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Abstract. The theory of one-mode type Interacting Fock Space (IFS)
allows us to construct the quantum decomposition associated with stochas-
tic processes on R with moments of any order. The problem to extend this
result to processes without moments of any order is still open but the Araki–
Woods–Parthasarathy–Schmidt characterization of Lévy processes in terms
of boson Fock spaces, canonically associated with the Lévy–Khintchine
functions of these processes, provides a quantum decomposition for them
which is based on boson creations, annihilation and preservation operators
rather than on their IFS counterparts. In order to compare the two quantum
decompositions in their common domain of application (i.e., the Lévy pro-
cesses with moments of all orders) the first step is to give a precise formu-
lation of the quantum decomposition for these processes and the analytical
conditions of its validity. We show that these conditions distinguish three
different notions of quantum decomposition of a Lévy process on R accord-
ing to the existence of second or only first moments, or no moments at all.
For the last class a multiplicative renormalization procedure is needed.
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1. INTRODUCTION

The discovery that any classical random variable with all moments is canoni-
cally associated with a non-commutative structure and, in particular, admits a quan-
tum decomposition [2], extended to processes in [3], naturally raises the question
of comparing this quantum decomposition with another quantum decomposition,
valid only for infinitely divisible random variables but, in this domain, not limited
to random variables with all moments: this is the quantum decomposition related to
the Araki–Woods–Parthasarathy–Schmidt (AWPS) algebraic approach to the the-
ory of infinitely divisible distributions on a general class of topological groups (see
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[23], [10], [7]). This approach extends to non-commutative groups Kolmogorov pa-
pers [15], [16] on helices in Hilbert space (helix is the name used by Kolmogorov
for what is now called a one-cocycle for a given unitary representation).

Since the intersection of the domains of application of the two theories con-
sists exactly of the infinitely divisible random variables with moments of any
order, which are many and very important, the problem to compare them natu-
rally arises. In fact, the two descriptions are both canonically associated with the
same object (say, to fix ideas, an independent stationary increment process on R
with all moments) and both describe the same object, i.e., the L2-space associated
with it, therefore one expects that there is a canonical isomorphism between them,
where the term canonical means that the operators representing in the two spaces
the random variables of the process are mapped into one-another by this isomor-
phism.

This problem is strictly related to another problem which has been studied by
several authors in the past years (see [12]–[14], [6], [18], [17], [8], [9]), i.e., the
extension of Hida white noise theory [11] to more general Lévy processes. The
connection consists in the fact that, according to the Araki–Woods–Parthasarathy–
Schmidt theory, any infinitely divisible process on R (in fact, on a much more
general class of groups, but in the present paper we discuss only the case of the
real line) can be realized in a boson Fock space constructed in terms of the Lévy–
Khintchine function of the process.

In order to realize the program formulated above our first step has been to ob-
tain a form of the AWPS representation of a Lévy process on the real line explicit
enough to deduce a quantum decomposition for any infinitely divisible real-valued
random variable and for the associated white noise: the case of a single random
variable is discussed in the paper [5]; the associated white noise is constructed in
the present paper. Our construction is different from the construction used by the
authors who have applied the AWPS results to classical Lévy processes (e.g., [21],
[26]) and, being applicable to any Lévy process, has the advantage of dispens-
ing from some analytical assumptions like the existence of the Laplace transform
[26] or of finite second moments [19], [20], which limits the class of processes to
which the theory is applicable. Our investigation points out a natural subdivision
of the Lévy processes on R into three classes according to the existence of sec-
ond or first moments or no moments at all. For the last class the existence of the
quantum decomposition requires a multiplicative renormalization procedure whose
effect can be intuitively described as “subtracting an infinite constant to a classi-
cal real-valued random variable working with quantities which are finite at every
step”. The remark that a classical real-valued infinitely divisible random variable
(respectively, process) with no moments is equivalent “up to subtraction of an infi-
nite constant” (see Section 6 below for a precise formulation of this statement) to a
classical random variable with moments of any order was an unexpected result for
the authors of this paper.
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2. GENERAL FRAMEWORK

2.1. White noise measures. Recall (see [25]) that any infinitely divisible prob-
ability measure µ on R is canonically associated with a triple (α, σ, β) such that:

• α is a real constant,
• β is a positive finite measure on R with

σ2 = β({0}),

• denoting by µ̂ the Fourier transform of µ, and by Ψ the Lévy–Khintchine
function given by

(2.1) Ψ(x) = iαx− σ
2

2
x2 +

∫
R\{0}

(
eixt − 1− ixt

1 + t2

)
1 + t2

t2
dβ(t), x ∈ R,

we obtain the measure on R∗ := R \ {0} in the form

(2.2) dν(t) =
1 + t2

t2
dβ(t)

which is called the Lévy measure of µ, and we denote byX1 the real-valued random
variable with distribution µ.

Let C∞([−a, a]) (a > 0) be the space of all infinitely differentiable functions
on R having compact supports in the interval [−a, a]. Then C∞([−a, a]) is a nu-
clear space with a family {| · |a,p} of countable Hilbert norms defined by

|f |2a,p :=
p∑

m=0

a∫
−a
|f (m)(t)|2dt,

where f (m) denotes the m-th derivative. Let C∞c (R) be the union of the spaces
C∞([−a, a]) endowed with the inductive limit topology. Defining H = L2(R, dt)
we obtain the real nuclear triple

C∞c (R) ⊂ H ⊂ C∞c (R)′,

where C∞c (R)′ is the dual of T (see below) with the weak topology.
Under the assumption that β has finite absolute second moments, Lee and Shih

[19], [20] have shown that there exists a unique probability measure, which can be
identified with the white noise measure Λµ on the space C∞c (R)′, of tempered
distributions with the Borel σ-algebra induced by the topology described above
with characteristic functional Cα,β on C∞c (R) given by

(2.3) Cα,β(ξ) :=
∫

C∞c (R)′
ei⟨w,ξ⟩ΛL(dw) = exp

{+∞∫
−∞

Ψ
(
ξ(t)

)
dt
}
, ξ ∈ T ,

where ⟨·, ·⟩ is the duality ⟨T ′, T ⟩.
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Since we want to drop the restriction on second moments, we will use a differ-
ent test function space based on the fact that every infinitely divisible probability
measure µ on R defines an independent, stationary, real-valued increment process
(Xt) (simply called white noise) on R, that is unique up to stochastic equivalence.
The probability space of this white noise will be denoted by (Ωµ,Fµ,Λµ) and the
probability measure Λµ will be called the white noise measure associated with µ.
We will also use the shorthand notation L2(Λµ) for the space L2

C(Ωµ,Fµ,Λµ).
Finally, we fix the test function space

T := {finite range, compact support step functions R→ R}

and the random variables

Xξ :=
∑
j∈F

ξj(Xtj+1 −Xtj ) :=
∫
R
ξtdXt, ξ :=

∑
j∈F

ξjχ(tj ,tj+1] ∈ T ,

where
(
(tj , tj+1]

)
j∈F is a partition of the support of ξ and for any set I ⊂ R

χI(x) =

{
0 if x /∈ I,
1 if x ∈ I.

Using the fact that for ω ∈ Ωµ the map

Tω : f ∈ T → Xf (ω) ∈ R

is linear, we identify the measurable space (Ωµ,Fµ) with (T ′,F ′µ), where Fµ is
the pullback of Fµ through the map T : Ωµ → T ′, i.e.,

F ′ := {A ⊂ T ′, T−1(A) ∈ Fµ}.

With this identification we use the same symbol Λµ for the measure induced by Λµ

on (T ′,F ′) and the notation

⟨x, ξ⟩ := Xξ(x), x ∈ T ′,

where ⟨T ′, T ⟩ is the natural duality between T ′ and T .

2.2. The Araki–Woods–Parthasarathy–Schmidt approach. According to Kol-
mogorov representation theorem a C-valued kernel k on a set X is positive definite
if and only if there exists a Hilbert spaceH and a map

e· : x ∈ X 7→ ex ∈ H

such that k(x, y) = ⟨ex, ey⟩H and {ex; x ∈ X} is total in H. The pair (H, e·) is
unique up to unitary isomorphism and is called the Kolmogorov pair associated
with the positive definite kernel k.
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IfH is a Hilbert space with scalar product ⟨·, ·⟩H, the exponential kernel

(2.4) Exp⟨·, ·⟩H : (x, y) ∈ H ×H → C

is also a positive definite kernel on H. The Kolmogorov pair associated with the
positive definite kernel exp⟨·, ·⟩H onH is denoted by(

Γ(H), Exp( · )
)

and called the exponential space (or boson Fock space) overH. The total set

Exp(H) :=
{
Exp(f) :=

∞∑
n=0

1√
n!
f⊗n ∈ Γ(H); f ∈ H

}
is called the set of exponential vectors of Γ(H).

The characterizing property of the exponential vectors is

(2.5) ⟨Exp(f), Exp(g)⟩ = ⟨ef , eg⟩ = e⟨f,g⟩H for all f, g ∈ H.

A kernel k is called infinitely divisible if the map t ∈ N 7→ k(x, y)t admits an ex-
tension t ∈ R 7→ k(x, y) such that for each t ∈ R+ the kernel kt(x, y) =

(
k(x, y)

)t
is positive definite. Clearly, any exponential kernel (2.5) is infinitely divisible.
The converse statement is the starting point of the Araki–Woods–Parthasarathy–
Schmidt theory.

THEOREM 2.1 (Araki–Woods–Parthasarathy–Schmidt). For a kernel k on a
set X the following statements are equivalent:

(i) k is infinitely divisible positive definite.
(ii) There exists a kernel q0 such that k has the form

k(f, g) = eq0(f,g), f, g ∈ X ,

and q0 is conditionally positive definite, i.e., for any f0 ∈ X the kernel q on X ,
defined by

(2.6) q(f, g) = q0(f, g)− q0(f, f0)− q0(f0, g),

is positive definite.
(iii) In the above notation, the map

(2.7) κ : f ∈ X 7→ κf := −q0(f0, f) ∈ C

is such that, denoting by (H, e) and (K, u) the Kolmogorov pairs associated with
k and q, respectively, then the map

(2.8) U : e−κfExp(uf ) ∈ Γ(K) 7→ ef ∈ H

extends to a unitary isomorphism betweenH and the Fock space Γ(K) over K.
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3. THE KOLMOGOROV ISOMORPHISM
ASSOCIATED WITH THE WHITE NOISE MEASURE

For a given white noise measure Λµ we define the kernel q0 on T by

(3.1) q0(ξ, η) =
+∞∫
−∞

Ψ
(
η(t)− ξ(t)

)
dt =: ⟨Ψ(η − ξ)⟩

which is conditionally positive definite, and hence the kernel

k(ξ, η) := e⟨Ψ(η−ξ)⟩

is infinitely divisible and positive definite. Moreover, in this case, we can con-
cretely realize the Araki–Woods–Parthasarathy–Schmidt isomorphism in Theo-
rem 2.1 as follows.

THEOREM 3.1. For each ξ ∈ T and for any b ∈ C such that |b|2 = σ, let us
define the following:

(i) the trigonometric exponential eξ ∈ L2(Λµ),

(3.2) eξ(x) := ei⟨x,ξ⟩, x ∈ T ′;

(ii) the function vξ,

(3.3) vξ(y, t) := eiyξ(t) − 1, y ∈ R∗,

and the space K0,

(3.4) K0 := closed linear span of {vξ; ξ ∈ T } ⊆ L2(ν ⊗ dt);

(iii) the vector uξ in H ⊕K0,

(3.5) uξ = bξ ⊕ vξ ∈ H ⊕K0,

where vξ is defined by (3.3).
Then, in the notation (3.1), the unique linear operator UL such that, for all

ξ ∈ T ,
(3.6)
UL : e⟨Ψ(ξ)⟩Exp(uξ) ∈ Γ(H ⊕K0)→ UL

(
e⟨Ψ(ξ)⟩Exp(uξ)

)
:= eξ ∈ L2(Λµ)

is a unitary isomorphism from the Fock space Γ(H⊕K0), overH⊕K0, to L2(Λµ).

P r o o f. Clearly, vξ ∈ L2(ν ⊗ dt), which proves the inclusion (3.4). In the
notation of Theorem 2.1 we choose:

X = T , k(ξ, η) = e⟨Ψ(η−ξ)⟩, q0(ξ, η) = ⟨Ψ(η − ξ)⟩.
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Then, using the expression (2.1) for the Lévy–Khintchine function and with the
above choices, we see that the kernel q defined by (2.6) is given by

q(ξ, η) = q0(ξ, η)− q0(ξ, 0)− q0(0, η)(3.7)

=
+∞∫
−∞

{
Ψ
(
η(t)− ξ(t)

)
−Ψ

(
− ξ(t)

)
−Ψ

(
η(t)

)}
dt

=
+∞∫
−∞

σ2ξ(t)η(t)dt+
+∞∫
−∞

∫
|y|>0

vξ(y, t)vη(y, t)ν(dy)dt,

where vξ is defined by
vξ : (y, t) 7→ eiyξ(t) − 1.

The right-hand side of (3.7) suggests a natural choice for a Kolmogorov repre-
sentation of the kernel q. On the other hand, there exists a subset T0 ⊆ T such
that {vξ; ξ ∈ T0} is a linearly independent set and K0 is the closed linear span of
{vξ; ξ ∈ T0}. Then one can see that the first term in the last line of (3.7) is a scalar
product on H and the second, due to the linear independence of the vξ’s, ξ ∈ T0,
extends to a scalar product on the space K0 defined by (3.4). Then (3.7) gives the
scalar product on

(3.8) K := H ⊕K0,

which takes the form

(3.9) ⟨·, ·⟩K := ⟨·, ·⟩ := ⟨·, ·⟩H + ⟨·, ·⟩L2(ν⊗dt).

From the definition of K0 it is clear that the range of the map ξ 7→ uξ in (3.5) is
total in H ⊕K0. Therefore, the pair (K, uξ) defined respectively by (3.8) and (3.5)
is a Kolmogorov representation of the kernel q. Passing to the exponential space
Γ(K) of K, we see that the exponential kernel of the scalar product (3.9) is of the
form

⟨Exp(uξ), Exp(uη)⟩ = e⟨uξ,uη⟩ = eq(ξ,η).

On the other hand, we have

e⟨Ψ(η−ξ)⟩ =
∫
T ′
e−i⟨x,ξ⟩ei⟨x,η⟩Λµ(dx) = Λ̂L(η − ξ) = ⟨eξ, eη⟩L2(Λµ),

and the family {eξ; ξ ∈ T } is total in L2(Λµ). It follows that, if we define the
linear map

UL : Γ(K) = Γ
(
H ⊕K0

)
→ L2(Λµ)

by linear extension of

UL

(
e⟨Ψ(ξ)⟩Exp(uξ)

)
= eξ, ξ ∈ T ,
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then we get

⟨eξ, eη⟩L2(Λµ)
= Λ̂L(η − ξ) = e⟨Ψ(η−ξ)⟩ = exp{q0(ξ, η)}

= exp{q(ξ, η) + q0(ξ, 0) + q0(0, η)} = exp{⟨uξ, uη⟩+ ⟨Ψ(ξ)⟩+ ⟨Ψ(η)⟩}
= ⟨e⟨Ψ(ξ)⟩Exp(uξ), e

⟨Ψ(η)⟩Exp(uη)⟩Γ(K).

Therefore, the pair
(H, e) :=

(
L2(Λµ), {eξ; ξ ∈ T }

)
is a Kolmogorov representation of the kernel Exp⟨·, ·⟩K. �

4. GENERALIZED FIELD OPERATORS

Recall that the differential second quantization of a self-adjoint operator T on
the Hilbert spaceH, denoted by Λ(T ), is defined via the Stone theorem by

(4.1) Γ(eitT ) =: eitΛ(T ), t ∈ R,

where for a unitary operator X,Γ(X) is the second quantization of X , character-
ized by the condition

Γ(X)Exp(x) := Exp(Xx).

Recall that the creation (respectively, annihilation) operator A+(u) (respectively,
A−(u)) acts on the domain of exponential vectors as follows:
(4.2)

A+(u)Exp(x) :=
d

ds

∣∣∣∣
s=0

Exp(x+ su), A−(u)Exp(x) := ⟨u, x⟩Exp(x).

It follows that if x ∈ dom(T ), then

(4.3) Λ(T )Exp(x) = −i d
ds

∣∣∣∣
s=0

Exp(eisTx) = A+(Tx)Exp(x).

DEFINITION 4.1. Let qξ be the multiplication operator by the random variable
⟨·, ξ⟩ in L2(Λµ):

(qξF )(x) := ⟨x, ξ⟩F (x), F ∈ L2(ΛL), x ∈ T
′.

Define the operator Qξ on Γ(H ⊕K0) by

Qξ := U∗
L
qξUL ,

where UL is the isomorphism defined by (3.6). Since Λµ is a probability measure
on T ′, qξ is self-adjoint (see [24], Chapter VIII.3, Proposition 1) and

eitQξ = U∗
L
eitqξUL , t ∈ R.

Qξ is called the generalized field operator.
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LEMMA 4.1. The one-parameter unitary group

t 7→ exp{itQξ}

acts on the total set
{
exp{uη}; η ∈ T

}
as follows:

(4.4) exp{itQ
ξ
}Exp(uη) = exp{⟨Ψ(η + tξ)−Ψ(η)⟩}Exp(uη+tξ).

P r o o f. Using the isomorphism UL defined by (3.6) we get

exp{itQ
ξ
}Exp(uη) = U−1

L
exp{itq

ξ
}ULExp(uη)

= U−1
L

exp{itq
ξ
}(exp{κη}eη) = exp{κη}U−1L

(exp{itq
ξ
} exp{i⟨·, η⟩})

= exp{κη}U−1L
(exp{i⟨·, η + tξ⟩}) = exp{κη}U−1L

(eη+tξ)

= exp{κη} exp{−κη+tξ}U−1L
(exp{κη+tξ}eη+tξ)

= exp{κη} exp{−κη+tξ}Exp(uη+tξ)

= exp{⟨Ψ(η + tξ)−Ψ(η)⟩}Exp(uη+tξ). �

LEMMA 4.2. For all ξ ∈ T , the following statements are equivalent:
(i) The second moment of Λµ is finite.

(ii) The vacuum vector is in the domain D(Qξ) of Qξ.
(iii) The total set {Exp(uη); η ∈ T } is in the domain of Qξ.

P r o o f. The domainD(qξ) of the multiplication operator by the random vari-
able ⟨·, ξ⟩ is defined by

D(qξ) := {g ∈ L2(Λµ); ⟨·, ξ⟩g ∈ L2(Λµ)}.

Therefore, given η ∈ T , Exp(uη) ∈ D(Qξ) if and only if

+∞ >
∥∥Qξ

(
Exp(uη)

)∥∥2
=

∥∥U∗
L
qξUL

(
Exp(uη)

)∥∥2 = ∥∥qξ( exp{−⟨Ψ(η)⟩}eη
)∥∥2

= exp
{
− 2ℜ

(
⟨Ψ(η)⟩

)}
⟨eη, q2ξeη⟩ = exp

{
− 2ℜ

(
⟨Ψ(η)⟩

)}∫
T ′
⟨x, ξ⟩2Λ(dx)

= exp
{
− 2ℜ

(
⟨Ψ(η)⟩

)}
⟨Φ, Q2

ξΦ⟩Γ(K),

where Φ is the vacuum vector. Thus, the assertion holds immediately. �

Let q̃ξ = q ⊗Mult(ξ) be the operator acting on the Hilbert space L2(ν ⊗ dt)
as follows:

(4.5) q̃ξF (y, t) := yξ(t)F (y, t).

Using (3.3) one can see that

q̃ξ(vη + 1)(y, t) = yξ(t) exp{iyη(t)}.
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REMARK 4.1. The equivalent conditions of Lemma 4.2 coincide with the as-
sumption in Lee and Shih paper [20] and it is known that they allow us to differ-
entiate twice with respect to r, at r = 0, the characteristic function Cα,β(rξ) given
by (2.3). The result is

E(⟨·, ξ⟩2) =
(
E(X1)

∫
R
ξ(t)dt

)2
+ ∥ξ∥20

∫
R∗
y2ν(dy), ξ ∈ T ,

where ∥ · ∥0 is the norm of H . This gives a simple proof of the known fact (see
[25]) that Λµ has finite second moments if and only if ν has this property.

PROPOSITION 4.1. If the second moment of Λµ is finite, the generalized field
operator Qξ acts on the total set {Exp(uη); η ∈ T } as follows:

Q
ξ

(
Exp(uη)

)
=

(
A+(Ωξ,η) +A−(Ωξ,η) + λ(ξ, η)

)
Exp(uη),

where

Ωξ,η = −ibξ ⊕ q̃ξ(vη + 1) and λ(ξ, η) = E(X1)⟨ξ⟩ − 2ℜ⟨Ωξ,η, uη⟩.

P r o o f. By Remark 4.1 one can see that Ψ is twice differentiable. Thus we
can take the derivative at t = 0 of equation (4.4) obtaining

(4.6) iQ
ξ
Exp(uη) = ⟨ξΨ′(η)⟩Exp(uη) +

d

dt

∣∣∣∣
t=0

Exp(uη+tξ).

But with the notation gξ,η(t) = uη+t,ξ − uη we have

d

dt

∣∣∣∣
t=0

Exp(uη+tξ) = lim
t→0

+∞∑
n=0

1√
n!

(uη+tξ)
⊗n − (uη)

⊗n

t

=
+∞∑
n=1

1√
n!

lim
t→0

(uη+tξ)
⊗n − (uη)

⊗n

t

=
+∞∑
n=1

1√
n!

lim
t→0

(
gξ,η(t) + uη

)⊗n − (uη)
⊗n

t

=
+∞∑
n=1

1√
n!

lim
t→0

n∑
k=1

(
n
k

)
gξ,η(t)

t
⊗̂
(
gξ,η(t)

)⊗̂(k−1)⊗̂(uη)⊗̂(n−k)
=

+∞∑
n=1

√
n√

(n− 1)!
g′ξ,η(0)⊗̂(uη)⊗̂(n−1).

Note that

g′ξ,η(0) = lim
t→0

uη+tξ − uη
t

= lim
t→0

b(η + tξ)− bη
t

⊕
vη+tξ − vη

t

= bξ ⊕ iq̃ξ(vη + 1) = iΩξ,η.



Quantum decomposition associated with the Lévy white noise processes 347

Then

d

dt

∣∣∣∣
t=0

Exp(uη+tξ)=
+∞∑
n=1

√
n√

(n− 1)!
iΩξ,η⊗̂(uη)⊗(n−1) = iA+(Ωξ,η)Exp(uη).

On the other hand, we have

(4.7) ⟨uη,Ωξ,η⟩ = −iσ2⟨η, ξ⟩ −
∫

R∗×R
yξ(t)

(
exp{iyη(t)} − 1

)
ν(dy)dt.

Moreover, using (2.3) we have

(4.8) Ψ′(x) = iE(X1)− σ2x+ i
∫
R∗
y(exp{ixy} − 1)ν(dy).

Hence (4.7) and (4.8) yield

⟨ξΨ′(η)⟩ = iE(X1)⟨ξ⟩ − σ2⟨ξ, η⟩+ i
∫

R∗×R
yξ(t)

(
exp{iyη(t)} − 1

)
ν(dy)dt

= iE(X1)⟨ξ⟩ − i⟨uη,Ωξ,η⟩.

This gives

⟨ξΨ′(εη)⟩= i
(
E(X1)⟨ξ⟩−2ℜ(⟨Ωξ,η, uη⟩)

)
+i⟨Ωξ,η, uη⟩=: iλ(ξ, η) + i⟨Ωξ,η, uη⟩,

and we get

Q
ξ
Exp(uη) = λ(ξ, η)Exp(uη) + ⟨Ωξ,η, uη⟩Exp(uη) +A+(Ωξ,η)Exp(uη)

= A+(Ωξ,η)Exp(uη) +A−(Ωξ,η)Exp(uη) + λ(ξ, η)Exp(uη). �

THEOREM 4.1. Assume that the second moment of Λµ is finite. Then under
the identification

Γ(H ⊕K0) ≡ Γ(H)⊗ Γ(K0),

(4.9) Exp(g ⊕ f) ≡ Exp(g)⊗ Exp(f),

the generalized field operator Q
ξ

has the form

(4.10) Q
ξ
= Q

G,ξ
⊗ 1 + 1⊗Q

CP,ξ
,

where
Q

G,ξ
= A+(−ibξ) +A−(−ibξ),

(4.11) Q
CP,ξ

= A+
ν (q̃ξ · 1) +A−ν (q̃ξ · 1) + Λν(q̃ξ) + E(X1)⟨ξ⟩1,

and A+
ν , A

−
ν ,Λν are the creation, annihilation, and preservation operators in the

Fock representation of L2(ν ⊗ dt) and q̃ξ is defined by (4.5).



348 L. Accardi et al.

P r o o f. Using Proposition 4.1 and the identification (4.9), we have

Q
ξ
Exp(uη)

=
d

ds

∣∣∣∣
s=0

Exp(uη + sΩξ,η) + ⟨−ibξ ⊕ q̃ξ(vη + 1), bη ⊕ vη⟩Exp(bη ⊕ vη)

+ λ(ξ, η)Exp(bη ⊕ vη)

=
d

ds

∣∣∣∣
s=0

Exp
((
bη + s(−ibξ)

)
⊕

(
vη + sq̃ξ(vη + 1)

))
+

(
⟨−ibξ, bη⟩+ ⟨q̃ξ(vη + 1), vη⟩

)
Exp(bη ⊕ vη)

+ λ(ξ, η)Exp(bη ⊕ vη)

=
d

ds

∣∣∣∣
s=0

(
Exp

(
bη + s(−ibξ)

)
⊗ Exp

(
vη + sq̃ξ(vη + 1)

))
+

(
⟨−ibξ, bη⟩+ ⟨q̃ξ(vη + 1), vη⟩

)
Exp(bη ⊕ vη)

+ λ(ξ, η)Exp(bη ⊕ vη)

=

(
d

ds

∣∣∣∣
s=0

Exp
(
bη + s(−ibξ)

))
⊗ Exp(vη)

+ Exp(bη)⊗
(
d

ds

∣∣∣∣
s=0

Exp
(
vη + sq̃ξ(vη + 1)

))
+ ⟨−ibξ, bη⟩Exp(bξ)⊗ Exp(vη) + ⟨q̃ξ(vη + 1), vη⟩Exp(bη)⊗ Exp(vη)
+ λ(ξ, η)Exp(bη)⊗ Exp(vη).

Hence, by (4.2), we have

(4.12) Q
ξ
Exp(uη)

=
(
A+(−ibξ)Exp(bη)

)
⊗ Exp(vη) + Exp(bη)⊗

(
A+

ν

(
q̃ξ(vη + 1)

)
Exp(vη)

)
+
(
A−(−ibξ)Exp(bη)

)
⊗ Exp(vξ) + Exp(bη)⊗

(
A−ν

(
q̃ξ(vη + 1)

)
Exp(vη)

)
+Exp(bη)⊗

(
λ(ξ, η)Exp(vη)

)
=

[(
A+(−ibξ) +A−(−ibξ)

)
Exp(bη)

]
⊗ Exp(vη)

+Exp(bη)⊗
[(
A+

ν

(
q̃ξ(vη + 1)

)
+A−ν

(
q̃ξ(vη + 1)

)
+ λ(ξ, η)

)
Exp(vη)

]
.

On the other hand,

λ(ξ, η) = E(X1)⟨ξ⟩ − 2ℜ(⟨Ωξ,η, uη⟩)
= E(X1)⟨ξ⟩ − 2ℜ

(
⟨−ibξ ⊕ q̃ξ(vη + 1), bη ⊕ vη⟩

)
= E(X1)⟨ξ⟩ − 2ℜ

(
⟨q̃ξ(vη + 1), vη⟩

)
= E(X1)⟨ξ⟩ −

(
⟨q̃ξ(vη + 1), vη⟩+ ⟨vη, q̃ξ(vη + 1)⟩

)
.
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Therefore, using the fact that

⟨vη, q̃ξ(vη + 1)⟩ = −⟨q̃ξ · 1, vη⟩

and equation (4.3), we obtain(
A+

ν

(
q̃ξ(vη + 1)

)
+A−ν

(
q̃ξ(vη + 1)

)
+ λ(ξ, η)

)
Exp(vη)

= A+
ν (q̃ξ · 1 + q̃ξvη)Exp(vη) + ⟨q̃ξ(vη + 1), vη⟩Exp(vη)
−

(
⟨q̃ξ(vη + 1), vη⟩+ ⟨vη, q̃ξ(vη + 1)⟩+ E(X1)⟨ξ⟩

)
Exp(vη)

= A+
ν (q̃ξ · 1)Exp(vη) +A+

ν (q̃ξvη)Exp(vη)

+
(
E(X1)⟨ξ⟩ − ⟨vη, q̃ξ(vη + 1)⟩

)
Exp(vη)

= A+
ν (q̃ξ · 1)Exp(vη) + Λν(q̃ξ)Exp(vη)

+ ⟨q̃ξ · 1, vη⟩Exp(vη) + E(X1)⟨ξ⟩Exp(vη)
= A+

ν (q̃ξ · 1)Exp(vη) + Λν(q̃ξ)Exp(vη)

+A−ν (q̃ξ · 1)Exp(vη) + E(X1)⟨ξ⟩Exp(vη).

Finally, the previous equation and (4.12) yield

Q
ξ
=

(
A+(−ibξ) +A−(−ibξ)

)
⊗ 1

+ 1⊗
(
A+

ν (q̃ξ · 1) +A−ν (q̃ξ · 1) + Λν(q̃ξ) + E(X1)⟨ξ⟩1
)

= Q
G,ξ
⊗ 1 + 1⊗Q

CP,ξ
. �

REMARK 4.2. The identities (4.10) and (4.11) define the quantum decompo-
sition of the generalized field associated with the Lévy white noise processes. The
technique applied in the proof of the previous theorem uses heavily the existence
of the second order moment of ν. It is therefore natural to ask what is the quan-
tum decomposition associated with the Lévy white noise processes in the following
cases:

(i) only the first moment of ν is finite,
(ii) ν has no finite moments.

5. THE WEAK QUANTUM DECOMPOSITION

In the present section we assume that only the first order moment of ν is finite,
meaning by this that the vector q̃ξ · 1 ∈ L1(ν ⊗ dt) but q̃ξ · 1 /∈ L2(ν ⊗ dt). This
implies that, for any F ∈ L∞(ν ⊗ dt), q̃ξ ·F ∈ L1(ν ⊗ dt). Under this assumption
we prove that the quantum decomposition associated with the Lévy white noise
processes can be given a meaning in a weak sense (see Definition 5.3 below).

Without loss of generality we neglect the Gaussian part, which can be dealt
with independently and for which the problem does not subsist, and we denote
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by the same symbol Ψ the characteristic exponent associated with the compound
Poisson process.

Since, by assumption, q̃ξ · 1 /∈ L2(ν ⊗ dt), the first problem is to define objects
like

A+
ν (q̃ξ · 1), A−ν (q̃ξ · 1).

To this goal recall that (see [22]) the Weyl operator (in the normally ordered form)

(5.1) Γ(u, T, v, z) = exp{A+(u)}Γ(T ) exp{A−(v)} exp{z}

is well defined on the domain of the exponential vectors and maps the scalar mul-
tiples of these vectors into themselves because

(5.2) Γ(u, T, v, z)Exp(f) = exp{z+ ⟨v, f⟩}Exp(Tf +u), f ∈ L2(ν⊗ dt).

Moreover, for u1, u2, v1, v2 ∈ L2(ν ⊗ dt), z1, z2 ∈ C, and for any two unitary op-
erators T1, T2 on L2(ν ⊗ dt), we have

(5.3) Γ(u1, T1, v1, z1)Γ(u2, T2, v2, z2)

= Γ(u1 + Tu2, T1T2, v2 + T ∗2 v1, z1 + z2 + ⟨v1, u2⟩).

The following result can be deduced from the existing literature, but we include a
direct proof for completeness.

THEOREM 5.1. The operator-valued function

t 7→Wξ(t) := Γ
(
vtξ, exp{itq̃ξ}, v−tξ, ⟨Ψ(tξ)⟩

)
(5.4)

= exp{A+(vtξ)}Γ(exp{itq̃ξ}) exp{A−(v−tξ)} exp{⟨Ψ(tξ)⟩}

is a strongly continuous one-parameter unitary group with generator Q
CP,ξ

.

P r o o f. S t e p 1. In the notation already used above, it is known that (vξ) is
a one-cocycle for the group (exp{iq̃ξ})ξ∈C∞c (R), i.e.,

vξ+η = exp{iq̃ξ}vη + vξ, v−ξ = − exp{−iq̃ξ}vξ,

and that the two-coboundary associated with Ψ has the form⟨
Ψ
(
(t+ s)ξ

)
−Ψ(sξ)−Ψ(tξ)

⟩
=

⟨
Ψ
(
tξ − (−s)ξ

)
−Ψ(−sξ)−Ψ(tξ)

⟩
= q(−sξ, tξ) = ⟨v−sξ, vtξ⟩.
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Therefore, for f, g ∈ K0, we have

⟨Wξ(t)Exp(f),Wξ(t)Exp(g)⟩
=

⟨
exp{⟨Ψ(tξ)⟩+ ⟨v−tξ, f⟩}Exp(exp{itq̃ξ}f + vtξ),

exp{⟨Ψ(tξ)⟩+ ⟨v−tξ, g⟩}Exp(exp{itq̃ξ}g + vtξ)
⟩

= exp{⟨Ψ(tξ)⟩+ ⟨Ψ(tξ)⟩+ ⟨v−tξ, f⟩
+ ⟨v−tξ, g⟩}⟨Exp(exp{itq̃ξ}f + vtξ), Exp(exp{itq̃ξ}g + vtξ)⟩

= exp
{
⟨Ψ(tξ)⟩+ ⟨Ψ(tξ)⟩+ ⟨v−tξ, f⟩+ ⟨v−tξ, g⟩+ ⟨exp{itq̃ξ}f + vtξ,

exp{itq̃ξ}g + vtξ⟩
}

= exp{⟨vtξ, vtξ⟩+ ⟨Ψ(tξ)⟩+ ⟨Ψ(tξ)⟩+ ⟨− exp{−itq̃ξ}vtξ, f⟩
+ ⟨− exp{−itq̃ξ}vtξ, g⟩+ ⟨f, exp{−itq̃ξ}vtξ⟩+ ⟨vtξ, exp{itq̃ξ}g⟩+ ⟨f, g⟩}

= exp{q(tξ, tξ) + ⟨Ψ(tξ)⟩+ ⟨Ψ(tξ)⟩+ ⟨f, g⟩}
= exp{⟨f, g⟩}
= ⟨Exp(f), Exp(g)⟩.

Thus Wξ(t) is unitary for all t ∈ R.

S t e p 2. Now we prove the group property and the strong continuity.
It is easily seen that

Wξ(0) = Γ
(
v0,1, v0, ⟨Ψ(0)⟩

)
= Γ(0,1, 0, 0) = 1,

and by equation (5.3) we obtain

Wξ(t)Wξ(s) = Γ
(
vtξ, exp{itq̃ξ}, v−tξ, ⟨Ψ(tξ)⟩

)
× Γ

(
vsξ, exp{isq̃ξ}, v−sξ, ⟨Ψ(sξ)⟩

)
= Γ

(
vtξ + exp{itq̃ξ}vsξ, exp{itq̃ξ} exp{isq̃ξ},

v−sξ + (exp{isq̃ξ})∗v−tξ, ⟨Ψ(tξ) + Ψ(sξ)⟩+ ⟨v−tξ, vsξ⟩
)
.

From the identities

vtξ + exp{itq̃ξ}vsξ = v(t+s)ξ,

v−sξ + (exp{isq̃ξ})∗v−tξ = v−sξ + exp{−isq̃ξ}v−tξ = v−sξ−tξ,

⟨Ψ(tξ) + Ψ(sξ)⟩+ ⟨v−tξ, vsξ⟩ = ⟨Ψ(tξ) + Ψ(sξ)⟩+ q(−tξ, sξ)

=
⟨
Ψ(tξ) + Ψ(sξ) + Ψ

(
sξ − (−t)ξ

)⟩
− ⟨Ψ(−tξ)⟩ − ⟨Ψ(sξ)⟩

=
⟨
Ψ
(
(t+ s)ξ

)⟩
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we deduce that

Wξ(t)Wξ(s)=Γ
(
v(t+s)ξ, exp{i(t+ s)q̃ξ}, v−(t+s)ξ,

⟨
Ψ
(
(t+ s)ξ

)⟩)
=Wξ(t+s).

For the strong continuity, it is sufficient to prove that

lim
t→0
∥Wξ(t)Exp(f)− Exp(f)∥ = 0 for all f ∈ L2(ν ⊗ ds).

We have

(5.5) ∥Wξ(t)Exp(f)−Exp(f)∥2

= ∥Wξ(t)Exp(f)∥2 + ∥Exp(f)∥2 − 2ℜ⟨Exp(f),Wξ(t)Exp(f)⟩
= 2∥Exp(f)∥2 − 2ℜ⟨Exp(f),Wξ(t)Exp(f)⟩
= 2 exp{∥f∥2}
− 2ℜ

(⟨
Exp(f), exp{⟨Ψ(tξ)⟩+ ⟨v−tξ, f⟩}Exp(exp{itq̃ξ}f + vtξ)

⟩)
= 2 exp{∥f∥2} − 2ℜ

(
exp

{
⟨Ψ(tξ)⟩+⟨v−tξ, f⟩+ ⟨f, exp{itq̃ξ}f⟩+ ⟨f, vtξ⟩

})
.

By the dominated convergence theorem, for all f ∈ K0 we have

(5.6)
⟨f, exp{itq̃ξ}f⟩ =

∫
R∗×R
|f(y, s)|2 exp{ityξ(s)}ν(dy)ds→ ∥f∥2 as t→ 0.

On the other hand, for |t| ¬ 1, we obtain∣∣f(y, s)( exp{ityξ(s)} − 1
)∣∣ ¬ 2|yξ(s)f(y, s)| = φξ(y, s)

and φξ ∈ L1(ν ⊗ dt) because∫
R∗×R

φξ(y, s)ν(dy)ds = 2
∫

R∗×R
|yξ(s)f(y, s)|ν(dy)ds

¬ 2
( ∫
R∗×R

y2ξ2(s)ν(dy)ds
)1/2( ∫

R∗×R
|f(y, s)|2ν(dy)ds

)1/2
<∞.

Again by the dominated convergence theorem we conclude that

(5.7) lim
t→0
⟨f, vtξ⟩ =

∫
R∗×R

lim
t→0

f(y, s)
(
exp{ityξ(s)} − 1

)
ν(dy)ds = 0.

Taking the limit t→ 0 in equation (5.5) and using (5.6) and (5.7) we obtain

lim
t→0
∥Wξ(t)Exp(f)− Exp(f)∥2 = 2

(
exp{∥f∥2} − ℜ(exp{∥f∥2})

)
= 0.
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Finally, from (4.4) we can see that, for all s, t ∈ R,

Wξ(t)Exp(vη) = exp{⟨Ψ(tξ)⟩+ ⟨v−tξ, vη⟩}Exp(exp{itq̃ξ}vη + vtξ)

= exp{⟨Ψ(tξ)⟩+ q(−tξ, η)}Exp(vη+tξ)

= exp{⟨Ψ(η + tξ)−Ψ(η)⟩}Exp(vη+tξ)

= exp{itQ
CP,ξ
}Exp(vη). �

Now, we extend the definition of creation, annihilation, and preservation oper-
ators to include the case when the images of some vectors in the Fock space are not
vectors of the same space but elements in its algebraic dual of a dense subspace. In
this sense we speak of distribution-valued operators.

DEFINITION 5.1. A distribution-valued operator T on a Hilbert spaceH with
dense domain D is a linear map from D ⊆ H to its algebraic dual D′. Moreover,
the natural embedding

ξ ∈ H 7→ ⟨ξ, · ⟩ ∈ H′ ⊂ D′

allows us to adopt the language of standard triplets

D ⊂ H ⊂ D′

and to interpret elements of D′ as vector-valued distributions on D.

Let Dν be a total set in K0 with the following properties:

(C1) Dν is invariant under complex conjugate.

(C2) For all g ∈ Dν and ξ ∈ T , the distributions

q̃ξ · 1 : f 7→ ⟨q̃ξ · 1, f⟩ and q̃ξ · g : f 7→ ⟨q̃ξ · g, f⟩ = ⟨q̃ξ · 1, ḡf⟩

are well defined on Lin-span(Dν).

DEFINITION 5.2. For f ∈ Dν , define the operators A−ν (q̃ξ · 1) and A−ν (q̃ξf)
on the invariant domain Exp(Dν) ⊆ Γ(K0) (the linear subspace of Γ(K0) gener-
ated by {Exp(g); g ∈ Dν}) by linear extension of

A−ν (q̃ξ · 1)Exp(g) := ⟨q̃ξ · 1, g⟩Exp(g), g ∈ Dν ,(5.8)

A−ν (q̃ξf)Exp(g) := ⟨q̃ξ · 1, f̄g⟩Exp(g), g ∈ Dν .(5.9)

The distribution-valued operators A+
ν (q̃ξ · 1) and Λν(q̃ξ) on the domain Exp(Dν)

⊂ Γ(K0) are defined, for each f, g ∈ Dν , as follows:

⟨A+
ν (q̃ξ · 1)Exp(f), Exp(g)⟩ := ⟨Exp(f), A−ν (q̃ξ · 1)Exp(g)⟩,(5.10)

⟨Λν(q̃ξ)Exp(f), Exp(g)⟩ := ⟨Exp(f), A−ν (q̃ξf)Exp(g)⟩.(5.11)
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REMARK 5.1. One easily proves that the definition (5.11) of Λν(q̃ξ) is com-
patible with the usual one, as the differential second quantization of q̃ξ, in the sense
that the two definitions coincide on the set of exponential vectors with test functions
in the domain of q̃ξ.

DEFINITION 5.3. Let U(t) = exp{itA} be a strongly continuous one-para-
meter unitary group on a Hilbert space H with generator A. Define the weak do-
main wk-dom(A) of A as the maximal subspace D ofH such that for all φ, ϕ ∈ D
the limit

lim
t→0

⟨
U(t)− 1

t
φ, ϕ

⟩
exists.

REMARK 5.2. Clearly, the weak domain of A contains the domain of A.
In particular, wk-dom(A) is a dense subspace of H and A can be defined as a
distribution-valued operator on its weak domain by the formula

Aψ := i lim
t→0

⟨
U(t)− 1

t
ψ, ·

⟩
.

LEMMA 5.1. Let Dν := {vξ; ξ ∈ T } ⊂ K0. Then Dν is a total set in K0

satisfying conditions (C1) and (C2). Moreover, for all f ∈ Dν , the function

F : s 7→ ⟨vsξ, f⟩

is derivable at s = 0 and

F ′(0) = −i⟨q̃ξ · 1, f⟩ := −i
∫

R∗×R
yξ(t)f(y, t)ν(dy)dt.

P r o o f. The totality of f ∈ Dν in K0 follows immediately from the defini-
tions of these sets.

From the relation v̄ξ = v−ξ we deduce that Dν is invariant under complex
conjugate. Then condition (C1) holds.

Since the first order moment of ν exists, the map

(y, t) 7→ yξ(t)vξ(y, t)

belongs to L1(ν ⊗ dt). This implies that

⟨q̃ξ · 1, vξ⟩ :=
∫

R∗×R
yξ(t)vξ(y, t)ν(dy)dt

exists for all ξ ∈ C∞c (R) . Then, by a linear extension, the distribution

Lin-span(Dν) ∋ f 7→ ⟨q̃ξ · 1, f⟩ :=
∫

R∗×R
yξ(t)f(y, t)ν(dy)dt
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is well defined. Moreover, from the relation

vξvη = vξ+η − vξ − vη, ξ, η ∈ T ,

we deduce that Lin-span(Dν) is invariant under multiplication. Then, for all g ∈
Dν , the distribution

Lin-span(Dν) ∋ f 7→ ⟨q̃ξ · 1, f ḡ⟩ :=
∫

R∗×R
yξ(t)f(y, t)g(y, t)ν(dy)dt

is also well defined, which proves that condition (C2) is satisfied.
For any ξ, η ∈ T , the function

F (s) := ⟨vsξ, vη⟩ =
∫

R∗×R
vsξ(y, t)vη(y, t)ν(dy)dt

is well defined because vsξ, vη ∈ L2(ν ⊗ dt). On the other hand,∣∣∣∣ ∂∂s(vsξ(y, t)vη(y, t))
∣∣∣∣ = | − iyξ(t) exp{−isyξ(t)}vη(y, t)|
= |yξ(t)vη(y, t)| =: φ(y, t)

with φ ∈ L1(ν ⊗ dt). Therefore, F is derivable at any s ∈ R and

F ′(s) = −i
∫

R∗×R
yξ(t) exp{−isyξ(t)}vη(y, t)ν(dy)dt;

in particular, F ′(0) = −i⟨q̃ξ · 1, vη⟩. �

In the remaining of this section, we take Dν := {vξ; ξ ∈ T }.

THEOREM 5.2. The exponential vectors Exp(Dν) are in the weak domain
wk-dom(Q

CP,ξ
) of Q

CP,ξ
. Moreover, on the domain Exp(Dν), the operator Q

CP,ξ

coincides with the distribution-valued operator

(5.12) A+
ν (q̃ξ · 1) +A−ν (q̃ξ · 1) + Λν(q̃ξ) + E(X1)⟨ξ⟩1.

P r o o f. By Theorem 5.1 we know that Q
CP,ξ

is the generator of
(
Wξ(t)

)
t∈R

and that

⟨Wξ(t)Exp(vζ), Exp(vη)⟩
=

⟨
exp{⟨Ψ(tξ)⟩+ ⟨v−tξ, vζ⟩}Exp(vtξ + exp{itq̃ξ}vζ), Exp(vη)

⟩
= exp{⟨Ψ(−tξ)⟩+ ⟨vζ , v−tξ⟩+ ⟨vtξ, vη⟩+ ⟨exp{itq̃ξ}vζ , vη⟩}
= exp{h(t)},
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where

h(t) := ⟨Ψ(−tξ)⟩+ ⟨vζ , v−tξ⟩+ ⟨vtξ, vη⟩+ ⟨exp{itq̃ξ}vζ , vη⟩
= ⟨Ψ(−tξ)⟩+ ⟨vtξ, v−ζ⟩+ ⟨vtξ, vη⟩+ ⟨vtξ, v−ζvη⟩+ ⟨vζ , vη⟩
= ⟨Ψ(−tξ)⟩+ ⟨vtξ, v−ζ + vη + v−ζvη⟩+ ⟨vζ , vη⟩
= ⟨Ψ(−tξ)⟩+ ⟨vtξ, vη−ζ⟩+ ⟨vζ , vη⟩.

Lemma 5.1 proves that the function h is derivable at t = 0 with

h′(0) = −⟨ξΨ′(0)⟩ − i⟨q̃ξ · 1, vη−ζ⟩
= −i⟨q̃ξ · 1, vη−ζ⟩ − iE(X1)⟨ξ⟩
= −i

(
⟨q̃ξ · 1, vζ⟩+ ⟨q̃ξ · 1, vη⟩+ ⟨q̃ξ · 1, vζvη⟩+ E(X1)⟨ξ⟩

)
.

Then

lim
t→0

⟨
Wξ(t)− 1

t
Exp(vζ), Exp(vη)

⟩
=

d

dt

∣∣∣∣
t=0

⟨Wξ(t)Exp(vζ), Exp(vη)⟩

= h′(0) exp{h(0)}.

Therefore, for each vζ ∈ Dν , we haveExp(vζ)∈wk-dom(Q
CP,ξ

), i.e.,Exp(Dν)⊂
wk-dom(Q

CP,ξ
) and we know that Exp(Dν) is in the domain of the operator-

valued distributions A−ν (q̃ξ · 1), A+
ν (q̃ξ · 1), Λν(q̃ξ). Consequently,

⟨QξExp(vζ), Exp(vη)⟩ = i lim
t→0

⟨
Wξ(t)− 1

t
Exp(vζ), Exp(vη)

⟩
= ih′(0) exp{h(0)}
=

(
⟨q̃ξ · 1, vζ⟩+ ⟨q̃ξ · 1, vη⟩+ ⟨q̃ξ · 1, vζvη⟩+ E(X1)⟨ξ⟩

)
exp{⟨vζ , vη⟩}

=
⟨
⟨q̃ξ · 1, vζ⟩Exp(vζ), Exp(vη)

⟩
+

⟨
Exp(vζ), ⟨q̃ξ · 1, vη⟩Exp(vη)

⟩
+
⟨
Exp(vζ), ⟨q̃ξ · 1, v̄ζvη⟩Exp(vη)

⟩
+

⟨
E(X1)⟨ξ⟩Exp(vζ), Exp(vη)

⟩
= ⟨A−ν (q̃ξ · 1)Exp(vζ), Exp(vη)⟩+ ⟨Exp(vζ), A−ν (q̃ξ · 1)Exp(vη)⟩
+ ⟨Exp(vζ), A−ν (q̃ξvζ)Exp(vη)⟩+

⟨
E(X1)⟨ξ⟩Exp(vζ), Exp(vη)

⟩
= ⟨A−ν (q̃ξ · 1)Exp(vζ), Exp(vη)⟩+ ⟨A+

ν (q̃ξ · 1)Exp(vζ), Exp(vη)⟩
+ ⟨Λν(q̃ξ)Exp(vζ), Exp(vη)⟩+

⟨
E(X1)⟨ξ⟩Exp(vζ), Exp(vη)

⟩
=

⟨(
A−ν (q̃ξ · 1) +A+

ν (q̃ξ · 1) + Λν(q̃ξ) + E(X1)⟨ξ⟩1
)
Exp(vζ), Exp(vη)

⟩
. �

6. THE RENORMALIZED QUANTUM DECOMPOSITION

In this section we assume that ν has no moment at all.
Comparing the expressions (5.12) and (4.11) one sees that even if they should

be understood in different ways, they look formally the same and that the existence
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of a finite first order moment is a necessary condition for both expressions to make
sense. Therefore, for random variables not satisfying this condition, one must look
for a notion of quantum decomposition different from the one given by expressions
of the form (4.11).

On the other hand, the above-mentioned fact that all the results of Section 5
do not require the existence of the first order moment suggests that all the prob-
lems related with the extension of expression (4.11) to random variables without
moments is concentrated on the scalar term in the sense that, after subtracting this
term, which is infinite in the case of random variables without moments, one ob-
tains the distribution-valued operator

(6.1) A+
ν (q̃ξ · 1) +A−ν (q̃ξ · 1) + Λν(q̃ξ),

which is meaningful because of the arguments discussed in the previous section.
In physics the procedure of subtracting infinite constants to some expressions,

in order to transform them into meaningful and physically measurable ones, is well
known and called additive renormalization.

In the present case a mere additive renormalization would not be sufficient
because it would leave open the question of the connection between the resulting
expression (6.1) after additive renormalization and the original random variable
without moments. In other words, we want the renormalized quantum decomposi-
tion (6.1) to be canonically associated with the random variable Q

CP,ξ
or, equiva-

lently, with the one-parameter group exp{itQ
CP,ξ
} generated by it.

In the following we prove that such a canonical connection can be established
by using a multiplicative renormalization procedure. In mathematical terms this
means the transition from a representation of the additive group R to a projective
representation of the same group.

The idea of the construction of this projective representation is naturally sug-
gested by the proof of Theorem 5.2. In fact, from this proof one can see that the
emergence of the first moment in the quantum decomposition is due to the deriva-
tive of the scalar term in the normally ordered form (5.4) of the one-parameter
unitary group exp{itQ

CP,ξ
}, i.e., exp{⟨Ψ(tξ)⟩}. Therefore, the emergence of the

“infinite constant” E(X1) in the formal expression (5.12) is a manifestation of the
fact that if the first moment of the random variable X1 is infinite, then the function
Ψ is not differentiable.

In order to remove this constant from exp{itQCP,ξ} notice that if (Wt)t∈R is a
unitary representation of R and t ∈ R 7→ µt ∈ C is any measurable function, then
the one-parameter family

Vt := exp{−µt}Wt

is a projective, in general non-unitary, representation of R with multiplier (or two-
cocycle, which in this case is in fact a two-coboundary):

σ̂(s, t) := exp{µt+s − µs − µt}.
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In other terms,
VsVt = σ̂(s, t)Vs+t, s, t ∈ R.

Now we apply this remark to the case when µt = ⟨Ψ(tξ)⟩ andWt is given by (5.5).

LEMMA 6.1. Let p be the orthogonal projection from L2(ν ⊗ dt) ontoK0 and
let C∞c,0(R∗ × R) be the dense subspace of L2(ν ⊗ dt) consisting of the infinitely
differentiable functions with compact support not containing zero. Let

Dν := p
(
C∞c,0(R∗ × R)

)
= {p(φ); φ ∈ C∞c,0(R∗ × R)} ⊂ K0

be the image under p of C∞c,0(R∗ ×R). Then Dν is a dense subspace of K0 satisfy-
ing conditions (C1) and (C2).

P r o o f. S t e p 1. Let f ∈ K0 ⊂ L2(ν ⊗ dt). By the density of C∞c,0(R∗ ×R)
in L2(ν ⊗ dt), there exists φn ∈ C∞c,0(R∗ ×R) converging to f as n→ +∞. Then
we have

∥φn − f∥2 = ∥φn − p(φn)∥2 + ∥p(φn)− f∥2

and we get
∥p(φn)− f∥ ¬ ∥φn − f∥ → 0 as n→ +∞.

Hence f is a limit of a sequence of Dν , which proves the density.
For φ ∈ C∞c,0(R∗ × R), let f = p(φ) ∈ Dν . While C∞c,0(R∗ × R) is invariant

under complex conjugate, then to see this property for Dν , it is sufficient to prove
that f̄ = p(φ̄). In fact, we have f − φ ∈ K⊥0 . Then

⟨f̄ − φ̄, vξ⟩ = ⟨v−ξ, f − φ⟩ = 0 for all ξ ∈ T .

This gives f̄ − φ̄ ∈ K⊥0 , and using the fact that f̄ ∈ K0, we deduce that f̄ = p(φ̄),
which proves the condition (C1).

S t e p 2. For f ∈ Dν , let us consider the function Ξ
f
(t) = ⟨vtξ, f⟩ and let

φ ∈ C∞c,0(R∗ × R) be such that f = p(φ). Then f − φ ∈ K⊥0 , which gives

Ξ
f
(t) = ⟨vtξ, f⟩ = ⟨vtξ, φ⟩,

and one can see that Ξ
f

is derivable at t = 0 and

Ξ′
f
(0) = −i

∫
R∗×R

yξ(s)φ(y, s)ν(dy)ds = −i⟨q̃ξ · 1, φ⟩.

It is obvious that ⟨q̃ξ · 1, φ⟩ does not depend on the choice of φ but only on f . Then
the distribution

(6.2) f 7→ ⟨q̃ξ · 1, f⟩ := ⟨q̃ξ · 1, φ⟩ = iΞ′
f
(0)
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is well defined. On the other hand, for all g ∈ K0, vξg ∈ K0. In fact, g is a limit
in L2(ν ⊗ ds) of a sequence (gn)n ⊂ Lin-span{vξ; ξ ∈ T }. Then it follows that
vξgn ∈ Lin-span{vξ; ξ ∈ T }. Moreover,

∥vξgn − vξg∥2 =
∫

R∗×R

∣∣vξ(y, s)(gn(y, s)− g(y, s))∣∣2ν(dy)ds
¬ 4∥gn − g∥2 → 0 as n→ +∞.

Hence vξg is a limit of some sequence of Lin-span{vξ; ξ ∈ T }, so it belongs to
K0.

Moreover, for φ ∈ C∞c,0(R∗ × R), let f = p(φ) ∈ Dν . Then, by the definition
of p, (f − φ) ⊥ vξg, which gives

⟨vξ, f ḡ⟩ − ⟨vξ, φḡ⟩ = ⟨vξ, f ḡ − φḡ⟩ = ⟨vξg, f − φ⟩ = 0.

Let us consider the function

Θg,f (t) := ⟨vtξ, f ḡ⟩ = ⟨vtξ, φḡ⟩ =
∫

R∗×R
v−tξ(y, s)g(y, s)φ(y, s)ν(dy)ds.

One can see that Θg,f is derivable at t = 0 and

Θ′g,f (0) = −i
∫

R∗×R
yξ(s)g(y, s)φ(y, s)ν(dy)ds.

Define
⟨q̃ξg, f⟩ :=

∫
R∗×R

yξ(s)g(y, s)φ(y, s)ν(dy)ds = iΘ′g,f (0).

Clearly, ⟨q̃ξg, f⟩ does not depend on the choice of φ. Then the distribution

f 7→ ⟨q̃ξg, f⟩ = ⟨q̃ξ · 1, f ḡ⟩

is well defined on Dν , which gives the condition (C2). �

THEOREM 6.1. Let
(
Wξ(t)

)
t∈R be the one-parameter unitary group defined

by (5.5) and define

Vξ(t) := exp{−⟨Ψ(tξ)⟩}Wξ(t) = exp{A+(vtξ)} exp{Λ(itq̃ξ)} exp{A−(v−tξ)}.

Then {Vξ(t) ; t ∈ R} is a strongly continuous projective representation of R with
multiplier

σ̂ξ(s, t) := exp
{⟨

Ψ
(
(s+ t)ξ

)
−Ψ(sξ)−Ψ(tξ)

⟩}
.

Its generator QΨ contains Exp(Dν) in its weak domain and, on Exp(Dν), coin-
cides with

A+
ν (q̃ξ · 1) +A−ν (q̃ξ · 1) + Λν(q̃ξ).

P r o o f. Since Wξ(t) is a strongly continuous one-parameter unitary group
and Ψ is continuous, the strong continuity of Vξ(t) is clear because, for any φ ∈ K0

and t0 ∈ R, defining φ0 := Vξ(t0)φ, we get, as s→ 0,
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∥Vξ(t0+ s)φ−Vξ(t0)φ∥ =
∥∥ exp{− ⟨

Ψ
(
(t0+ s)ξ

)⟩}
Wξ

(
(t0+ s)

)
φ−φ0

∥∥
=

∥∥ exp{− ⟨
Ψ
(
(t0 + s)ξ

)
+Ψ(t0ξ)

⟩}
Wξ(s)φ0 − φ0

∥∥
¬

∥∥∥Wξ(s)
(
exp

{
−

⟨
Ψ
(
(s+ t0)ξ

)
+Ψ(t0ξ)

⟩}
φ0 − φ0

)∥∥∥+ ∥Wξ(s)φ0 − φ0∥

=
∥∥ exp{⟨Ψ(t0ξ)−Ψ

(
(t0 + s)ξ

)⟩}
φ0 − φ0

∥∥+ ∥Wξ(s)φ0 − φ0∥ → 0.

Let f, g ∈ Dν . We have⟨
Vξ(t)− 1

t
Exp(f), Exp(g)

⟩
=

1

t

(
⟨Vξ(t)Exp(f), Exp(g)⟩ − exp{⟨f, g⟩}

)
=

1

t

(⟨
exp{⟨v−tξ, f⟩}Exp(exp{itq̃ξ}f + vtξ), Exp(g)

⟩
− exp{⟨f, g⟩}

)
=

1

t

(
exp

{
⟨v−tξ, f⟩+ ⟨exp{itq̃ξ}f + vtξ, g⟩

}
− exp{⟨f, g⟩}

)
=

1

t

(
exp{γ(t)} − exp{γ(0)}

)
,

where, in the notation of the proof of Lemma 6.1,

γ(t) = ⟨v−tξ, f⟩+ ⟨exp{itq̃ξ}f + vtξ, g⟩
= ⟨v−tξ, f⟩+ ⟨vtξf, g⟩+ ⟨f, g⟩+ ⟨vtξ, g⟩ = Ξf (−t)+Θf,g(t)+Ξg(t)+ ⟨f, g⟩.

But it is clear from the above calculations that γ is derivable at t = 0 and

γ′(0) = −Ξ′f (0) + Ξ′g(0) + Θ′f,g(0) = −i(⟨q̃ξ · 1, f⟩+ ⟨q̃ξ · 1, g⟩+ ⟨q̃ξ · 1, fg⟩).
Then the limit

lim
t→0

⟨
Vξ(t)− 1

t
Exp(f), Exp(g)

⟩
exists. Hence Exp(f) ∈ wk-dom(QΨ) and

⟨QΨExp(f), Exp(g)⟩

= i

⟨
lim
t→0

Vξ(t)− 1

t
Exp(f), Exp(g)

⟩
= iγ′(0) exp{γ(0)}

= (⟨q̃ξ · 1, f⟩+ ⟨q̃ξ · 1, g⟩+ ⟨q̃ξ · 1, fg⟩) exp{⟨f, g⟩}
=

⟨
⟨q̃ξ · 1, f⟩Exp(f), Exp(g)

⟩
+

⟨
Exp(f), ⟨q̃ξ · 1, g⟩Exp(g)

⟩
+

⟨
Exp(f), ⟨q̃ξ · 1, fg⟩Exp(g)

⟩
= ⟨A−ν (q̃ξ · 1)Exp(f), Exp(g)⟩+ ⟨Exp(f), A−ν (q̃ξ · 1)Exp(g)⟩
+ ⟨Exp(f), A−ν (q̃ξf)Exp(g)⟩

= ⟨A−ν (q̃ξ · 1)Exp(f), Exp(g)⟩+ ⟨A+
ν (q̃ξ · 1)Exp(f), Exp(g)⟩

+ ⟨Λν(q̃ξ)Exp(f), Exp(g)⟩
=

⟨(
A−ν (q̃ξ · 1) +A+

ν (q̃ξ · 1) + Λν(q̃ξ)
)
Exp(f), Exp(g)

⟩
.

This gives the statement. �
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tor Weyl algebra, Commun. Stoch. Anal. 6 (1) (2012), pp. 125–155.

[5] L. Accardi , H. Rebei , and A. Riahi, The quantum decomposition of random variables
without moments, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2) (2013), 1350012.

[6] S. Albeverio, Yu. G. Kondrat iev, and L. Strei t, How to generalize white noise anal-
ysis to non-Gaussian spaces, in: Dynamics of Complex and Irregular Systems, Ph. Blanchard,
L. Streit, M. Sirugue-Collin, and D. Testard (Eds.), World Scientific, Singapore 1993, pp. 120–
130.

[7] H. Araki, Factorizable representation of current algebra: Non-commutative extension of the
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