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Abstract. The limiting behaviour of observed and all random variables
in the max limit schema was considered by Mladenovi¢ and Piterbarg (2006)
and Krajka (2011). Here those results are generalised in two directions:

+ we allow more than one observer and one superobserver;
+ we consider the max limit schema as well as the sum limit schema.

2000 AMS Mathematics Subject Classification: Primary: 60F05;
Secondary: 60G70.

Key words and phrases: Central limit theorem, extreme value theory,
observed and unobserved random variables.

1. INTRODUCTION

Let {X,,n > 1} be a sequence of independent identically distributed (iid)
random variables. For the distribution function F' we will write {X,,,n > 1} €
Dy (F, ap, by) (for short, Dy (F)) if

max X; — by,
1<i<n D

— F  asn — oo,
np,

and {X,,,n > 1} € Dg(F,ap,by) (for short, Dg(F)) if

)

n
Xi—bn
=1

D
— F  asn — oo.
an

In Mladenovic¢ and Piterbarg [4] the following theorem (in an equivalent form) was
proved:

THEOREM 1.1. Let {X,,,n > 1} be a sequence of iid random variables such
that {X,} € Dy (QG), and let {e,,n > 1} be a sequence of indicators which is
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independent of { X,,,n > 1} and such that for p € [0, 1]

> Ie; = 1] > Ie; = 0]
i=1 i=1 P
—p ( — 1 - p)
n n
Then
lim P[ max X; <anz+b,, max X; <any+b,]=GP(x)G P(y),
n—oo  {i:1<i<n, {i:1<i<n,
e;=1} €;=0}
where (and in the sequel) we put max () = —oc.

This theorem may be interpreted as follows: we have the set of two observers,
who observe the sequential random variables from the sequence {X,,,n > 1} but
so that

1. all random variables are observed;
2. each of them is observed only by one observer.

The random variables {;,7 > 1} indicate the number of observers. The ob-
served random variables are collected in the max schema. In Krajka [3] this theo-
rem was generalised to the case when p is a random variable.

In this paper we generalise Theorem [T in the following directions:

(1) We take more than two observers and allow that some observers collect
random variables in the max schema and some observers collect them in the sum
schema.

(ii) In consequence, the random variables {¢;,7 > 1} are not indicators, but
must take values from the set {1,2,3,...,k,k+1,...,k + [}, where k is a num-
ber of observers in the sum schema and [ is a number of observers in the max
schema. For clear explanation we consider the sequence {Y;,,n > 1} and collec-
tions of sets { A1, Ag, ..., Ag1;} such that

k+1

UAZ:R, AiﬂA]’:@ fOI"L'#j,

i=1
instead of {€,,,n > 1}, where the indicator I[Y; € A;] shows that the i-th random
variable X; is observed by the j-th observer, assuming that

n
> IY; € Ay -
= Py 1<i<k+],

1.1 n
(- k+l

Spi=1 0<p <1, 1<j<k+l
j=1

In particular, we may put 4; = {i}, Vi=¢;, 1 <i<k+1-1, Agy =

R\ Ufii_l Aj;. Then I|Y; € Aj] = I[g; = j].
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(iii)) We also consider the convergence with two superobservers. One observes
all random variables in the max schema (if [ > 0) and the second observes all
random variables in the sum schema (if £ > 0).

(iv) Instead of the numbers p; we consider also the random variables.

Thus in this paper we consider the limiting behaviour of

n n
‘21 XiI[Y; € Ay] —npip . 1Xz‘f[Yi € Ay — nprp
P|E= <xh,..., = <z
\/ﬁO’ 1 5 \/ﬁO' k>
max X; < apZi4+1 +bn,..., max X; < apxpy;+ by
{#:1<i<n, {i:1<i<n,
Yi€cApi1} Yi€Apt1}

for {X,,n > 1} € Dg(®) and {X,,,n > 1} € Dy(G), where ® is the standard
normal distribution function, and G is the distribution function — one of the three
possible limits in the max schema:

(i) Gi(z) =exp{—e "}, z€eR,

.. exp(—z77), x>0,

il) Go~(z) =

i) G2} =1, z <0,
1 x>0

iii) G3~(x) =14’ ’

( ) 3:7( ) {eXp ( _ (—:B)'Y), T < O,

for some v > 0. Throughout the paper we put 0° = 1. We denote by A€ the com-

plement of the set A. Furthermore, we note that >\, = — Zf:a fora < b.

2. MAIN RESULTS

Let {X,,n > 1} be a sequence of iid random variables with the distribution
function F. We denote by A;,1 < i < k + [, Borel measurable pairwise disjoint
sets (A; € B(R)), where k and [ are nonnegative integer constants indicating the
number of observers in the sum schema and max schema, respectively, and such
that k£ 4+ [ > 0. Let {Y;,7 > 1} be a sequence of random variables independent
of {Xj;,i > 1} and such that /[Y; € A;] indicates that the random variable X is
observed by the j-th observer. Let A\(A4;) = A(A4;,w) be a nonnegative random
measure, A : B(R) x Q — [0, 1], defined forall A;,1 <i < k+[,andany w € 2
(in fact, we may consider a finite family of random variables, indexed by sets). Let
us define, for an arbitrary nonnegative random variable 7,

J
Sij= > IYme€A], 1<i<k+lj>1,

m=1

O(x,n) :@(\%>I[n> 0] + I[x > 0,n = 0],

where ® is a standard normal distribution function.
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THEOREM 2.1. If k > 0 we assume that EX, = p, EX? — (EX1)? = o2
and {X,,n > 1} € Dg(®,nu,0/n); on the other hand, if | > 0 then we as-
sume {X,,n > 1} € Dy(G, ap, by) for some distribution function G (G, G,
or G35), some sequence of positive numbers {a,,n > 1}, and a sequence of
arbitrary numbers {b,,n > 1}. Assume that, for some pairwise disjoint sets

A; € B(R),

> I[Y; € A)]
2.1) ﬂT PoNA;) asn—oo, j=1,2,.. . k+1.
We have
2.2)
k jgl(Xj - M)I[Yj € Ai] k1
P - <zl N max  X; < apz; + by
[Ll,[ vno i £11HJI<J<H7 |
jE€A
k k+l1
— ET] @(zi,AM(A)) T[] G *(z;) asn — oo
i=1 i=k+1
for z; € R such that x; # 0 for those i for which P[A\(4;) = 0] > 0,1 <i < k,
and such that G(x;) # 0 for those i for which P[A\(A;) =0] >0,k +1<1i <

k+1.

In the case of nonrandom strong limits we have:

COROLLARY 2.1. Under the assumptions of Theorem U1, if

+1 jglf[yj € Ajl
2.3) ) A —
i=1

P
—pil =0 asn — oo,

n

instead of (X)), for a set of reals {0 < p; < 1,1 <i < k+ 1}, then

n
; (Xj - M)I[Y} € Az] k1
= <:c,~]ﬂ () [ max X; < apz;+ by
i=k+1 1<,

Je i
k k+1
— [ ®(zi,pi) I GP(xi) asn— oco.
=1 i=k+1

The next results generalise Theorem Pl to the case when superobservers arise.
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COROLLARY 2.2. Under the assumptions of Theorem I, if

1
FE - < 00,
then
n n k
e 2 (G = wIlY € Al 2 X —wiY; e U Al
24) P = il = =
24 LQ[ N <"’“"] N =Y
k—+l1
N () [ max X; < apxi+ by, max X; < anz+by
ik GA<i<n, {j1<j<n
Yiedi} vieUiZe,, Aid
1 T k
—>E[ f f I[ul—i—...—i—uk < y]dH @(uz,)\(Az))
—0o0 —0o0 =1
X G (z;) - GANB)(2)],  where B = U A

{i:xi<z,i>k} {i:w;>z,1>k}

as n — oo, and x;, Yy, z are arbitrary reals.

COROLLARY 2.3. Under the assumptions of Theorem 1, if

1
E - < 00
[Timy AA)
then
n n k
pop (X - mIlY; € Al E (X - mIY; € U Al
P[ﬂ []_ <xi],] =1 <y
i=1 Vno Vno
k+l1
n X; i+ bl X; b
SAlRgE, o <t X <ozt
Yiedd vieR\UL, 4:)

— E| ? Ifk Tui 4 .. 4w < yld®(ur, AM(A1)) ... d® (ug, A(Ag))

—00

G)\(Ai)(flfi> . GA(BU(R\UZ:Z Ai))(z)], where B = U Ai,
{i:xi>z,0>k}

x 1

{i:x;<z,i>k}

asn — oo, and x;, Yy, z are arbitrary reals.
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COROLLARY 2.4. Under the assumptions of Theorem I, if
1

m LA AR\ UL 4))

< 00,

k+1
N () [ max X, <apz;+by), max
i=k+1 U 1<Zl<n {j: lkijl<n
Y,
i€A} YEUz rr1 A

Xj <apz+by

. JT zp y—u— e ) (u1, A(A1)) ... d® (ug, A(Ay))
[ <\//\ R\Uf+li+1 i)

GMNAD () - G’\(B)(z)} , where B = U A;,

X
{i:x;>2,i>k}

{i:w;<z,i>k}
asn — oo, and x;, Yy, z are arbitrary reals.
As a consequence of Corollary 4 we get the main result (but for an iid se-
quence only) of the paper [3].

COROLLARY 2.5. Let us suppose that the following conditions are satisfied:
(i) FeDy(G,an,by,) for some real constants a,, >0, by, and every real x;

(i) {Xn,n > 1} is an iid random sequence;
(i) Y = {Y,,n > 1} is a sequence of indicators which is independent of

{ Xy, n > 1} and such that

— A asn— oo

for some random variable ).
Then for all reals x and y (if x < y and P[]\ =

that G(x) > 0)

P X; < b X; < b
[{zrfi%}in anT + b, max any + bn)

vi=1)
L [EEWE6) e
G) o>y |

0] > 0 then = must be such
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3. PROOFS

LEMMA 3.1. Let {X,,,n > 1} and {Y,,n > 1} be two sequences of random
variables. Let

P[Xn < x,Yn < y] - E(I)(LI]', )\l)q)(ya)‘Q) asn — 00,

where {®(x,y),y > 0} are families of Gaussian distribution functions as defined
previously, 0 < \; < 1 a.s.,i = 1,2, are arbitrary random variables and x,y € R.

If E(1/v/A1)2) < o0, then

z vy
PX, <z, Y, <y, X, + Yn<z]—>E’f fI[zl + 29 < z|d, P(21, A1)d2, P(22, A2)

—00—00

as n — oQ.

Proof of Lemma 3.1. It is easy to check that E®(u, A1)®(v, A2) is a
two-dimensional distribution function. Thus there exists a random vector (X, Y)
such that

(Xn,Y) 2 (X,Y) asn— oo.

Putting the set A = {u, v : u < 21,v < z2,u+v < z3} for arbitrary reals z1, 22, 23
in Theorem 29.1 (iv) of [2] we get

(XnaynaXn+Yn)2’(X7KX+Y) as n — oQ.
For arbitrary u, v and hy, hy > 0, by (3.4), p. 114, in [8], we have

%0 o9 (<I>(u+h1,t1)—¢(u,t1))(<1>(v+h2,t2)—<1>(v,t2))P

I

[)\1 < dtl, Ao < dtg]

—00 —00 hth
<CPE—_ <o
TV
as
[®(u+h,t) = B(u,t)] _ C
< —.
h Vi
Thus from the Lebesgue dominated convergence theorem it follows that
32 o0 00
udv _J;O _{O@(u,t1)®(v7tg)P[A1 < dty, Ao < dto]
0o 0 82
= ——®(u, t1)P(v, t2) P[A\1 < dt1, A2 < dt
7{0 {Oauav (u’ 1) (U’ 2) [ 1 < dly, A2 < 2],

and in consequence

[[ dwE®u,\)®w, X)) =E [[  duw®(u,\)®(v,X2). =

u<zy, v<z2, u<zi, v<z2,
u+v<z3 utv<zs
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LEMMA 3.2. Let {X,,n > 1} and {Z,,n > 1} be sequences of random
variables, { A,,,n > 1} be a sequence of events such that lim,, ., P[A;] < € and

D .
Zyn — H asn — oo. Then the following convergences are true:

lim P[Z, < z,A,] <e

n—oo
and

lim |P[Z, <z, Aj]| — H(2)| <e

n—oo

for every point 7 of continuity of H, even when A,, and Z,, are dependent.

Proof of Lemma 3.2. The first inequality is a consequence of the rela-
tion P[Z,, < z, A, < P[Ay], whereas the second follows from

|P[Z, < 2,A5] — H(2)| < |P[Zp < 2] — H(z)| + P[A,]. =
Proof of Theorem 2.1. Let {X;;,1<i<k +1[,j>1} be an array of

iid random variables with the distribution function F, independent of {Y}, j >1}.
Because the iid sequence of random variables is exchangeable, we get

> (X — wI[Y; € Al
=

k—+l1
<xil N max X; < apx; +b
Z] i:r;ll[{j:lgjgn, j < ani + bl

YjeA;}
Si,n
k jgl(XiJ — 1) k+l
PN < Xi; +b)| = PIB
L‘q [ Vno < ml] 71‘:D+1[1<I§1£§,n by < it n]] [Bnl,

say, and denote the right-hand side of (Z2) by B. To see that P[B,] — B, firstly,
we evaluate the difference between P[B,] and this same P[B,], but with S; ,,
replaced by [nA(4;)],1 < i < k + [, using (7). Secondly, we evaluate the speed
of convergence (Z2) for k = 1 and [ = 0. Thirdly, we bound the convergence ()
for £ = 0, = 1, and finally we prove ('2).

Let us put, for some nonnegative sequences of reals {~,,, 7,,n > 1},

M| Sim — [nA(A;
| R
i=1 n
k X —
E,=U [ sup o ,u‘ > nn].
i=1 L [nA(A) | —29nn<t< A (A7) [ 4290 | j=5,, V71O
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We have
(3.1) P[B,] <
Si,n
k A;(XM_N) kil
<P = i X - . b ’EC’DC
NS <o D) e X < o), B3 D)

+ P[DS, E,] + P[D,]

[nA(A4i)]

ko= W 2 k+1
<P - < 2 : X < b
b LDl o\/n rit i i:D—H( I{lgf ij < AnTi + n):|

<[nA(Ad) | —2nn

+ P[Dy,, E,] + P[D,),

and similarly

(32) P[B,]>
[nA(A)]
koo Xij — ) ket
>P ﬂ o~ <:1:i—nn,‘ﬂ ( nlr1<ajx Xij < apxi+by)
=1 Z:k—HS I_n)\(Ai\)J+2n'yn

— P[D¢, E,] — P[D,)].

In order to consider these two evaluations together we introduce the value ¥ equal
to 1 in the case of upper bound of P[B,] and —1 in the case of lower bound.
Furthermore, let z = min y(y) [z;|, where J(A\) ={1<i<k : P[A\(4;)=0] >0}
(by our assumptions = > 0). Then because for z; > 0, u € [0, 1], and some se-
quence {0,,n > 1}, 0 <0, < 1,

[nu)
> (Xij—n)
[nu)
> (Xij — 1)
= Plu < 0y) —P[]_ > x; + Inp,u < O |,

ay/n
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and from Kolmogorov’s maximal inequality it follows that, for any i € J(\),

[nu)

‘21 (Xij— )
= . <
P[ o~ ‘>|xl+19nn\,u On
k
j;l(Xz‘,j — 1) 5
< P| sup _‘> xi+19n]<n ;
[Kkgménj oy/n | ol (z + I )?
we get, for arbitrary 1 < i < k,
[nu]
1 j§1 (Xij— )
on 5
< i - iU +—D
{ [I[x; > 0] — ®(xi, u)| F)a,)(du) + CER e
L%J(X )
1 i,y T M
j=1 x; + Iy,
+} o LMY g 2i)|p (du)+j"<1> T ) By oa (du)

The third integral can be evaluated by (3.4), p. 114, in [5], as

v i+ 197771 T in
ao () o () P < 2

while for the second one, by Theorem 8§, p. 118, in [8], we get

[nu]

> (X — )
pl=t i+, — @ Li TVl
[ o ot ”] < Vi )

e B(Xi1 — )’ 1[| X1 — pl > eno/[nu]]

1

35 [

on

Fya,)(du)

%E(Xi,l_ W11 Xix — pl < eno/[nuf]dFya,) (us)

< S BE(X) - )2 I[| X1 — p| > eno/[10,]] + Cen
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for some sequence of reals {e,,,n > 1}. We also have for arbitrary k < i < k +1

1
. P Xij < an®i + by] — G (x;)|dF)(a,) (i
(3.6) {I e 2%, Kid < it bu] = G (z)|dFa (4, ()

1
< [ |Fm =200 (g2 + by,) — F™ (@@ + by)|dFya,) (w;)
0

1
+ f ’Fnu(anl‘z + bn) — Gu($z)‘dF)\(Al)(uZ)
0
< \F_Q"M"(anxi +by) — I\EG)‘(Ai)(mi)

1
+ 2 [ [F™(anwi + bp) — G*(2i)|dF)\a,)(us).
0

On the other hand, we have

(3.7) P[D,] <
S [t o o A RTE R
< j: (P[ % A(A;)] > ’yn] +I[:L > Vn]>7

(3.8) P[Dy,,ES) < —".

Because {\(A4;),1 <i < k+ 1} and {X;;,i,j > 1} are independent, taking
into account (B)—(BR) and the inequality

n

(3.9) | TTai — TT i < X Jai — bil
=1

i=1 i=1
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valid for 0 < a;, b; < 1, we get for some absolute constants C'

E o1 jgl (Xij —n)
- b < e < + | — P(4, ,
|P[B,] — B| 1:2:1{ P[ o~ < +7]} (2, u)|dFy4,)(du)
k1
+ > [P max Xij < anwi +by] — G"(2:)|dF)4,)(u)
i=kt10 S

On Tin
<C
{ ( 2 * 270y,

s E(X) — )2 I[| X1 — p| > enoy/[n0,]] + €n}

k On 4'711
+Z(fm@>mw@wmeww+n2>
> ( ;

k
Sin 1
+ZP{’—M&)>%J+%+04>%]
i=1 n n
E+1
+ 3 |FTU (apai + by) — 1EGMA) (z,)
i=k+1
k+l 1
+ 2 Z f |Fnu(an.l‘z + bn) — Gu($1)|dF>\(AZ)(uZ)
i=k+1 0
Because, by (ZI),
%ﬁﬂxmm 1<i<k+i,

there exists a sequence 7, — 0, as n — o0, such that

S.
P[;T—M&)>%}HQ
Thus, taking
, 2
Y = IAX § Vp, n
we have
k )
S’L n
ZP[ T’—)\(Ai) >7n} —0 asn— oo
i=1
and

1
I[>7n} =0.
n
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Now, putting 6, = nn, = ¥/7,,,€n = 1/39/n,n > 1, for sufficiently large n (such
that ,, < /2), because €,/ |ndy| > /n, we have

On On,
<40,
(x —nn)? x
6
nn — ﬁn N 07
V2ré, V21
4y
77% = 437, — 0,
€n — 0,
E(X1 — w)?I[| X1 — p| > eno/[nd,]] — 0,
ko bn
S (J H[wi > 0] — @(xs,u)|Fya,(du)) — 0
i=1 0

as n — oo. Furthermore, if G(z;) > 0, then |F 279" (q,2; + b,) — 1| — 0 as
n — oo, otherwise (then P[A(A4;) = 0] = 0) EGN4)(z;) = 0. By Lebesgue’s
dominated convergence theorem, as the function G%(x;) is monotonic, the last
integral also converges to zero. m

Proof of Corollary 2.1. It is enough to take A(A;,w) = p; for 1 <
1 < k + [ in the previous theorem. m

Proof of Corollary 2.2. From Lemma Bl we have

e X (X5 — Iy € Al > (X; = wI[Y; e | Al
p ﬂ Jj=1 < Jj=1 i=1 <y
i=1 Vno il Vno
o T uy ug >
= oo | T+ Hup < yldF | —= ) .. . dF | — |.
S Hem ey < A(A1>> ( A(Ar)
As for any sets D and E

Plmax X < a, max Xj < b
keD ke(DUE)

Plmaxyepup) Xk < 0] forb < a,
Plmaxgep Xi < a,maxpep X < b]  otherwise,
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we have
k+l1
lim P max {X,} < ], max Xil <z
n—00 [izﬂl[{msj@,{ i} <l (1<j<n, (X5} <2
Y;€A;} yjeuf;iﬂ A}
= B[N (2;) - GMB)(2)], whereB= |J A

{i:x;>2,i>k}

Since both of these intersections of random variables are independent, we get the
assertion. m

Proofs of Corollaries and 4 are similar. Corollary I3 follows directly
from Corollary 3.

4. EXAMPLES AND APPLICATIONS

EXAMPLE 4.1. Let {Y,,,n > 1} be a sequence of pairwise independent ran-

. D .
dom variables such that Y,, — Y for some random variable Y. Let us assume that
{4y, Ag, ..., Ax+i} is a collection of the sets such that

k+1
UAZ:R, AZOA]:Q)fOI'Z#], P[YE@AZ]:O, 1<i<k+1L
i=1

Let {X,,,n>1} be a sequence of iid random variables independent of {Y,,,n>1}
such that {X,,,n € N} € Dg(®,nu,o0/n) and {X,,,n € N} € Dy(G,an,by)
for some distribution function G. Then Corollary I holds with p; = P[Y € A;],
1 < ¢ < k + (. Particularly, for two independent random variables U; and Us, uni-
formly distributed on the unit interval, let us put

Y; = Re(e2m(U1+3U2)iy — cog 2n (Ui + jU2)), j=>1,
V3 V3 o1 1
g — 1 e g _— —— g _ —
Al |: P 2:|7A2 |: 2 ’ 2:|7A3 |: 270:|a
1 1 V3 V3
A4_ |:07 2:|7A5_ |:272:|7A6_ |:271:|

Then we have Y, = Y} = Y and P[Y € 04;] =0, P[Y € A;] = %. Let us as-
sume that { X,,,n > 1} is a sequence of iid random variables with

0, x <0,
P[X1<~’U]:{1_e_m >0
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Then {X,,,n > 1} € Dg(®,n,/n) and {X,,,n € N} € Dp;(G1,1,Inn). Con-
sequently,

35 (X, — DIY; € Al

P <z, 1<i<3, max X;<z;+lnn4<i<6
\/ﬁ {7:1<j<n,
Y;€A;}

3 6 1
— [ ®(vV6x) [] exp{ - 66_$i} asn — oo
i=1 i=4

for arbitrary z; € R,i=1,...,6.

EXAMPLE 4.2. For an arbitrary random variable A such that 0 < A < 1 a.s.
we define the sequence

1 r
1 for)\e ( " ]
i \n’'n—1

It is easy to check that Y7 _, ex(\)/n P, . For two different random variables
A1, Ag we put

. é‘l()\l) ifk':2l,
) 2e(Ne)  ifk=20+1,

and A; = {1}, Ay = {2}. Let {X,,,n > 1} be a sequence of iid random vari-
ables with uniform law on (0,1). Then {X,,,n > 1} € Dg(®,n/2,v/3n/6) and
{Xn,n > 1} € Dy(G31,1/n,1). Consequently,

3 (X — 1/2)1]Y; € Al]

=1
P|? <z, max X; <= —|—1}
V3n/6 {7:1<5<n,
Y;€As}

2 Eo ( \/;W> ()

for z # 0if P[A\; = 0] > 0.
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