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Abstract. We show that the Renormalized Powers of Quantum White
Noise Lie algebra RPQWN∗, with the convolution type renormalization
δn(t − s) = δ(s) δ(t − s) of the n ­ 2 powers of the Dirac delta func-
tion, can be obtained through a contraction of the Renormalized Powers of
Quantum White Noise Lie algebra RPQWNc with the scalar renormaliza-
tion δn(t) = cn−1 δ(t), c > 0. Using this renormalization, we also obtain
a Lie algebra W∞(c) which contains the w∞ Lie algebra of Bakas and the
Witt algebra as contractions. Motivated by the W∞ algebra of Pope, Ro-
mans and Shen, we show that W∞(c) can also be centrally extended in a
non-trivial fashion. In the case of the Witt subalgebra of W∞, the central
extension coincides with that of the Virasoro algebra.
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1. INTRODUCTION

1.1. Origins of the problem. Classical white noise was introduced in statisti-
cal mechanics and was used for several decades both in physics and engineering.
The attempts to give a rigorous meaning to the Langevin equation can be consid-
ered to be the common root of Itô stochastic calculus and of Hida’s program –
stated in his 1975 Carleton lectures – of a mathematical approach to the theory of
classical white noise (see [35] for history, the main ideas of this development and
bibliography).

In classical probability the problem to give a meaning to Langevin equations
driven by higher powers of WN was also considered in physics and engineering
but no significant steps in this direction seem to be present in the literature.

On the other hand, quantum white noise has played a central role in quan-
tum physics since its early origins because it coincides with the basic object of
study in quantum field theory: the free non-relativistic boson Fock field. In this
context the local field operators are identified with the operators of multiplication
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by white noise and the so-called smeared fields with the operators of multiplica-
tion by stochastic integrals. In the following we will mainly use the probabilistic
terminology.

The basic physical principle of locality requires the fundamental forces of na-
ture to be expressed as (usually non-linear) functions of the local fields rather than
of their smeared versions. This poses a mathematical problem because, contrary to
multiplication by stochastic integrals which are bona fide operators, white noises
are operator-valued distributions, therefore even the definition of their simplest
non-linear functions, such as their powers, poses formidable mathematical prob-
lems. This explains why, in quantum theory, the problem to give a meaning to the
powers of white noise has been at the core of a large number of investigations.

Unfortunately, even in the quadratic case, no satisfactory solution was avail-
able to this problem as can be seen, for example, in Segal’s paper [39] where a
negative result is proved and in Berezin’s monograph [30] where an attempt is
made to extend Friedrichs’s results on quadratic Hamiltonians from finitely many
degrees of freedom to a field theoretical framework. This attempt however cannot
be considered successful because, in order to realize quadratic fields in standard
Fock space, the author was obliged to introduce Hilbert–Schmidt type conditions
which, among other things, imply the loss of translation invariance.

The attack on the problem of defining the third and fourth power of white noise
has been the object of a huge number of papers within the program called construc-
tive quantum field theory, which in the period between the late 1960’s and the
late 1990’s involved a large number of brilliant mathematicians and mathematical
physicists. This program had an interesting technical fall out in mathematics in the
so-called hypercontractive estimates, but it is generally recognized that it has not
produced a solution that can become a new tool in applications to physics. Thus
several people became convinced that the approach generally used during those
decades to achieve this goal, i.e., to introduce a regularization (called cut-off in
physics and corresponding to the replacement of white noise by a stochastic inte-
gral) and then trying to remove it by various kinds of limiting procedures, was not
the right one and that new ideas and new mathematical tools should be introduced
in order to produce substantial steps forward.

1.2. Emergence of white noise Hamiltonian equations from stochastic limit.
These new ideas and tools began to emerge in the early 1990’s when the develop-
ments of the stochastic limit of quantum theory led to the discovery that all (clas-
sical and quantum) stochastic differential equations are equivalent to white
noise Hamiltonian equations, involving the first powers and the normally ordered
second power of white noise. This equivalence, new even in the classical case, is
highly non-trivial, e.g., the coefficients of the WN Hamiltonian equation turn out
to be related to those of the associated stochastic differential equation by a Cay-
ley transform. The precise meaning of the term white noise Hamiltonian equations
and the development of the estimates necessary to establish on a solid mathemat-
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ical basis the above-mentioned equivalence theorem as well as the main result of
the theory, i.e., an existence, uniqueness and unitarity theorem for the Heisenberg
type white noise equations, began in the paper [25] and was completed in the pa-
pers [2], [3] in the case of equations with bounded coefficients. Its extension to the
unbounded case is an important open problem because its solution will contribute
to reopen a communication between physicists, who hardly ever use stochastic
equations, and mathematicians, who hardly ever use white noise equations.

Since the first and normally ordered second order WN Hamiltonian equations
exhaust, up to equivalence, all stochastic differential equations, it was natural to ask
oneself: what kind of equations could arise from powers of WN higher than
these ones? Such equations, if existent, should provide a natural generalization
of stochastic calculus as well as an answer to the problems mentioned above and
studied since several decades in the engineering and physics literature. The solution
of this problem is the main objective of non-linear white noise calculus.

1.3. Quadratic second quantization: the relation between sl(2,R) and the
Meixner distributions. The first attempts towards the development of a non-linear
white noise calculus, based on higher powers of WN (see [27], [24], [5], [4]) were
not satisfactory for several reasons, which would be too long to explain here.

The situation changed in 1999 when, in the series of lectures [25], a new idea
was proposed which can be formulated as follows: instead of renormalizing di-
rectly the equations of motion first renormalize the Lie-algebra structure, i.e.,
the commutation relations, thus obtaining a new ∗-Lie-algebra structure, then
construct (non-trivial) Hilbert space representations of the new Lie algebra
whose self-adjoint generators are the candidates for the non-linear powers of the
field operators (WN).

The paper [25] was the first step towards the realization of this program for the
simplest non-linear power of WN, the square, and the simplest representation, the
Fock one, and led to the ∗-Lie algebra of Renormalized Second Powers of WN
(RSPWN ).

The next step followed almost immediately: Śniady, in the paper [40], ex-
tended to the free case the construction of the renormalized quadratic boson Fock
representation and noticed that, both in the free and the boson case, the first and
second order representations cannot be combined into a single one in a non-trivial
way. In the language of Lie algebras this result can be rephrased saying that, while
the Fock representation of the current algebra over Rd of the Heisenberg algebra
(i.e. the usual free boson Fock field) and of sl(2,R) (i.e. the quadratic field) sep-
arately exist, the Fock representation of the Schrödinger Lie algebra (the smallest
Lie algebra containing all first and second powers of WN) cannot exist: this re-
mark contains the core difficulties of the no-go theorems to be discussed further
in this introduction (see Section 1.4 below).

An important further step in this development was the paper [23] in which the
∗-Lie algebra RSPWN of [25] was identified with the current algebra of sl(2,R)
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over R, more precisely – of its central extension: such a central extension is nec-
essarily trivial and unique up to a scalar multiple of the central element; moreover,
this scalar is precisely the renormalization constant which cannot be taken equal
to zero because otherwise the Fock representation becomes the trivial one (identi-
cally zero). This identification was used to frame the construction of the quadratic
Fock representation within the general context of the Araki–Woods–Parthasarathy–
Schmidt theory of factorizable representations of Lie algebras and Lie groups. This
theory, together with the fact that the unitary representations of sl(2,R) are com-
pletely classified, was used to realize the quadratic Fock field as a usual boson
Fock field with an infinite-dimensional multiplicity space. This new representation
is conceptually important but, like all abstract representation theorems, has some
drawbacks when one tries to use it for concrete calculations, for example: the Itô ta-
ble of the fields turns out to be infinite dimensional and so complicated that it was
not possible to find a solution for the quadratic unitary conditions (this problem
was solved some years later in the paper [6] by using Hilbert module techniques).

Another result of [23] was the identification of the vacuum distributions of
the quadratic field operators with the three non-standard classes of Meixner dis-
tributions which therefore play for quadratic quantization the role played by the
first two (standard) classes (Gaussian and Poisson) for usual quantization. In other
terms, while the classical stochastic processes which appear as vacuum distribu-
tions of the field operators in the usual quantization (i.e., the usual quantum fields)
are the Brownian motion and the Poisson process, the vacuum distributions of the
second powers of WN are the Meixner processes which have been widely studied
in probability theory and in mathematical finance (cf. [34], [33]; the survey paper
[7] contains a brief description of the multiplicity of contexts in which Meixner
distributions have appeared in various branches of classical probability and statis-
tics). A corollary to the above-mentioned result was the quantum decomposition
of the Meixner stochastic processes which, contrarily to the quantum decompo-
sition of the Brownian motion and the Poisson processes, was not known before,
neither in mathematical nor in physical literature.

This result opened the way to a quantum probabilistic approach to the Meixner
distributions and was followed by a vast multiplicity of papers dealing with and
generalizing in various contexts different aspects of Meixner distributions (refer-
ences on these developments, in particular concerning the classical and the free
case, can be found in the paper [31]).

In the specific direction of boson quadratic quantization, the construction of
the Fock representation was only the first step towards the construction of the Fock
functor, a topic to which several papers were dedicated (see [21] and references
therein).

The explicit form of the quadratic scalar product was deduced in [29] by using
the Faà di Bruno formula, well known in combinatorics and widely used in prob-
ability theory. The quadratic Weyl operators and the corresponding quadratic
Heisenberg group were constructed in [26].
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The first examples, and at the moment the only known ones, of non-Fock
(equilibrium) representations were constructed in [1]. One of the most interesting
open problems concerning the quadratic case is to enlarge the class of non-Fock
representations of the Renormalized Square of White Noise (RSWN) ∗-Lie alge-
bra: there are several indications that the class constructed in [1] constitutes a tiny
fraction of the representations that can be of interest for physics.

1.4. Higher order second quantizations. The above description of the results
obtained in the quadratic case is motivated by the fact that they constitute the main
and best understood model for what one would like to do for powers higher than 2.

The program to associate a ∗-Lie algebra to general renormalized powers of
(quantum) white noise and to construct their representations was initiated by Ac-
cardi and Boukas [7] about 10 years ago. The first idea was to use, for higher pow-
ers, the same renormalization used for the square. This leads to the algebra that in
the present paper is denoted by RPQWNc. One could say, following [23], that this
approach corresponds to finding a representation for the current algebra over Rd

of the universal enveloping algebra of the Heisenberg algebra. Since this algebra
contains the current algebra of the Schrödinger algebra, we know from Śniady’s
result that its Fock representation cannot exist. This was also clearly shown in Ac-
cardi and Boukas [42] by using the Schrödinger Fock kernel. However, there was
a hope that, as happens for sl(2,R), for some subalgebra (e.g., the ∗-Lie algebra
generated by the cube of creation and annihilation operators) it might exist.

This hope was frustrated by the generalized no-go theorem proved in [19].
This motivated our search for new renormalization prescriptions.

A careful analysis of the structure of the no-go theorems suggested the use of
the convolution renormalization (see Section 2.2 below). This new renormalization
gives rise to commutators which do not correspond to current algebras of known
Lie algebras: this fact prevents the possibility to follow the strategy used in [23],
i.e., to apply the results of the Araki–Woods–Parthasarathy–Schmidt theory to this
problem. Moreover, in this case the very ∗-Lie algebra structure has to be verified
by direct calculation. This approach gave rise to the algebra that in the present
paper is denoted by RPQWN∗.

1.5. The RPQWN∗ algebra, the W∞-algebra, arising from the Virasoro–
Zamolodchikov hierarchy, and their identification. The analysis of the new in-
finite-dimensional Lie algebra RPQWN∗ brought to light some striking similari-
ties to other Lie algebras widely studied in string theory and conformal field theory
(see [9], [10] and Section 1 below).

Even though some strong dissimilarities were present (namely in the involu-
tion, see formula (2.14) below), we were convinced that the fact that the structure
constants for the two algebras are almost equal (compare (2.12) and (2.13) below)
could not be attributed to chance.

After a few years (and a lot of work) this conjecture turned out to be true in the
sense that we were able to express the generators of each algebra as series in the
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generators of the other one (cf. [13] and [12]). This implies that the closures – in a
suitably defined topology – of the Lie algebras which emerge from the non-linear
WN calculus program coincide with those emerged in string theory and conformal
field theory following a completely disjoint program.

Since these structures are highly non-trivial, we interpret this fact as an indi-
cation that they are new canonical objects in mathematics, destined to play a role
both in mathematics and in physics.

As explained below, the algebras which arise in non-linear WN calculus
are a second quantization (more specifically, current algebras over Rd) of those
that have emerged in physics: the latter are obtained from the former by re-
stricting the test function space to the multiples of a single indicator function of
a bounded Borel set and by suitable rescaling. This is probably the reason why the
no-go theorem appears in the two fields with completely different characteristics,
being related, in physics, to group invariance and specific models, while in WN
calculus to the problem of infinite divisibility of certain probability distributions
(see Section 1.6.1 below).

1.6. The role of central extensions of Lie algebras. The enthusiasm for the dis-
covery described above was balanced by the discovery – in [16] and the previous
result in [8] – that, unfortunately, the no-go theorem applies also to the Lie algebra
obtained with the new renormalization, i.e., RPQWN∗. The analysis of the struc-
ture of the Virasoro algebra led us to realize that this algebra is obtained by gluing
together in a non-commutative way countably many copies of central extensions
of the sl(2,R) algebra. Moreover, in each of these copies the constant defining the
Virasoro central extension coincides, up to a positive rational multiple, with the
renormalization constant in RSPWN . This fact suggests a deep connection be-
tween renormalization and central extension and motivated our investigation in the
direction of central extensions of Lie algebras.

In physics central extensions were of help in overcoming some no-go theorems
(this was the case with the Virasoro central extension of the Witt algebra). Our hope
is that a similar situation can take place in the non-linear white noise program. This
motivated our search for non-trivial central extensions of the algebras we were
dealing with. This new branch of our program was formulated in [18].

1.6.1. Non-triviality of the second cohomology group of the Heisenberg algebra.
The first non-trivial extension we found, in [17], was the one of the Heisenberg
algebra ([a, a†] = 1). Since all low dimensional Lie algebras are classified, this
extension was known as a Lie algebra; in fact, as we discovered later, this algebra
plays a relevant role also in quantum physics where it is known under the name
of Galilei algebra. To our knowledge neither this identification nor the fact that
this four-dimensional Lie algebra is the unique non-trivial central extension of the
Heisenberg algebra seems to have previously appeared in the literature.

In the Schrödinger representation the Galilei algebra can be realized by the
generators {1, q, q2, p}, so it interpolates between the Heisenberg algebra and the
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Schrödinger one. Therefore, a priori the no-go theorem does not apply to this case
and our conjecture was that the Fock representation of its current algebra over R
exists.

Proving the validity of this conjecture is equivalent to proving the infinite di-
visibility of the vacuum distribution of all the real linear combinations of the gen-
erators (field operators).

The characteristic function of these distributions was explicitly calculated [20]
and infinite divisibility has been established for a large set of parameters, but at the
moment not for all. We have looked for help asking this question to some of the
best known experts in classical infinite divisibility, but at the moment the problem
is still open.

Thus even for a simple algebra like the Galilei one the possibility to exorcize
the no-go theorems relies on a difficult problem of classical probability.

At the moment the status of this conjecture is not clear because a recent result,
based on C∗-algebra techniques [22], seems to point out, contrary to our expecta-
tions, towards a negative answer.

1.6.2. Calculation of the second cohomology group of infinite-dimensional Lie
algebras. The second powers of WN are the highest ones for which the Lie algebra
generated by them is finite dimensional.

Starting from n = 3, even after renormalization, the n-th powers of quantum
WN generate an infinite-dimensional subalgebra of the algebra of all renormalized
powers of WN.

They correspond to higher order extension of the centerless Virasoro (or Witt)
algebra. In order to obtain higher order extensions of the proper Virasoro algebra
the problem of determining the second cohomology group of these algebras, i.e.,
the classification of the two-cocycles, had to be solved.

This program was realized in several steps in the papers [14], [15], [18] and
in Section 7 of the present one. The results of this section constitute a non-trivial
generalization of Virasoro’s original construction of the central extension of the
Witt algebra.

The main open problem in this direction is the construction of unitary rep-
resentations of these algebras and the identification of the spaces of these repre-
sentations as L2-spaces of appropriate functional measures. This problem is at the
moment open even at the level of the one mode realization of these algebras and
the second problem, the identification of the underlying measures, is open even for
the Virasoro algebra notwithstanding the huge literature available on it.

2. SOME INFINITE-DIMENSIONAL ∗-LIE ALGEBRAS

2.1. The ∗-Lie algebraRPQWNc of the renormalized higher powers of white
noise with scalar renormalization. For t, s ­ 0, the Quantum White Noise (QWN)
creation and annihilation densities a†t and as satisfy the commutation relations
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(2.1) [at, a
†
s] = δ(t− s), [a†t , a

†
s] = [at, as] = 0, (as)

∗ = a†s,

whose formal generalization, i.e., involving formal powers of Dirac delta function,
is (see [19])

[a†t
n
akt , a

†
s
N
aKs ] = ϵk,0 ϵN,0

∑
L­1

(
k

L

)
N (L) a†t

n
a†s

N−L
ak−Lt aKs δL(t− s)

− ϵK,0 ϵn,0
∑
L­1

(
K

L

)
n(L) a†s

N
a†t

n−L
aK−Ls akt δ

L(t− s),

where n, k ­ 0, δn,k is Kronecker’s delta,

ϵn,k := 1− δn,k,

and

x(y) = x(x− 1) . . . (x− y + 1), x(0) := 1, x(1) := x,(2.2)
(x)y = x(x+ 1) . . . (x+ y − 1), (x)0 := 1, (x)1 := x,(2.3)

are the falling and rising factorials, respectively.
In order to give a meaning to the formal expression (2.1), the renormalization

prescription (see [25], [19])

(2.4) δl(t) := c l−1 δ(t), l = 2, 3, . . . ; c > 0 arbitrary constant,

was used in [19] and it was shown that, after this renormalization, the smeared
operators, heuristically defined by

(2.5) Bn
k (f ; c) :=

∫
R
f(t) a†t

n
akt dt,

satisfy the commutation and duality relations

[Bn
k (f ; c), B

N
K (g; c)] =

(k∧N)∨(K∧n)∑
L=1

θL(n, k;N,K) cL−1Bn+N−L
k+K−L (fg; c),(2.6) (

Bn
k (f ; c)

)∗
= Bk

n(f̄ ; c),(2.7)

where

θL(n, k;N,K) := ϵk,0 ϵN,0

(
k

L

)
N (L) − ϵK,0 ϵn,0

(
K

L

)
n(L),

and, here and in the following, we use the convention that, whenever a > b,

b∑
L=a

= 0.

By using the standard procedure of distribution theory, the result of these formal
manipulations was taken as the definition of a new mathematical object:
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DEFINITION 2.1. Let S(R) denote the Schwartz space of rapidly decreasing
smooth functions on R and let c > 0 be a real number. The Lie algebra RPQWNc

(Renormalized Powers of Quantum White Noise with renormalization constant c)
is the ∗-Lie algebra with generators

(2.8) {Bn
k (f) := Bn

k (f ; c) : f ∈ S(R); k, n ∈ N}

such that the maps f ∈ S(R) 7→ Bn
k (f) are complex linear, and the commutation

relations and involution are defined respectively by (2.6) and (2.7).

In [19] it was proved that Definition 2.1 is coherent, i.e., that RPQWNc is
effectively a ∗-Lie algebra.

2.2. The ∗-Lie algebra RPQWN∗ of renormalized higher powers of white
noise with convolution type renormalization. Motivated by a detailed analysis of
the no-go theorems (see [19]), the following, convolution type, renormalization
was introduced in [9] and [10]:

(2.9) δl(t− s) = δ(s) δ(t− s), l = 2, 3, . . . ,

where the distribution on the right-hand side is defined on the space of rapidly
decreasing smooth functions that vanish at zero. The new renormalization leads to
the commutation relations

(2.10) [Bn
k (g), B

N
K (f)] = (kN −K n)Bn+N−1

k+K−1 (gf)

which, with the same involution (2.7), also define a ∗-Lie algebra, called in the
following the RPQWN∗ ∗-Lie algebra.

Fixing an open set I ⊂ R \ {0} with

(2.11) |I| := Lebesgue measure of I <∞

and restricting the test function space to the single function

f(x) = g(x) = χI(x) :=

{
0 if x /∈ I,

1 if x ∈ I,

one obtains a ∗-sub-Lie algebra of RPQWN∗. When I varies among all subsets
of R \ {0} satisfying (2.11) the corresponding ∗-Lie algebras are isomorphic (pos-
sibly up to a multiplication of the generators by a positive scalar depending only
on |I|). The additional condition

|I| = 1

defines the one mode RPQWN∗-∗-Lie algebra

(2.12) [Bn
k , B

N
K ] = (kN −K n)Bn+N−1

k+K−1 .
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2.3. The ∗-Lie algebra w∞. The ∗-Lie algebra w∞, introduced by Bakas [28],
is defined by generators (B̂n

k ) with commutation and involution relations

[B̂n
k , B̂

N
K ] =

(
k (N − 1)−K (n− 1)

)
B̂n+N−2

k+K ,(2.13)

(B̂n
k )
∗ = B̂n

−k,(2.14)

where n, k ∈ Z with n ­ 2. For n = 2, the relations (2.13) and (2.14) reduce to
the Witt (or centerless Virasoro) Lie algebra commutation relations

[B̂2
k, B̂

2
K ] = (k −K) B̂2

k+K , (B̂2
k)
∗ = B̂2

−k.

Traditionally, the notation Lk := B̂2
k is used and the Witt algebra commutation

relations are written in the form

[Lk, LK ] = (k −K)Lk+K , (Lk)
∗ = L−k.

3. CONTRACTION OF RPQWNc TO RPQWN∗ AS c→ 0

The main result of this section implies that in the definition of RPQWN∗ one
can eliminate the restriction that the test functions considered vanish at zero.

DEFINITION 3.1. A family (Cγ
α,β)α,β,γ∈T of structure constants of some Lie

algebra (or ∗-Lie algebra) L is called locally finite if for each pair α, β ∈ T one
has

Cγ
α,β ̸= 0

only for a finite number of γ ∈ T . A set (ℓα)α∈T of generators of a ∗-Lie algebra
L is called locally finite if the associated family of structure constants is locally
finite.

DEFINITION 3.2. Let I be a topological space and T be a set. A family of
structure constants

{Cγ
α,β(c) : α, β, γ ∈ T}, ∀c ∈ I,

of some Lie algebra (or ∗-Lie algebra) Lc is said to be convergent as c→ c0 if

(3.1) lim
c→c0

Cγ
α,β(c) =: Cγ

α,β(c0), ∀α, β, γ ∈ T,

in the sense that the limit exists and defines the right-hand side.

If this is the case, it is not difficult to verify that

{Cγ
α,β = Cγ

α,β(c0) : α, β, γ ∈ T}

is a family of structure constants of some Lie algebra (or ∗-Lie algebra) L. More-
over, condition (3.1) implies that if the family

(
Cγ
α,β(c)

)
is locally finite, then the

same is true for the limit family (Cγ
α,β) because in the limit the family of non-zero

structure constants can only decrease.
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DEFINITION 3.3. In the above notation the Lie algebra (or ∗-Lie algebra) L
is called a contraction of the family of Lie algebras (or ∗-Lie algebras) (Lc)c∈I as
c→ c0.

THEOREM 3.1. RPQWN∗ is a contraction of the family (RPQWNc)c>0 as
c→ 0.

P r o o f. From (2.6) we see that the non-zero structure constants of RPQWNc

with respect to the set of generators (2.8) are

θL(n, k;N,K) cL−1 =

(
ϵk,0 ϵN,0

(
k

L

)
N (L) − ϵK,0 ϵn,0

(
K

L

)
n(L)

)
cL−1

with L ∈ {1, . . . , (k ∧N) ∨ (K ∧ n)}. For L = 1 this gives(
ϵk,0 ϵN,0

(
k

1

)
N (1) − ϵK,0 ϵn,0

(
K

1

)
n(1)

)
= (ϵk,0 ϵN,0 kN − ϵK,0 ϵn,0Kn)

and for L > 1 we have(
ϵk,0 ϵN,0

(
k

L

)
N (L) − ϵK,0 ϵn,0

(
K

L

)
n(L)

)
cL−1 → 0 as c→ 0.

Consequently,

lim
c→0

θL(n, k;N,K) cL−1 =

{
kN −Kn if L = 1,

0 if L > 1.

But (2.10) implies that these are the structure constants of RPQWN∗ in the basis(
Bn

k (f)
)

and this proves the statement. �

4. THE W∞(c) LIE ALGEBRA

In [13] we proved that the closures – in appropriate topologies – of the ∗-Lie
algebras w∞ and RPQWN∗ coincide up to isomorphism and we have constructed
explicit representations of the generators of each of the two ∗-Lie algebras in terms
of infinite series of generators of the other, converging in the above-mentioned
topology.

In the previous section we have proved that the ∗-Lie algebra RPQWN∗ is a
contraction of RPQWNc as c→ 0. Therefore, it is natural to conjecture that the
∗-Lie algebra w∞ is a contraction of a natural closure of RPQWNc as c→ 0. The
present section is devoted to the proof of this conjecture.

THEOREM 4.1. If the higher powers of the delta function are renormalized
with the generalized scalar renormalization prescription (2.4), then the QWN op-
erators

(4.1) B̂n
k (f) :=

∫
R
f(t) e

k
2
(at−a†t )(at + a†t)

n−1 e
k
2
(at−a†t ) dt,
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where n, k ∈ Z with n ­ 2, satisfy the involution condition (2.14) and the commu-
tation relations

(4.2) [B̂n
k (f), B̂

N
K (g)] =

n−1∑
m=0

N−1∑
l=0

βm,l(n, k;N,K; c) B̂m+l+1
k+K (fg),

where, by definition, 00 := 1 and the remaining structure constants are given by

(4.3) βm,l(n, k;N,K; c) = (1− δ(n−1−m)+(N−1−l),0)

(
n− 1

m

)(
N − 1

l

)
×

(
(−1)n−m−1 − (−1)N−l−1

)
kN−l−1Kn−m−1 cn+N−(m+l)−3.

P r o o f. Introducing the position and momentum densities,

ipt := at − a†t , qt := at + a†t ,

and using the representation (4.1), one finds

[B̂n
k (f), B̂

N
K (g)]

=
∫
R

∫
R
f(t)g(s)[e(kipt)/2 qn−1t e(kipt)/2, e(Kips)/2 qN−1s e(Kips)/2] dt ds

=
∫
R

∫
R
f(t)g(s) e(kipt)/2 qn−1t e(kipt)/2e(Kips)/2 qN−1s e(Kips)/2 dt ds

−
∫
R

∫
R
f(t)g(s) e(Kips)/2 qN−1s e(Kips)/2e(kipt)/2 qn−1t e(kipt)/2 dt ds.

Since [pt, ps] = 0, this is equal to∫
R

∫
R
f(t)g(s) e(kipt)/2 qn−1t e(Kips)/2e(kipt)/2 qN−1s e(Kips)/2 dt ds

−
∫
R

∫
R
f(t)g(s) e(Kips)/2 qN−1s e(kipt)/2e(Kips)/2 qn−1t e(kipt)/2 dt ds.

Starting from the well-known relation

(4.4) eiτpsqte
−τtps = qt + 2δ(t− s)τ1, τ ∈ R,

one deduces the formal identities

e(Kips)/2qn−1t =
n−1∑
m=0

(
n− 1

m

)
qmt Kn−1−mδn−1−m(t− s) e(Kips)/2,

e(kipt)/2qN−1s =
N−1∑
m=0

(
N − 1

m

)
qms kN−1−mδN−1−m(t− s) e(kipt)/2,
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qn−1t e(Kips)/2 = e(Kips)/2
n−1∑
m=0

(
n− 1

m

)
qmt Kn−1−m(−1)n−1−mδn−1−m(t− s),

qN−1s e(kipt)/2 = e(kipt)/2
N−1∑
m=0

(
N − 1

m

)
qms kN−1−m(−1)N−1−mδN−1−m(t− s),

involving powers of the δ-function. Using the renormalization prescription (2.4) to
give a meaning to these powers, we find that

[B̂n
k (f), B̂

N
K (g)]

=
n−1∑
m1=0

N−1∑
m2=0

(
n− 1

m1

)(
N − 1

m2

)
(−1)n−1−m1Kn−1−m1kN−1−m2

×
∫
R

∫
R
f(t)g(s) e(kipt)/2e(Kips)/2qm1

t qm2
s e(kipt)/2e(Kips)/2

× δn−1−m1(t− s)δN−1−m2(t− s) dt ds

−
N−1∑
m3=0

n−1∑
m4=0

(
N − 1

m3

)(
n− 1

m4

)
(−1)N−1−m3kN−1−m3Kn−1−m4

×
∫
R

∫
R
f(t)g(s) e(Kips)/2e(kipt)/2qm3

s qm4
t e(Kips)/2e(kipt)/2

× δN−1−m3(t− s)δn−1−m4(t− s) dt ds

=
n−1∑
m1=0

N−1∑
m2=0

(
n− 1

m1

)(
N − 1

m2

)
(−1)n−1−m1Kn−1−m1kN−1−m2

×
∫
R

∫
R
f(t)g(s) e(kipt)/2e(Kips)/2qm1

t qm2
s e(kipt)/2e(Kips)/2

× δn+N−2−m1−m2(t− s) dt ds

−
N−1∑
m3=0

n−1∑
m4=0

(
N − 1

m3

)(
n− 1

m4

)
(−1)N−1−m3kN−1−m3Kn−1−m4

×
∫
R

∫
R
f(t)g(s) e(Kips)/2e(kipt)/2qm3

s qm4
t e(Kips)/2e(kipt)/2

× δn+N−2−(m3+m4)(t− s) dt ds

=
n−1∑
m1=0

N−1∑
m2=0

(
n− 1

m1

)(
N − 1

m2

)
(−1)n−1−m1Kn−1−m1kN−1−m2

× cn+N−3−(m1+m2)
∫
R

∫
R
f(t)g(s) e(kipt)/2e(Kips)/2

× qm1
t qm2

s e(kipt)/2e(Kips)/2δ(t− s) dt ds

−
N−1∑
m3=0

n−1∑
m4=0

(
N − 1

m3

)(
n− 1

m4

)
(−1)N−1−m3kN−1−m3Kn−1−m4
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× cn+N−3−(m3+m4)
∫
R

∫
R
f(t)g(s) e(Kips)/2e(kipt)/2

× qm3
s qm4

t e(Kips)/2e(kipt)/2δ(t− s) dt ds

=
n−1∑
m1=0

N−1∑
m2=0

(
n− 1

m1

)(
N − 1

m2

)
(−1)n−1−m1Kn−1−m1kN−1−m2

× cn+N−3−(m1+m2)
∫
R
f(s)g(s) e(kips)/2e(Kips)/2

× qm1
s qm2

s e(kips)/2e(Kips)/2 ds

−
N−1∑
m3=0

n−1∑
m4=0

(
N − 1

m3

)(
n− 1

m4

)
(−1)N−1−m3kN−1−m3Kn−1−m4

× cn+N−3−(m3+m4)
∫
R
f(t)g(s) e(Kips)/2e(kips)/2

× qm3
s qm4

s e(Kips)/2e(kips)/2 ds

=
n−1∑
m1=0

N−1∑
m2=0

(
n− 1

m1

)(
N − 1

m2

)
(−1)n−1−m1Kn−1−m1kN−1−m2

× cn+N−3−(m1+m2)B̂m1+m2+1
k+K (gf)

−
N−1∑
m3=0

n−1∑
m4=0

(
N − 1

m3

)(
n− 1

m4

)
(−1)N−1−m3kN−1−m3Kn−1−m4

× cn+N−3−(m3+m4)B̂m3+m4+1
k+K (fg).

Letting m1 = m4 = m, m2 = m3 = l, we obtain the above equality in the form

n−1∑
m=0

N−1∑
l=0

(
n− 1

m

)(
N − 1

l

)
(−1)n−1−mKn−1−mkN−1−l

× cn+N−3−(m+l)B̂m+l+1
k+K (fg)

−
N−1∑
l=0

n−1∑
m=0

(
N − 1

l

)(
n− 1

m

)
(−1)N−1−lkN−1−lKn−1−m

× cn+N−3−(m+l)B̂m+l+1
k+K (fg)

=
n−1∑
m=0

N−1∑
l=0

(
n− 1

m

)(
N − 1

l

)
×
(
(−1)n−m−1 − (−1)N−l−1

)
kN−l−1Kn−m−1cn+N−(m+l)−3B̂m+l+1

k+K (fg).

Thus, defining the coefficients

βm,l(n, k;N,K; c) :=(
n− 1

m

)(
N − 1

l

)(
(−1)n−m−1− (−1)N−l−1

)
kN−l−1Kn−m−1cn+N−(m+l)−3,
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we obtain

(4.5) [B̂n
k (f), B̂

N
K (g)] =

n−1∑
m=0

N−1∑
l=0

βm,l(n, k;N,K; c) B̂m+l+1
k+K (fg).

Now notice that if m = n− 1 and l = N − 1, then(
(−1)n−m−1 − (−1)N−l−1

)
= 0⇔ βm,l(n, k;N,K; c) = 0.

Therefore,

βm,l(n, k;N,K; c) = (1− δ(n−1−m)+(N−1−l),0)

(
n− 1

m

)(
N − 1

l

)
×

(
(−1)n−m−1 − (−1)N−l−1

)
kN−l−1Kn−m−1cn+N−(m+l)−3,

which is (4.3). �

As usual we have to verify that the renormalization prescription does not break
the ∗-Lie algebra structure. This is guaranteed by the following results.

LEMMA 4.1. Let x, D and h satisfy the Heisenberg commutation relations
[D,x] = h and [D,h] = [x, h] = 0. Then, for all s, a, c ∈ C,

es(x+aD+ch) = esxesaDe(sc+(s2a)/2)h and esDeax = eaxesDeash.

P r o o f. The proof is well known. �

THEOREM 4.2. Let n ­ 2 and k ∈ Z. Then, in the sense of formal series, for
all test functions f,

B̂n
k (f) =

n−1∑
m=0

n−1−m∑
m′=0

∞∑
p,q=0

(
n− 1

m

)(
n− 1−m

m′

)
(4.6)

× (−1)p k
p+q

p! q!
ϕm(c, k)Bm′+p

n−1−m−m′+q(f),

where

ϕm(c, k) :=


0 if m is odd,(
δm,0 + ϵm,0

∏i=m/2−1
i=0 (m− 2i− 1) cm/2

)
e−ck

2/2 if m is even
or zero,

and the case k = 0 (only p = q = 0 survives and we use 00 = 1) is interpreted as

B̂n
0 (f) =

n−1∑
m=0

n−1−m∑
m′=0

(
n− 1

m

)(
n− 1−m

m′

)
ϕm(c, 0)Bm′

n−1−m−m′(f).



56 L. Accardi and A. Boukas

P r o o f. For fixed t, s ∈ R, we will make a repeated use of Lemma 4.1 with
D = at, x = a†s and h = δ(t− s). We have

B̂n
k (f) =

∫
Rd

f(s) e
k
2
(as−a†s)(as + a†s)

n−1 e
k
2
(as−a†s) ds

=
∫
Rd

∫
Rd

f(t) e
k
2
(at−a†s)(at + a†s)

n−1 e
k
2
(at−a†s) δ(t− s) dt ds

=
∫
Rd

∫
Rd

f(t) e−
k
2
(a†s−at)

(
∂n−1

∂wn−1

∣∣∣∣
w=0

ew(at+a†s)

)
e−

k
2
(a†s−at) δ(t− s)dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t) e−
k
2
(a†s−at)ew(at+a†s) e−

k
2
(a†s−at) δ(t− s) dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t) e−
k
2
a†s e

k
2
at ew a†s ew at e−

k
2
a†s e

k
2
at

× e(w
2/2−k2/4) δ(t−s) δ(t− s) dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t) e−
k
2
a†s ew a†s e

k
2
at e−

k
2
a†s ew at e

k
2
at

× e(w
2/2−k2/4) δ(t−s) δ(t− s) dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t) e(w−k/2) a
†
s e

k
2
at e−

k
2
a†s e(w+k/2) at

× e(w
2/2−k2/4) δ(t−s) δ(t− s) dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t) e(w−k/2) a
†
s e−

k
2
a†s e

k
2
at e(w+k/2) at

× e(w
2/2−k2/4) δ(t−s) δ(t− s) dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t)e(w−k) a
†
s e(w+k) at

× e(w
2/2−k2/2)δ(t−s)δ(t− s) dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t) e(w−k) a
†
s e(w+k) at

×
∞∑

m=0

(w2/2− k2/2)m

m!
δm(t− s) δ(t− s) dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t) e(w−k) a
†
s e(w+k) at

×
∞∑

m=0

(w2/2− k2/2)m

m!
δm+1(t− s) dt ds



Contractions and central extensions of QWN Lie algebras 57

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t) e(w−k) a
†
s e(w+k) at

×
∞∑

m=0

cm(w2/2− k2/2)m

m!
δ(t− s) dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

∫
Rd

∫
Rd

f(t) e(w−k) a
†
s e(w+k) at ec(w

2/2−k2/2) δ(t− s) dt ds

=
∂n−1

∂wn−1

∣∣∣∣
w=0

(
ec(w

2/2−k2/2) ∫
Rd

f(s) e(w−k) a
†
s e(w+k) as ds

)
=

n−1∑
m=0

(
n− 1

m

)
∂m

∂wm

∣∣∣∣
w=0

(ec(w
2/2−k2/2))

× ∂n−1−m

∂wn−1−m

∣∣∣∣
w=0

( ∫
Rd

f(s) e(w−k) a
†
s e(w+k) as ds

)
by Leibniz’s rule. By the same rule,

∂n−1−m

∂wn−1−m

∣∣∣∣
w=0

( ∫
Rd

f(s) e(w−k) a
†
s e(w+k) as ds

)
=

n−1−m∑
m′=0

(
n− 1−m

m′

) ∫
Rd

f(s)
∂m′

∂wm′

∣∣∣∣
w=0

(e(w−k) a
†
s)

× ∂n−1−m−m′

∂wn−1−m−m′

∣∣∣∣
w=0

(e(w+k) as) ds

=
n−1−m∑
m′=0

(
n− 1−m

m′

) ∫
Rd

f(s) a†s
m′

e−k a†s an−1−m−m
′

s ek as ds

=
n−1−m∑
m′=0

(
n− 1−m

m′

)∫
Rd

f(s) a†s
m′
∞∑
p=0

(−k)p

p!
a†s

p
an−1−m−m

′
s

∞∑
q=0

kq

q!
aqs ds

=
n−1−m∑
m′=0

(
n− 1−m

m′

) ∞∑
p=0

∞∑
q=0

(−1)p k
p+q

p! q!

∫
Rd

f(s) a†s
m′+p

an−1−m−m
′+q

s ds

=
n−1−m∑
m′=0

(
n− 1−m

m′

) ∞∑
p=0

∞∑
q=0

(−1)p k
p+q

p! q!
Bm′+p

n−1−m−m′+q(f)

and

∂m

∂wm

∣∣∣∣
w=0

(ec(w
2/2−k2/2))

=

{
0 if m is odd,(
δm,0 + ϵm,0

∏i=m/2−1
i=0 (m− 2i− 1) cm/2

)
e−ck

2/2 if m is even or zero.
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Thus,

B̂n
k (f) =

n−1∑
m=0

(
n− 1

m

)
ϕm(c, k)

n−1−m∑
m′=0

(
n− 1−m

m′

)

×
∞∑
p=0

∞∑
q=0

(−1)p k
p+q

p! q!
Bm′+p

n−1−m−m′+q(f)

and the proof is completed. �

THEOREM 4.3. For each c > 0 there exists a unique ∗-Lie algebra, hereafter
denoted by W∞(c), with generators

{B̂n
k (f) = B̂n

k (f ; c) : n, k ∈ Z; n ­ 2 ; f ∈ S(R)},

the involution (2.14), commutation relations (4.2) and structure constants given
by (4.3).

P r o o f. By Theorem 4.2, the Jacobi identity for W∞(c) is reduced to the
limit – in the appropriate topology – of the Jacobi identity on polynomials of el-
ements of RPQWNc, which is satisfied since RPQWNc is a Lie algebra. Thus
W∞(c) is also a Lie algebra.

A combinatorial proof could also be given as follows. For i = 1, 2, 3, let
ni, ki, fi be fixed, with S := n1 + n2 + n3 and M := k1 + k2 + k3, and let li =
B̂ni

ki
(fi) ∈W∞(c). Then[
[l1, l2], l3

]
+
[
[l2, l3], l1

]
+

[
[l3, l1], l2

]
=

∑
m,l,m′,l′­0

(
βm,l(n1, k1;n2, k2; c)βm′,l′(m+ l + 1, k1 + k2;n3, k3; c)

+ βm,l(n2, k2;n3, k3; c)βm′,l′(m+ l + 1, k2 + k3;n1, k1; c)

+ βm,l(n3, k3;n1, k1; c)βm′,l′(m+l+1, k3+k1;n2, k2; c)
)
B̂m′+l′+1

k1+k2+k3
(f1f2f3)

=
∑

m,l,m′,l′­0

(
am,l(n1, k1;n2, k2)am′,l′(m+ l + 1, k1 + k2;n3, k3)

+ am,l(n2, k2;n3, k3)am′,l′(m+ l + 1, k2 + k3;n1, k1)

+ am,l(n3, k3;n1, k1)am′,l′(m+ l + 1, k3 + k1;n2, k2)
)

× cn1+n2+n3−(m′+l′)−5B̂m′+l′+1
k1+k2+k3

(f1f2f3),

where

am,l(n, k;N,K)cn+N−(m+l)−3 = βm,l(n, k;N,K; c).
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Letting

b̂m,l,m′,l′ = am,l(n1, k1;n2, k2)am′,l′(m+ l + 1,M − k3;n3, k3)

+ am,l(n2, k2;n3, k3)am′,l′(m+ l + 1,M − k1;n1, k1)

+ am,l(n3, k3;n1, k1)am′,l′(m+ l + 1,M − k2;n2, k2)

we find that[
[l1, l2], l3

]
+

[
[l2, l3], l1

]
+

[
[l3, l1], l2

]
=

∑
m,l,m′,l′­0

b̂m,l,m′,l′ · cS−(m
′+l′)−5B̂m′+l′+1

M (f1f2f3),

which is a polynomial in c. Therefore, in order to prove the Jacobi identity, it
suffices to show that for fixed α ∈ N ∪ {0}

∑
m,l,m′,l′­0
m′+l′=α

b̂m,l,m′,l′ = 0,

which is seen to be true, after cancelation of terms. �

5. CONTRACTION OF
(
W∞(c)

)
c>0

TO w∞ AS c→ 0

THEOREM 5.1. w∞ is the contraction of the family
(
W∞(c)

)
c>0

as c→ 0.

P r o o f. In the expression (4.3) for the structure constants one has

(5.1) m ¬ n− 1 and l ¬ N − 1

and
βn−1,N−1(n, k;N,K; c) = 0.

Thus, in non-zero structure constants, at least one of the two inequalities in (5.1)
must be strict, and this implies that

n+N − (m+ l)− 3 ­ 0.

Therefore, in non-zero structure constants, the exponent in cn+N−(m+l)−3 is al-
ways nonnegative and equal to zero if and only if

(5.2) m = n− 1 and l = N − 2 or m = n− 2 and l = N − 1.

In conclusion: the limit of the structure constants,

lim
c→0

βm,l(n, k;N,K; c),
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always exists and the only possible pairs of indices (m, l) for which this limit is not
equal to zero are those given by (5.2). From (4.3) it follows that the corresponding
values of the structure constants are

βn−1,N−2(n, k;N,K; c) = 2(N − 1)k,(5.3)

βn−2,N−1(n, k;N,K; c) = −2(n− 1)K.(5.4)

Thus, denoting by

{(1/
√
2)B̂n

k (f ; 0) : n, k ∈ Z; n ­ 2; f ∈ S(R)}

the generators of the ∗-Lie algebra obtained in the limit c→ 0, one has

[(1/
√
2)B̂n

k (f ; 0), (1/
√
2)B̂N

K (f ; 0)] = (N − 1)k − (n− 1)K,

which are the w∞ commutation relations (2.13). This proves the statement. �

REMARK 5.1. The white noise representation of the w∞ generators, intro-
duced in [9] and [10] and based not on the scalar renormalization, as here, but on
the convolution type renormalization (2.9) of the powers of the delta function, is

(5.5) B̂n
k (f) :=

∫
R
f(t) e

k
2
(at−a†t )

(
at + a†t

2

)n−1
e

k
2
(at−a†t ) dt.

With this notation the structure constants become

βm,l(n, k;N,K; c) =
1

2n+N−2 (1− δ(n−1−m)+(N−1−l),0)

(
n− 1

m

)(
N − 1

l

)
×

(
(−1)n−m−1 − (−1)N−l−1

)
kN−l−1Kn−m−1 cn+N−(m+l)−3.

REMARK 5.2. The Witt algebra, the subalgebra of W∞(c) generated by

B̂2
k(f) :=

∫
R
f(t) e

k
2
(at−a†t )(at + a†t) e

k
2
(at−a†t ) dt,

remains fixed during the expansion of w∞ to W∞(c).

6. CENTRAL EXTENSIONS: BASIC CONCEPTS

If L and L̃ are two complex Lie algebras, we say that L̃ is a one-dimensional
central extension of L with central element E if and only if L̃ is the direct sum of
L and CE as vector spaces with

(6.1) [l1, l2]L̃ = [l1, l2]L + ϕ(l1, l2)E
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and

(6.2) [l1, E]
L̃
= 0

for all l1, l2 ∈ L, where [·, ·]
L̃

and [·, ·]L are the Lie brackets in L̃ and L, respec-
tively, and ϕ : L × L 7→ C is a bilinear form (two-cocycle) on L satisfying the
skew-symmetry condition

(6.3) ϕ(l1, l2) = −ϕ(l2, l1)

and the Jacobi identity

(6.4) ϕ([l1, l2]L, l3) + ϕ([l2, l3]L, l1) + ϕ([l3, l1]L, l2) = 0.

In particular, (6.3) implies that ϕ(l, l) = 0 for all l ∈ L. A two-cocycle ϕ corre-
sponding to a trivial central extension is given by a linear function f : L 7→ C
satisfying

ϕ(l1, l2) = f([l1, l2]L).(6.5)

It is known (see [15] and [18]) that, with the exception of its Heisenberg alge-
bra sector, RQPWN∗ admits no non-trivial central extension. Precisely, the non-
trivial central extensions of RQPWN∗ are given by

[Bn
k (f), B

N
K (g)] = (kN −K n)Bn+N−1

k+K−1 (fg) + ρz(n, k;N,K)E,

where E is the (self-adjoint) central element and

ρz(n, k;N,K) = δn+k,0δN,0δK,1 z + δN+K,0δn,1δk,0 z̄

with z ∈ C \ {0} arbitrary.
The same is true, with the exception of its Virasoro algebra sector, for w∞

whose non-trivial central extensions are given by

[B̂n
k (f), B̂

N
K (g)]

=
(
k (N − 1)−K (n− 1)

)
B̂n+N−2

k+K (fg) + δn,2 δN,2 δk+K,0 k (k
2 − 1)E,

where traditionally E = c/12, and c > 0 is the “central charge”.

7. THE W∞ ALGEBRA

In [38] (see also [37] and [36]), Pope, Romans and Shen introduced the W∞
Lie algebra as the inductive limit of the family of algebras (WN ) appearing in
conformal field theory (W3 is Zamolodchikov’s algebra, see [41]). W∞ is a Lie
algebra with generators

(7.1) {V j
n : n, j ∈ Z, j ­ 0}
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and commutation relations

(7.2) [V i
m, V j

n ] =
∑
l­0

gij2l(m,n)V i+j−2l
m+n + ci(m) δi,j δm+n,0,

where ci are central charges determined by

(7.3) ci(m) = m(m2 − 1)(m2 − 4) . . .
(
m2 − (i+ 1)2

)
ci,

ci =
22i−3i! (i+ 2)!

(2i+ 1)!! (2i+ 3)!!
c (c ∈ R arbitrary)

(here, for an odd positive integer n, the double factorial sign !! denotes the product
of all odd values up to n), and

gijl (m,n) =
1

2(l + 1)!
ϕi,j
l N i,j

l (m,n),

N i,j
l (m,n) =

l+1∑
k=0

(−1)k
(
l + 1

k

)
× (2i+ 2− l)k(2j + 2− k)(l+1−k)(i+ 1 +m)(l+1−k)(j + 1 + n)(k),

ϕi,j
l = 4F3

 −1/2, 3/2, −l/2− 1/2, −l/2
; 1

−i− 1/2, −j − 1/2, i+ j − l + 5/2, −l/2

.

REMARK 7.1. The factor δi,j δm+n,0 is non-zero only if

n = −m and i = j,

which corresponds to the subalgebras

(7.4) [V j
m, V j

−m] =
∑
l­0

gjj2l (m,−m)V
2(j−l)
0 + cj(m), j ∈ {0, 1, 2, . . .},

of which the case j = 0 should correspond to the Virasoro central extension.

This suggests that we look for central extensions before taking the contraction
c→ 0.

REMARK 7.2. w∞ can be obtained as a contraction of W∞ by defining

V i
m;q = q−1 V i

m

and letting q → 0. Only the Virasoro central extension survives and we obtain the
w∞ Lie algebra commutation relations (2.13) and their Virasoro central extension
in the form

[V i
m;0 , V j

n;0] =
(
(j + 1)m− (i+ 1)n

)
V i+j
m+n;0 +

c

12
m(m2 − 1)δi,0δj,0δm+n,0,
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which can be put in the form of (2.13) by defining

B̂i
m = V i−2

m;0 .

Notice that the Witt–Virasoro algebra generators are

B̂2
m = V 0

m;0.

REMARK 7.3. Letting

B̂n
k = V n−2

k , n = 2, 3, . . . ,

we see that the W∞ commutation relations take the form

(7.5) [B̂n
k , B̂

N
K ] =

∑
l­0

g
(n−2)(N−2)
2l (k,K) B̂

n+N−2(l+1)
k+K + cn−2(k) δn,N δk+K,0,

i.e.,

(7.6) [B̂n
k , B̂

n
−n] =

∑
l­0

g
(n−2)(n−2)
2l (k,−k) B̂2(n−l−1)

0 + cn−2(k),

while, for cn−2 = 0, we have the non-centrally extended commutation relations

(7.7) [B̂n
k , B̂

N
K ] =

∑
l­0

g
(n−2)(N−2)
2l (k,K) B̂

n+N−2(l+1)
k+K .

REMARK 7.4. Letting M = n − 1 −m and L = N − 1 − l we see that the
W∞(c) commutation relations of Theorem 4.1 can be put in the form

(7.8) [B̂n
k (f), B̂

N
K (g)] =

n−1∑
M=0

N−1∑
L=0

β̂M,L(n, k;N,K; c) B̂
n+N−(M+L+1)
k+K (fg),

where

(7.9) β̂m,l(n, k;N,K; c) = (1− δ(n−1−m)+(N−1−l),0)

(
n− 1

m

)(
N − 1

l

)
×

(
(−1)n−m−1 − (−1)N−l−1

)
kN−l−1Kn−m−1cn+N−(m+l)−3.

We notice that, due to the presence of the factor(
(−1)n−m−1 − (−1)N−l−1

)
=

(
(−1)M − (−1)L

)
,

the only non-zero contribution to the commutator (7.8) comes from terms with
M,L of different even/odd parity, which, in turn, implies that M +L+1 is always
even. Therefore, just like in Pope’s W∞ algebra, the commutator contains only
terms of the form B̂

n+N−2(l+1)
k+K , where we have set n + N − (M + L + 1) =
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n + N − 2(l + 1), with l ranging from 0 to n + N − 2. We may therefore write
the W∞(c) commutation relations (7.8) as

(7.10) [B̂n
k (f), B̂

N
K (g)] =

∑
l­0

b̂l(n, k;N,K; c) B̂
n+N−2(l+1)
k+K (fg),

where

(7.11) b̂l(n, k;N,K; c) =
∑

M,L∈{0,1,...,n−1}
M+L=2l+1

β̂M,L(n, k;N,K; c).

In the one-mode case, i.e., over a fixed interval, the commutation relations (7.10)
become

(7.12) [B̂n
k , B̂

N
K ] =

∑
l­0

b̂l(n, k;N,K; c) B̂
n+N−2(l+1)
k+K .

We notice the similarity between the one-mode W∞(c) commutation relations
(7.12) and the non-centrally extended W∞ commutation relations (7.7).

8. CENTRAL EXTENSIONS OF W∞(c)

THEOREM 8.1. The non-trivial central extensions of the W∞(c) commutation
relations (7.8) are given by

[B̂n
k (f), B̂

N
K (g)] =

∑
l­0

b̂l(n, k;N,K; c) B̂
n+N−2(l+1)
k+K (fg)

+ δn,N δk+K,0 k(k
2 − 1)σ(n, k)E,

i.e.,

(8.1)
[B̂n

k (f), B̂
n
−k(g)] =

∑
l­0

b̂l(n, k;n,−k; c) B̂
2(n−l−1)
0 (fg) + k(k2 − 1)σ(n, k)E,

where, in the notation of (2.2) and (2.3),

(8.2) σ(n, k) :=



1 if n = 2,
n−1∏
i=2

(k − ri − 1)(k−2)

(k + ri + 1)(k−2)
if k ­ 0, n > 2,

n−1∏
i=2

(k + ri + 1)−k−2
(k − ri − 1)−k−2

if k ¬ 0, n > 2,

σ(n, k) ∈ R, where −2, r2, r3, . . . , rn−1 are the n− 1 roots of the Jacobi polyno-
mial

P
(0,−2n+1)
n−1 (−2r − 1) = 2F1(1− n, 1− n; 1, r + 1) =

n−1∑
L=0

(
n− 1

L

)2

(r + 1)L.
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We may take E = cI, where c ∈ R and I is the identity operator. Traditionally, the
range of values of the charge c is determined in the study of representations of the
Lie algebra commutation relations.

P r o o f. The presence of the Virasoro factor k(k2 − 1) in (8.2) implies the
non-triviality of the central extensions. For if f : W∞(c) 7→ C was a linear func-
tion satisfying, for all n, k,N,K ∈ Z with n,N ­ 2,

f([Bn
k , B

N
K ]) = δn,N δk+K,0 ρ(n, k),

then, letting n = N = 2, we would conclude that the Virasoro central extension is
trivial.

To find a formula for ρ(n, k), suppressing test functions, by the cocycle Jacobi
identity (6.4), for li = Bni

ki
, i = 1, 2, 3, we obtain

∑
L­0

b̂L(n1, k1;n2, k2; c)ϕ(B
n1+n2−2(L+1)
k1+k2

, Bn3
k3
)

+
∑
L′­0

b̂L′(n2, k2;n3, k3; c)ϕ(B
n2+n3−2(L′+1)
k2+k3

, Bn1
k1
)

+
∑

L′′­0
b̂L′′(n3, k3;n1, k1; c)ϕ(B

n3+n1−2(L′′+1)
k3+k1

, Bn2
k2
) = 0,

which, after combining the three summations into one, yields

∑
L­0

(
b̂L(n1, k1;n2, k2; c)ϕ

(
n1 + n2 − 2(L+ 1), k1 + k2; n3, k3

)
+ b̂L(n2, k2;n3, k3; c)ϕ

(
n2 + n3 − 2(L+ 1), k2 + k3; n1, k1

)
+ b̂L(n3, k3;n1, k1; c)ϕ

(
n3 + n1 − 2(L+ 1), k3 + k1; n2, k2

))
= 0,

which, by using ϕ(n, k;N,K) := δn,N δk+K,0 ρ(n, k), becomes

∑
L­0

(
b̂L(n1, k1;n2, k2; c) δn1+n2−2(L+1),n3

δk1+k2+k3,0

× ρ
(
n1 + n2 − 2(L+ 1), k1 + k2

)
+ b̂L(n2, k2;n3,k3; c)δn2+n3−2(L+1),n1

δk1+k2+k3,0ρ
(
n2+n3−2(L+1),k2+k3

)
+ b̂L(n3, k3;n1,k1; c)δn3+n1−2(L+1),n2

δk1+k2+k3,0ρ
(
n3+n1−2(L+1),k3+k1

))
= 0,
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i.e.,
∑
L­0

(
b̂L(n1, k1;n2, k2; c) δn1+n2−n3,2(L+1) ρ(n3, k1 + k2)

+ b̂L
(
n2, k2;n3,−(k1 + k2); c

)
δn2+n3−n1,2(L+1) ρ(n1,−k1)

+ b̂L
(
n3,−(k1 + k2);n1, k1; c

)
δn3+n1−n2,2(L+1) ρ(n2,−k2)

)
= 0.

We notice that if n1 + n2 + n3 is odd (resp. even), then so also are n1 + n2 − n3,
n1 − n2 + n3 and −n1 + n2 + n3. If n1 + n2 + n3 is odd, then

δn1+n2−n3, 2(L+1) = δn2+n3−n1, 2(L+1) = δn3+n1−n2, 2(L+1) = 0,

and the above cocycle identity is trivially satisfied for all functions ρ. This is true,
in particular, for n1 = n2 = n3 = n, where n is odd. From now on we assume that
n1 + n2 + n3 is even, which implies that there exist indices L1, L2, L3 for which

δn1+n2−n3, 2(L1+1) = δn2+n3−n1, 2(L2+1) = δn3+n1−n2, 2(L3+1) = 1.

In fact,

L1 =
n1 + n2 − n3

2
− 1, L2 =

n2 + n3 − n1

2
− 1, L3 =

n3 + n1 − n2

2
− 1,

and the cocycle Jacobi identity becomes

(8.3)
b̂L1(n1, k1;n2, k2; c) ρ(n3, k1 + k2) + b̂L2

(
n2, k2;n3,−(k1 + k2); c

)
ρ(n1,−k1)

+ b̂L3

(
n3,−(k1 + k2);n1, k1; c

)
ρ(n2,−k2) = 0.

Using (8.3) we can conclude the arbitrariness of ρ(n, k) for odd n as follows.
Suppose that n1 is odd. Since n1 + n2 + n3 is even, it follows that n2 + n3 is
odd. Without loss of generality, suppose that n2 is even and n3 is odd. We will
show that the coefficient b̂L2

(
n2, k2;n3,−(k1 + k2); c

)
of ρ(n1,−k1) in (8.3)

is equal to zero by showing that, in view of (7.9) and (7.11), the factors of the
form

(
(−1)n2−M−1 − (−1)n3−L−1

)
appearing in the definition of the coefficient

b̂L2

(
n2, k2;n3,−(k1 + k2); c

)
are all equal to zero. In the notation of (7.11), we

notice that M + L = 2L2 + 1 implies that M and L have different parity. That
implies that n2 −M − 1 and n3 − L− 1 have the same parity. Therefore,(

(−1)n2−M−1 − (−1)n3−L−1) = 0.

For n1 = n2 = n3 = 2 (implying L1 = L2 = L3 = 0) (8.3) reduces to the
cocycle Jacobi identity for the Witt–Virasoro algebra (see Lemma 3 of [14]) and
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yields the well-known non-trivial Witt–Virasoro cocycle (see [14] for a proof of
the non-triviality) with

ρ(2, k) = k (k2 − 1).

For n1 = n2 = n3 = n, which implies that L1 = L2 = L3 = n/2 − 1 and
(by the assumption that n1 + n2 + n3 is even) that n is even, the cocycle Jacobi
identity (8.3) reduces to

(8.4)
b̂n/2−1(n, k1;n, k2; c) ρ(n, k1 + k2) + b̂n/2−1

(
n, k2;n,−(k1 + k2); c

)
ρ(n,−k1)

+ b̂n/2−1
(
n,−(k1 + k2);n, k1; c

)
ρ(n,−k2) = 0.

By (7.11) and (4.3), the formula for b̂n/2−1 involves a summation over M,L ∈
{0, 1, . . . , n− 1} such that M + L = n− 1. Since n is assumed to be even, n− 1
is always odd, and so M and L are of different parity. Thus, in the definition of
b̂n/2−1,

(−1)n−M−1 − (−1)n−L−1 = (−1)n−1
(
(−1)M − (−1)L

)
= (−1)L − (−1)M = ±2.

Moreover, since M +L = n− 1, we cannot simultaneously have M = L = n− 1.
Thus

1− δ(n−1−L)+(n−1−M),0 = 1

and equation (8.4) takes the form

∑
M,L∈{0,1,...,n−1}

M+L=n−1

(
(−1)L − (−1)M

)(n− 1

M

)(
n− 1

L

)

× {kn−L−11 kn−M−12 ρ(n, k1+k2)+(−1)n−M−1kn−L−12 (k1+k2)
n−M−1ρ(n,−k1)

+ (−1)n−L−1(k1 + k2)
n−L−1kn−M−11 ρ(n,−k2)} = 0,

which, letting M = n− 1− L, becomes

(8.5)
n−1∑
L=0

(−1)L
(
n− 1

L

)2

{kn−L−11 kL2 ρ(n, k1 + k2)

+ (−1)Lkn−L−12 (k1+k2)
Lρ(n,−k1)+(−1)n−L−1(k1+k2)

n−L−1kL1 ρ(n,−k2)}
= 0.

Replacing k by−k in (8.1) and then multiplying the resulting identity by (−1)
we find that

ρ(n, k) = −ρ(n,−k),
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which allows us to extend the definition of ρ(n, k) to negative k, provided that a
formula for ρ(n, k) for positive k has been obtained. In particular, ρ(n, 0) = 0.
Thus, (8.5) becomes

n−1∑
L=0

(−1)L
(
n− 1

L

)2

{kn−L−11 kL2 ρ(n, k1+k2)−(−1)Lkn−L−12 (k1+k2)
Lρ(n, k1)

− (−1)n−L−1(k1 + k2)
n−L−1kL1 ρ(n, k2)} = 0,

i.e.,

(8.6)
n−1∑
L=0

(
n− 1

L

)2

{(−1)Lkn−L−11 kL2 ρ(n, k1 + k2)

− kn−L−12 (k1 + k2)
L ρ(n, k1) + (k1 + k2)

n−L−1kL1 ρ(n, k2)} = 0.

We point out that the cocycle identity (8.6) was obtained under the assumption that
n is even.

For n = 2, equation (8.6) becomes

1∑
L=0

(
1

L

)2

{(−1)Lk1−L1 kL2 ρ(2, k1 + k2)

− k1−L2 (k1 + k2)
L ρ(2, k1) + (k1 + k2)

1−LkL1 ρ(2, k2)} = 0,

which is easily checked to be satisfied by the Witt–Virasoro cocycle ρ(2, k) =
k (k2 − 1).

For the general, even n > 2 case, for k2 = 1 and k1 = k ­ 2, assuming
ρ(n, 1) = ρ(n, 0) = 0, from equation (8.6) we obtain

(8.7) ρ(n, k + 1) =
p(n, k)

q(n, k)
ρ(n, k),

where

p(n, k) =
n−1∑
L=0

(
n− 1

L

)2

(k + 1)L,

q(n, k) =
n−1∑
L=0

(
n− 1

L

)2

(−1)Lkn−L−1.

We notice that:
(i) p(n, k) and q(n, k) are monic polynomials in k, of odd degree n− 1.

(ii) p(n,−2) = 0 and q(n, 1) = 0 (for even n).
(iii) q(n, k − 1) is the alternating version of p(n, k), i.e., the coefficient of

kL in q(n, k − 1) is (−1)L+1 times the corresponding coefficient in p(n, k). Thus
the roots k of q(n, k − 1) are the negatives of the roots k = r1 = −2, k = r2, k =
r3, . . . , k = rn−1 of p(n, k).
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(iv) For each j ∈ Z, the roots k of p(n, k − j) are given by k − j = −2,
k − j = r2, k − j = r3, . . . , k − j = rn−1, so k = j − 2, k = j + r2, k =
j + r3, . . . , k = j + rn−1. By (iii), the roots k − j of q(n, k − j − 1) are the
negatives of k − j = −2, k − j = r2, k − j = r3, . . . , k − j = rn−1. Therefore,
k − j = 2, k − j = −r2, k − j = −r3, . . . , k − j = −rn−1, i.e., k = j + 2, k =
j − r2, k = j − r3, . . . , k = j − rn−1.

Thus, for each j ∈ Z, we may write

p(n, k − j) = (k − j + 2)(k − r2 − j) . . . (k − rn−1 − j),

q(n, k − j − 1) = (k − j − 2)(k + r2 − j) . . . (k + rn−1 − j),

and

(8.8)
p(n, k − j)

q(n, k − j − 1)
=

(k − j + 2)(k − r2 − j) . . . (k − rn−1 − j)

(k − j − 2)(k + r2 − j) . . . (k + rn−1 − j)
.

Iterating (8.7) and using (8.8) we obtain

(8.9) ρ(n, k + 1) =
1

q(n, k)

p(n, k)

q(n, k − 1)

p(n, k − 1)

q(n, k − 2)
. . .

p(n, 3)

q(n, 2)
p(n, 2)ρ(n, 2)

=
1

q(n, k)

(k + 2)(k + 1)k(k − 1)

24

∏n−1
i=2 (k − ri)

(k−2)∏n−1
i=2 (k + ri)(k−2)

p(n, 2)ρ(n, 2).

Since

p(n, k + 1) = (k + 3)
n−1∏
i=2

(k − ri + 1),

q(n, k) = (k − 1)
n−1∏
i=2

(k + ri + 1),

and so

p(n, 2) = 4
n−1∏
i=2

(2− ri),

substituting in (8.9), after replacing k by k − 1, defining

(8.10) ρ(n, 2) = 2(22 − 1)

and simplifying, we obtain for k ­ 0

ρ(n, k) = k(k2 − 1)
n−1∏
i=2

(k − ri − 1)(k−2)

(k + ri + 1)(k−2)
.



70 L. Accardi and A. Boukas

Now let k ¬ 0. Then

ρ(n, k) = −ρ(n,−k) = −(−k)
(
(−k)2 − 1

) n−1∏
i=2

(−k − ri − 1)(−k−2)

(−k + ri + 1)(−k−2)

= k(k2− 1)
n−1∏
i=2

(−1)−k−2(k + ri + 1)−k−2
(−1)−k−2(k − ri − 1)−k−2

= k(k2− 1)
n−1∏
i=2

(k + ri + 1)−k−2
(k − ri − 1)−k−2

,

where we have used
x(n) = (−1)n(−x)n.

By (8.9) and (8.10), ρ(n, k) ∈ R. �
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