above proposition says that, by weak stability of p., o € (0, 1], we can
consider the random walk under the Kendall convolution ®,,, with unitstep AX7 ~

ady + (1 — a)7, instead of the random walk under ®p,, With unit step with dis-

tribution §;. By this property we see that random walk in the usual sense with unit
step o 1s also associated with the random walk under the Kendall convolution
®y, - We have a similar property also for random walk with unit step with distribu-
tionv € P.

REMARK 3.1. Letv € P and « € (0,1]. By Lemma B2 and weak stability of
measures [, we have

141 © (0451 +(1- 04)770{) o p&ra™
Quym

= (Ml o (0431 + (1 —a)Ta) o y) " f41 © ((agl + (1 —a)Ta) o V) ,
which implies that

(ad1 + (1 = a)Fa) 0 vPra™ = <(agl + (1 — a)Ta) V)®“1n.

It is worth noticing that for the random walk with unit step 17 we have the
following recurrence relation.

LEMMA 3.3. For every natural number n > 3 we have

1
w1 (dx) = — (1 — cosz) dz,

T2
(n—1)n

*n—2
dx).
7T.’132 Hq ( .Z')

*n — n
pi"(dx) = @diﬁ -

Proof. Denoting by g, the density of the measure p]" and applying the
Fourier inverse transform, we obtain

cos(tz)(1 — t)"dt.

OH)—!

N |~

1
0 (z) = % [ cos(ta)(1 — )t andgu(z) =

Now it is sufficient to use integration by parts. m

LEMMA 3.4. Let 0 < o < 1 and let ®,,, be the weak Kendall convolution.
Then the random walk {X,, : n € N} with unit step ANX ~ d; is not recurrent.

Proof. By Corollary B3 we have

Noma(61)((0,2]) = (1 + 1) <1 _ 1>n_1 |

xa

Since _ _
|/\0,n7a((51)]((—oo,x]) = )‘O,n,a(‘sl)((ovx])
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and ])?1] ~ 01, we arrive at
w ~
Y P(Xul <) =2%2 — 27 %) o) (7) < 00.
n=1

By the Borel-Cantelli lemma we obtain P(lim sup,, o.{|Xn| < z}) = 0, which
implies that { X, : n € Ny} is not recurrent. m

Now we present the result describing the magnitude of the fluctuations for
random walk under the weak Kendall convolution.

PROPOSITION 3.5. Foreveryr > % and random walk under the Kendall con-
volution {X,, : n € No} with unit step AX1 ~ 61 we have

p 0o 00 )Z* nr+1
Oég . :1
(90 {5 <5 ))

Proof. To see this it is sufficient to notice that
. r+1 -1 _
P (\Xn\o‘ > Tnn) =1- (1 4+ — lnn) (1 — n_’"_llnn)i 't

Let A, = {|X,|* > n"™/Inn}. It is a matter of laborious but straightforward
calculations to show that

P(A
lim o)
n—oo n 2" (Inn)?
Moreover, for 2r — 1 > 0 we have
2
f:c (Inz) dﬂ:—{u 17N du = e < oo

and we obtain the assertion. m

REMARK 3.2. Since E(|X,|*) = n, by the Tchebyshev inequality we also

have

~ 2 E(| X, | 1

plig, s VB, e
Inn n? n
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