AN EQUIVALENT CHARACTERIZATION OF WEAK BMO MARTINGALE SPACES

BY

dejian Zhou (Changsha), WEIWEI LI (Changsha), and Yong JiAo* (Changsha)

Abstract

In this paper, we give an equivalent characterization of weak BMO martingale spaces due to Ferenc Weisz (1998).

2010 AMS Mathematics Subject Classification: Primary: 60G42; Secondary: 60G46.

Key words and phrases: Weak BMO space, martingale, JohnNirenberg inequality.

1. INTRODUCTION

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space, and $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ be an increasing sequence of sub- σ-algebras of \mathcal{F} such that $\mathcal{F}=\sigma\left(\bigcup_{n \geqslant 0} \mathcal{F}_{n}\right)$. The expectation operator and the conditional expectation operator relative to \mathcal{F}_{n} are denoted by \mathbb{E} and \mathbb{E}_{n}, respectively. A sequence $f=\left(f_{n}\right)_{n \geqslant 0}$ of random variables such that f_{n} is \mathcal{F}_{n}-measurable is said to be a martingale if $\mathbb{E}\left(\left|f_{n}\right|\right)<\infty$ and $\mathbb{E}_{n}\left(f_{n+1}\right)=f_{n}$ for every $n \geqslant 0$.

The study of the space BMO (Bounded Mean Oscillation) began with the establishment of the so-called John-Nirenberg theorem in [II]. Basing mainly on the duality and something else, the space BMO plays a remarkable role both in classical analysis and martingale theory. For example, BMO is a good space in operator actions (see e.g. [14], Chapter 4). And the martingale space $B M O_{r}(\alpha)$ was first introduced by Herz in [4] as the dual of $H_{p}^{s}(0<p \leqslant 1)$ associated with the dyadic filtration (see Example [2.] below). With the help of atomic decomposition, Weisz extended this result in [115] to a general case. Let \mathcal{T} be the set of all stopping times with respect to $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$. The martingale space $B M O_{r}(\alpha)$ ([16], p. 8; or [15]]) for $1 \leqslant r<\infty$ and $\alpha \geqslant 0$ is defined as

$$
B M O_{r}(\alpha)=\left\{f=\left(f_{n}\right)_{n \geqslant 0}:\|f\|_{B M O_{r}(\alpha)}<\infty\right\},
$$

[^0]where
$$
\|f\|_{B M O_{r}(\alpha)}=\sup _{\nu \in \mathcal{T}} \mathbb{P}(\nu<\infty)^{-1 / r-\alpha}\left\|f-f^{\nu}\right\|_{r}
$$

We present two well-known results (see [16] or [15]). If $0<p \leqslant 1$ and $\alpha=\frac{1}{p}-1$, then $\mathrm{BMO}_{2}(\alpha)$ is the dual space of the Hardy space H_{p}^{s}. If the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 1}$ is regular, then $B M O_{r}(\alpha)=B M O_{1}(\alpha)$. And recently, Yi et al. proved in [18] that $B M O_{E}(\alpha)=B M O_{1}(\alpha)$, where $\alpha=0$ and E is a rearrangement invariant Banach function space.

In the present paper, we consider a weak BMO martingale space. To characterize the dual of the weak Hardy martingale space $H_{p, \infty}^{s}$, Weisz in [17] first introduced and studied the weak BMO martingale space. Let us recall the definition. We also refer the reader to [12] and [13] for some new results related to weak BMO martingales spaces.

DEFINITION 1.1. Let $1 \leqslant r<\infty, \alpha r+1>0$. The space $w \mathcal{B M O}_{r}(\alpha)$ is defined as the set of all martingales $f \in L_{r}$ with the norm

$$
\|f\|_{w \mathcal{B M} \mathcal{O}_{r}(\alpha)}=\int_{0}^{\infty} \frac{t_{\alpha}^{r}(x)}{x} d x<\infty
$$

where

$$
t_{\alpha}^{r}(x)=x^{-1 / r-\alpha} \sup _{\nu \in \mathcal{T}: P(\nu<\infty) \leqslant x}\left\|f-f^{\nu}\right\|_{r}
$$

In the very recent paper [8$]$, the generalized BMO martingale space is introduced as the dual of Hardy-Lorentz martingale space. Strongly motivated by [8], Definition 1.1, we introduce the following new weak BMO martingale space by stopping time sequences.

DEFINITION 1.2. Let $1 \leqslant r<\infty$ and $\alpha \geqslant 0$. The weak BMO martingale space $w B M O_{r}(\alpha)$ is defined by

$$
w B M O_{r}(\alpha)=\left\{f \in L_{r}:\|f\|_{w B M O_{r}(\alpha)}<\infty\right\}
$$

where

$$
\|f\|_{w B M O_{r}(\alpha)}=\sup \frac{\sum_{k \in \mathbb{Z}} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1-1 / r}\left\|f-f^{\nu_{k}}\right\|_{r}}{\sup _{k} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1+\alpha}}
$$

and the supremum is taken over all stopping time sequences $\left\{\nu_{k}\right\}_{k \in \mathbb{Z}}$ such that $2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1+\alpha} \in \ell_{\infty}$.

It is a very natural question: what is the relationship between $w \mathcal{B M} \mathcal{O}_{r}(\alpha)$ and $w B M O_{r}(\alpha)$? The paper fully answers this question. Our main result can be described as follows. We simply put $w \mathcal{B M O}=w \mathcal{B M O}(0)$ and $w B M O=$ $w B M O(0)$.

Theorem 1.1. Let $1 \leqslant r<\infty$ and $\alpha \geqslant 0$. If the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular, then

$$
w \mathcal{B M O}_{r}(\alpha)=w B M O_{r}(\alpha)
$$

with equivalent norms. In particular,

$$
w \mathcal{B M O}_{r}=w B M O_{r}
$$

with equivalent norms.
In this paper, the set of integers and the set of nonnegative integers are always denoted by \mathbb{Z} and \mathbb{N}, respectively. We use C to denote a positive constant which may vary from line to line. The symbol \subset means the continuous embedding.

2. PRELIMINARIES

Firstly, we give the definition of Lorentz spaces. We denote by $L_{0}(\Omega, \mathcal{F}, \mathbb{P})$, or simply $L_{0}(\Omega)$, the space of all measurable functions on $(\Omega, \mathcal{F}, \mathbb{P})$. For any $f \in$ $L_{0}(\Omega)$, we define the distribution function of f by

$$
\lambda_{s}(f)=\mathbb{P}(\{\omega \in \Omega:|f(\omega)|>s\}), \quad s \geqslant 0 .
$$

Moreover, denote by $\mu_{t}(f)$ the decreasing rearrangement of f defined by

$$
\mu_{t}(f)=\inf \left\{s \geqslant 0: \lambda_{s}(f) \leqslant t\right\}, \quad t \geqslant 0,
$$

with the convention that $\inf \emptyset=\infty$.
Definition 2.1. Let $0<p<\infty$ and $0<q \leqslant \infty$. Then, the Lorentz space $L_{p, q}(\Omega)$ consists of measurable functions such that $\|f\|_{p, q}<\infty$, where

$$
\|f\|_{p, q}=\left[\int_{0}^{\infty}\left(t^{1 / p} \mu_{t}(f)\right)^{q} \frac{d t}{t}\right]^{1 / q}, \quad 0<q<\infty
$$

and

$$
\|f\|_{p, \infty}=\sup _{0 \leqslant t<\infty} t^{1 / p} \mu_{t}(f), \quad q=\infty .
$$

REmARK 2.1. We refer the reader to [2] for the following basic properties.
(1) If $p=q$, then $L_{p, q}(\Omega)$ becomes $L_{p}(\Omega)$.
(2) If $0<p_{1} \leqslant p_{2}<\infty$ and $0<q \leqslant \infty$, then $\|f\|_{p_{1}, q} \leqslant C\|f\|_{p_{2}, q}$, where C depends on p_{1}, p_{2} and q. This is due to $\mathbb{P}(\Omega)=1$.
(3) If $0<p<\infty$ and $0<q_{1} \leqslant q_{2} \leqslant \infty$, then $\|f\|_{p, q_{2}} \leqslant C\|f\|_{p, q_{1}}$, where C depends on q_{1}, q_{2} and p.

Denote by \mathcal{M} the set of all martingales $f=\left(f_{n}\right)_{n \geqslant 0}$ relative to $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ such that $f_{0}=0$. For $f \in \mathcal{M}$, denote its martingale difference by $d_{n} f=f_{n}-$ $f_{n-1}\left(n \geqslant 0\right.$, with the convention $\left.f_{-1}=0\right)$. Then the maximal function and the conditional quadratic variation of a martingale f are respectively defined by

$$
\begin{gathered}
f_{n}^{*}=\sup _{0 \leqslant i \leqslant n}\left|f_{i}\right|, \quad f^{*}=\sup _{n \geqslant 0}\left|f_{n}\right|, \\
s_{n}(f)=\left(\sum_{i=1}^{n} \mathbb{E}_{i-1}\left|d_{i} f\right|^{2}\right)^{1 / 2}, \quad s(f)=\left(\sum_{i=1}^{\infty} \mathbb{E}_{i-1}\left|d_{i} f\right|^{2}\right)^{1 / 2} .
\end{gathered}
$$

Then we define martingale Hardy-Lorentz spaces as follows.
Definition 2.2. Let $0<p<\infty$ and $0<q \leqslant \infty$. Define

$$
\begin{aligned}
H_{p, q}^{*} & =\left\{f \in \mathcal{M}:\|f\|_{H_{p, q}^{*}}=\left\|f^{*}\right\|_{p, q}<\infty\right\}, \\
H_{p, q}^{s} & =\left\{f \in \mathcal{M}:\|f\|_{H_{p, q}^{s}}=\|s(f)\|_{p, q}<\infty\right\} .
\end{aligned}
$$

If $p=q$, then the martingale Hardy-Lorentz spaces recover the martingale Hardy spaces H_{p}^{*} and H_{p}^{s} (see [16]).

Recall that the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is said to be regular if there exists a positive constant $R>0$ such that

$$
\begin{equation*}
f_{n} \leqslant R f_{n-1}, \quad \forall n>0 \tag{2.1}
\end{equation*}
$$

holds for all nonnegative martingales $f=\left(f_{n}\right)_{n \geqslant 0}$. Condition (2.ل1) can be replaced by several other equivalent conditions (see [14], Chapter 7). We refer the reader to [14], p. 265, for examples for regular stochastic basis. Here, we give a special case.

Example 2.1. Let $((0,1], \mathcal{F}, \mu)$ be a probability space such that μ is the Lebesgue measure and subalgebras $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ are generated as follows:

$$
\mathcal{F}_{n}=\mathrm{a} \sigma \text {-algebra generated by atoms }\left(\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right], j=0, \ldots, 2^{n}-1 .
$$

Then $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular. And all martingales with respect to such $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ are called dyadic martingales.

The method of atomic decompositions plays an important role in martingale theory (see, for example, [3]-[5], [16], [17]). The atomic decompositions of HardyLorentz martingale spaces $H_{p, q}^{s}$ and martingale inequalities are given in [6] and [8]. We also mention that Hardy-Lorentz spaces with variable exponents were investigated very recently in [4$]$ and [[10]. Let us first introduce the concept of an atom (see [16], p. 14).

DEfinition 2.3. Let $0<p<\infty$ and $p<r \leqslant \infty$. A measurable function a is called a $(1, p, r)$-atom (or $(3, p, r)$-atom) if there exists a stopping time $\nu \in \mathcal{T}$ such that $a_{n}=\mathbb{E}_{n}(a)=0$ if $\nu \geqslant n$, and

$$
\|s(a)\|_{r}\left(\text { or }\left\|a^{*}\right\|_{r}\right) \leqslant \mathbb{P}(\nu<\infty)^{1 / r-1 / p}
$$

REMARK 2.2. Let $0<p<r \leqslant \infty$ and $0<q \leqslant r$. If a is a $(1, p, r)$-atom, then $\|a\|_{H_{p, q}} \leqslant C$. Choose p_{1}, p_{2} such that $\frac{1}{p}=\frac{1}{r}+\frac{1}{p_{1}}, \frac{1}{q}=\frac{1}{r}+\frac{1}{q_{1}}$. By Hölder's inequality, we have (ν is the stopping time corresponding to the atom a)

$$
\begin{aligned}
\|a\|_{H_{p, q}^{s}} & =\left\|s(a) \chi_{\{\nu<\infty\}}\right\|_{p, q} \leqslant C\|s(a)\|_{r, r}\left\|\chi_{\{\nu<\infty\}}\right\|_{p_{1}, q_{1}} \\
& \leqslant C \mathbb{P}(\nu<\infty)^{1 / r-1 / p}\left(\int_{0}^{\infty} t^{q_{1} / p_{1}-1} \chi_{(0, \mathbb{P}(\nu<\infty))} d t\right)^{1 / q_{1}} \leqslant C .
\end{aligned}
$$

Similarly, we have $\|a\|_{H_{p, q}^{*}} \leqslant C$ for a $(3, p, r)$-atom a. If $p=q$, then $C=1$.
The following result is from [8]. And the result about the Hardy space $H_{p, q}^{*}$ follows from the combining of Theorem 3.3 and Lemma 5.1 in [$[8]$.

Theorem 2.1. If $f=\left(f_{n}\right)_{n \geqslant 0} \in H_{p, q}^{s}$ for $0<p<\infty, 0<q \leqslant \infty$, then there exist a sequence $\left(a^{k}\right)_{k \in \mathbb{Z}}$ of $(1, p, \infty)$-atoms and a positive number A satisfying $\mu_{k}=A \cdot 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}$ (where ν_{k} is the stopping time corresponding to a^{k}) such that

$$
\begin{equation*}
f_{n}=\sum_{k \in \mathbb{Z}} \mu_{k} a_{n}^{k} \text { a.e., } \quad n \in \mathbb{N}, \tag{2.2}
\end{equation*}
$$

and

$$
\left\|\left\{\mu_{k}\right\}\right\|_{l_{q}} \leqslant C\|f\|_{H_{p, q}^{s}} .
$$

Conversely, if the martingale f has the above decomposition, then $f \in H_{p, q}^{s}$ and $\|f\|_{H_{p, q}^{s}} \approx \inf \left\|\left\{\mu_{k}\right\}\right\|_{l_{q}}$, where the infimum is taken over all the above decompositions.

Moreover, if the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular and if we replace $H_{p, q}^{s}$, $(1, p, \infty)$-atoms by $H_{p, q}^{*},(3, p, \infty)$-atoms, then the conclusions above still hold.

Lemma 2.1 ([四, Lemma 1.2). Let $0<p<\infty$ and let the nonnegative sequence $\left\{\mu_{k}\right\}$ be such that $\left\{2^{k} \mu_{k}\right\} \in l^{q}, 0<q \leqslant \infty$. Further, suppose the nonnegative function φ satisfies the following property: there exists $0<\varepsilon<\min (1, q / p)$ such that, given an arbitrary integer k_{0}, we have $\varphi \leqslant \psi_{k_{0}}+\eta_{k_{0}}$, where $\psi_{k_{0}}$ and $\eta_{k_{0}}$ satisfy

$$
\begin{aligned}
& 2^{k_{0} p} \mathbb{P}\left(\psi_{k_{0}}>2^{k_{0}}\right)^{\varepsilon} \leqslant C \sum_{k=-\infty}^{k_{0}-1}\left(2^{k} \mu_{k}^{\varepsilon}\right)^{p}, \\
& 2^{k_{0} \varepsilon p} \mathbb{P}\left(\eta_{k_{0}}>2^{k_{0}}\right) \leqslant C \sum_{k=k_{0}}^{\infty}\left(2^{k \varepsilon} \mu_{k}\right)^{p} .
\end{aligned}
$$

Then $\varphi \in L_{p, q}$ and $\|\varphi\|_{p, q} \leqslant C\left\|\left\{2^{k} \mu_{k}\right\}\right\|_{l_{q}}$.

3. A JOHN-NIRENBERG THEOREM

In this section, we prove a John-Nirenberg theorem when the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular. The main idea and method are similar to those of [8]. The following lemma can be found in [5], [16]. In fact, it follows from Theorem 7.14 in [5] and Corollary 5.13 in [16].

Lemma 3.1. Suppose that $0<q \leqslant \infty$ and the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular.

If $0<p<\infty$, then $H_{p, q}^{*}$ and $H_{p, q}^{s}$ are equivalent.
If $1<p<\infty$, then $H_{p, q}^{*}, H_{p, q}^{s}$ and $L_{p, q}$ are all equivalent.
L_{p} is not dense in $L_{p, \infty}$. This fact is mentioned in [17]], p. 143 (see also [2], Remark 1.4.14). Hence, to describe the duality, we need the following definition from [7], Remark 1.7.

DEFINITION 3.1. Let a measurable set $A_{k} \subset \Omega$ satisfy $\mathbb{P}\left(A_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Define $\mathcal{L}_{p, \infty}$ as the set of all $f \in L_{p, \infty}$ having the absolute continuous quasi-norm defined by

$$
\mathcal{L}_{p, \infty}=\left\{f \in L_{p, \infty}: \lim _{k \rightarrow \infty}\left\|f \chi_{A_{k}}\right\|_{p, \infty}=0\right\}
$$

$\mathcal{L}_{p, \infty}$ is a closed subspace of $L_{p, \infty}$ and $L_{p} \subset \mathcal{L}_{p, \infty} \subset L_{p, \infty}$ (see [[]]). Now we define

$$
\mathcal{H}_{p, \infty}^{s}=\left\{f=\left(f_{n}\right)_{n \geqslant 0}: s(f) \in \mathcal{L}_{p, \infty}\right\},
$$

which is a closed subspace of $H_{p, \infty}^{s}$. Similarly, we define $\mathcal{H}_{p, \infty}^{*}$.
Remark 3.1. (1) According to [7], Remark 2.2, we can conclude that $H_{2}^{s}=$ L_{2} is dense in $\mathcal{H}_{p, \infty}^{s}$.
(2) If the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular, then, by the same argument of Remark 2.2 in [[]$, L_{\infty}$ is dense in $\mathcal{H}_{p, \infty}^{*}$.

Lemma 3.2. Let $0<p \leqslant 1$. If the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular, then

$$
\left(\mathcal{H}_{p, \infty}^{*}\right)^{*}=w B M O_{1}(\alpha), \quad \alpha=\frac{1}{p}-1 .
$$

Proof. Let $g \in w B M O_{1}(\alpha)$. Define

$$
\phi_{g}(f)=\mathbb{E}(f g), \quad f \in L_{\infty} .
$$

Then, by Theorem [2.1, we find that (ν_{k} is the stopping time corresponding to the
atom a^{k} for every $k \in \mathbb{Z}$)

$$
\begin{aligned}
\left|\phi_{g}(f)\right| & \leqslant \sum_{k \in \mathbb{Z}}\left|\mu_{k}\right| \mathbb{E}\left(a^{k}\left(g-g^{\nu_{k}}\right)\right) \leqslant \sum_{k \in \mathbb{Z}}\left|\mu_{k}\right|\left\|a^{k}\right\|_{\infty}\left\|g-g^{\nu_{k}}\right\|_{1} \\
& \leqslant C \sum_{k \in \mathbb{Z}}\left|\mu_{k}\right|\left\|\left(a^{k}\right)^{*}\right\|_{\infty}\left\|g-g^{\nu_{k}}\right\|_{1} \\
& \leqslant C \sum_{k \in \mathbb{Z}}\left|\mu_{k}\right| \mathbb{P}\left(\nu_{k}<\infty\right)^{-1 / p}\left\|g-g^{\nu_{k}}\right\|_{1} \\
& =C \cdot A \sum_{k \in \mathbb{Z}} 2^{k}\left\|g-g^{\nu_{k}}\right\|_{1} .
\end{aligned}
$$

By the definition of $\|\cdot\|_{w B M O_{r}(\alpha)}$, we obtain

$$
\begin{aligned}
\left|\phi_{g}(f)\right| & \leqslant C \cdot A \sup _{k} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}\|g\|_{w B M O_{1}(\alpha)} \\
& \leqslant C\|f\|_{H_{p, \infty}^{*}}\|g\|_{w B M O_{1}(\alpha)} .
\end{aligned}
$$

Since the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular, L_{∞} is dense in $\mathcal{H}_{p, \infty}^{*}$ (see Remark [.]. (2)). Then ϕ_{g} can be uniquely extended to be a continuous linear functional on $\mathcal{H}_{p, \infty}^{*}$.

Conversely, let $\phi \in\left(\mathcal{H}_{p, \infty}^{*}\right)^{*}$. Since L_{2} is dense in $\mathcal{H}_{p, \infty}^{*}$ (see Remark B.I((2)), there exists $g \in L_{2} \subset L_{1}$ such that

$$
\phi(f)=\mathbb{E}(f g), \quad f \in L_{\infty}
$$

Let $\left\{\nu_{k}\right\}_{k \in \mathbb{Z}}$ be a stopping time sequence satisfying $\left\{2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}\right\}_{k \in \mathbb{Z}} \in l_{\infty}$ and let

$$
h_{k}=\operatorname{sign}\left(g-g^{\nu_{k}}\right), \quad a^{k}=\frac{1}{2}\left(h_{k}-h_{k}^{\nu_{k}}\right) \mathbb{P}\left(\nu_{k}<\infty\right)^{-1 / p} .
$$

Then a^{k} is a $(3, p, \infty)$-atom. Let $f^{N}=\sum_{k=-N}^{N} 2^{k+1} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p} a^{k}$, where N is an arbitrary nonnegative integer. By Theorem [2.1, we have $f^{N} \in H_{p, \infty}^{*}$ and

$$
\left\|f^{N}\right\|_{H_{p, \infty}^{*}} \leqslant C \sup _{k} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}
$$

Consequently,

$$
\begin{aligned}
\sum_{k=-N}^{N} 2^{k}\left\|g-g^{\nu_{k}}\right\|_{1} & =\sum_{k=-N}^{N} 2^{k} \mathbb{E}\left(h_{k}\left(g-g^{\nu_{k}}\right)\right)=\sum_{k=-N}^{N} 2^{k} \mathbb{E}\left(\left(h_{k}-h_{k}^{\nu_{k}}\right) g\right) \\
& =\mathbb{E}\left(f^{N} g\right)=\phi\left(f^{N}\right) \leqslant\left\|f^{N}\right\|_{H_{p, \infty}^{*}}\|\phi\| \\
& \leqslant C \sup _{k} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}\|\phi\| .
\end{aligned}
$$

Thus we have

$$
\frac{\sum_{k=-N}^{N} 2^{k}\left\|g-g^{\nu_{k}}\right\|_{1}}{\sup _{k} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}} \leqslant C\|\phi\|
$$

This implies $\|g\|_{w B M O_{1}(\alpha)} \leqslant C\|\phi\|$. The proof is complete.
Lemma 3.3. Let $0<p \leqslant 1,1<r<\infty$. If the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular, then

$$
\left(\mathcal{H}_{p, \infty}^{*}\right)^{*}=w B M O_{r}(\alpha), \quad \alpha=\frac{1}{p}-1 .
$$

Proof. By Hölder's inequality, we have $\|f\|_{w B M O_{1}(\alpha)} \leqslant\|f\|_{w B M O_{r}(\alpha)}$ for any $f \in w B M O_{r}(\alpha)$. Let $g \in w B M O_{r}(\alpha) \subset L_{r}$. We define

$$
\phi_{g}(f)=\mathbb{E}(f g), \quad \forall f \in L_{r^{\prime}} .
$$

Then, by Lemma 13.2, we have

$$
\left|\phi_{g}(f)\right| \leqslant C\|f\|_{H_{p, \infty}^{s}}\|g\|_{w B M O_{1}(\alpha)} \leqslant C\|f\|_{H_{p, \infty}^{s},}\|g\|_{w B M O_{r}(\alpha)} .
$$

It follows from Remark [...|(2) that $L_{r^{\prime}}$ is dense in $\mathcal{H}_{p, \infty}^{*}$. Thus ϕ_{g} can be uniquely extended to be a continuous linear functional on $\mathcal{H}_{p, \infty}^{*}$.

Conversely, if $\phi \in\left(\mathcal{H}_{p, \infty}^{*}\right)^{*}$, by Doob's maximal inequality, we have $L_{r^{\prime}}=$ $H_{r^{\prime}, r^{\prime}}^{*} \subset \mathcal{H}_{p, \infty}^{*}$. Then $\left(\mathcal{H}_{p, \infty}^{*}\right)^{*} \subset\left(L_{r^{\prime}}\right)^{*}=L_{r}$. Thus there exists $g \in L_{r}$ such that

$$
\phi(f)=\phi_{g}(f)=\mathbb{E}(f g), \quad \forall f \in L_{r^{\prime}} .
$$

Let $\left\{\nu_{k}\right\}_{k \in \mathbb{Z}}$ be a stopping time sequence such that $\left\{2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}\right\}_{k \in \mathbb{Z}} \in l_{\infty}$ and N be an arbitrary nonnegative integer. Let

$$
h_{k}=\frac{\left|g-g^{\nu_{k}}\right|^{r-1} \operatorname{sign}\left(g-g^{\nu_{k}}\right)}{\left\|g-g^{\nu_{k}}\right\|_{r}^{r-1}}, \quad f=\sum_{k=-N}^{N} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / r^{\prime}}\left(h_{k}-h_{k}^{\nu_{k}}\right) .
$$

For an arbitrary integer k_{0} which satisfies $-N \leqslant k_{0} \leqslant N$ (for $k_{0} \leqslant-N$, let $G=0$ and $H=f$; for $k_{0}>N$, let $H=0$ and $G=f$), let

$$
f=G+H,
$$

where

$$
G=\sum_{k=-N}^{k_{0}-1} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / r^{\prime}}\left(h_{k}-h_{k}^{\nu_{k}}\right)
$$

and

$$
H=\sum_{k=k_{0}}^{N} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / r^{\prime}}\left(h_{k}-h_{k}^{\nu_{k}}\right) .
$$

Obviously, $\left\|h_{k}\right\|_{r^{\prime}}=1$, and $\|G\|_{r^{\prime}} \leqslant 2 \sum_{k=-N}^{k_{0}-1} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / r^{\prime}}$. By the sublinearity of the maximal operator $*$, we have $f^{*} \leqslant G^{*}+H^{*}$. Let $\varepsilon=p / r^{\prime}(0<\varepsilon<1)$. By Doob's maximal inequality, we have

$$
\begin{aligned}
\mathbb{P}\left(G^{*}>2^{k_{0}}\right) & \leqslant \frac{1}{2^{k_{0} r^{\prime}}}\left\|G^{*}\right\|_{r^{\prime}}^{r^{\prime}} \leqslant C \frac{1}{2^{k_{0} r^{\prime}}}\|G\|_{r^{\prime}}^{r^{\prime}} \\
& \leqslant C \frac{1}{2^{k_{0} r^{\prime}}}\left(\sum_{k=-N}^{k_{0}-1} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / r^{\prime}}\right)^{r^{\prime}} .
\end{aligned}
$$

On the other hand, $\left\{H^{*}>0\right\} \subset \bigcup_{k=k_{0}}^{N}\left\{\nu_{k}<\infty\right\}$. Then, for each $0<\varepsilon<1$, we have

$$
\begin{aligned}
2^{k_{0} \varepsilon p} \mathbb{P}\left(H^{*}>2^{k_{0}}\right) & \leqslant 2^{k_{0} \varepsilon p} \mathbb{P}\left(H^{*}>0\right) \leqslant 2^{k_{0} \varepsilon p} \sum_{k=k_{0}}^{N} \mathbb{P}\left(\nu_{k}<\infty\right) \\
& \leqslant \sum_{k=k_{0}}^{N} 2^{k \varepsilon p} \mathbb{P}\left(\nu_{k}<\infty\right)=\sum_{k=k_{0}}^{N}\left(2^{k \varepsilon} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}\right)^{p} \\
& \leqslant \sum_{k=k_{0}}^{\infty}\left(2^{k \varepsilon} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}\right)^{p} .
\end{aligned}
$$

By Lemma [2.I], we have $f^{*} \in L_{p, \infty}$ and $\left\|f^{*}\right\|_{p, \infty} \leqslant C\left\|\left\{2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}\right\}_{k \in \mathbb{Z}}\right\|_{l_{\infty}}$. Thus, $f \in H_{p, \infty}^{*}$ and

$$
\|f\|_{H_{p, \infty}^{*}} \leqslant C \sup _{k} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}
$$

Consequently,

$$
\begin{aligned}
\sum_{k=-N}^{N} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1-1 / r}\left\|g-g^{\nu_{k}}\right\|_{r} & =\sum_{k=-N}^{N} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / r^{\prime}} \mathbb{E}\left(h_{k}\left(g-g^{\nu_{k}}\right)\right) \\
& =\sum_{k=-N}^{N} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / r^{\prime}} \mathbb{E}\left(\left(h_{k}-h_{k}^{\nu_{k}}\right) g\right) \\
& =\mathbb{E}(f g)=\varphi(f) \leqslant\|f\|_{H_{p, q}^{*},}\|\varphi\| \\
& \leqslant C \sup _{k} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p} .
\end{aligned}
$$

Thus we obtain

$$
\frac{\sum_{k=-N}^{N} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1-1 / r}\left\|g-g^{\nu_{k}}\right\|_{r}}{\sup _{k} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}} \leqslant C\|\varphi\|
$$

Taking $N \rightarrow \infty$ and the supremum over all stopping time sequences satisfying $\left\{2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}\right\}_{k \in \mathbb{Z}} \in l_{\infty}$, we get $\|g\|_{w B M O_{r}(\alpha)} \leqslant C\|\varphi\|$.

Now we formulate the weak version of the John-Nirenberg theorem, which directly follows from Lemmas 3.2 and [3.3.

Theorem 3.1. Let $\alpha \geqslant 0$ and $1 \leqslant r<\infty$. If the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular, then

$$
w B M O_{r}(\alpha)=w B M O_{1}(\alpha)
$$

with equivalent norms.
According to Lemma [3.1, Lemma [3.3 holds if we replace $\mathcal{H}_{p, \infty}^{*}$ by $\mathcal{H}_{p, \infty}^{s}$. Without regularity of stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$, we also get a duality result.

Proposition 3.1. Let $0<p \leqslant 1$. Then $\left(\mathcal{H}_{p, \infty}^{s}\right)^{*}=w B M O_{2}(\alpha)$ with $\alpha=$ $1 / p-1$.

Proof. Note that $H_{2}^{s}=L_{2}$ is dense in $\mathcal{H}_{p, \infty}^{s}$ by Remark [3.7(1). The first part of the proof is similar to that of Lemma B.2, and the converse part is similar to that of Lemma 3.3 with $r=2$. We omit the proof.

4. PROOF OF THE MAIN THEOREM

In this section we complete the proof of Theorem [D.
Let $\bar{H}_{p, \infty}^{s}$ be the $H_{p, \infty}^{s}$ closure of H_{∞}^{s}. Since $H_{\infty}^{s} \subset H_{2}^{s}=L_{2}$, using Remark [...|(1), we have $\bar{H}_{p, \infty}^{s} \subset \mathcal{H}_{p, \infty}^{s}$. Then $\left(\mathcal{H}_{p, \infty}^{s}\right)^{*} \subset\left(\bar{H}_{p, \infty}^{s}\right)^{*}$.

Lemma 4.1 ([|17], Corollary 6). Let $0<p<2$. Then the dual space of $\bar{H}_{p, \infty}^{s}$ is $w \mathcal{B M O}_{2}(\alpha)$ with $\alpha=1 / p-1$.

Lemma 4.2 ([II7], Corollary 8). Suppose that the stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ is regular and $1 \leqslant r<\infty$. If $\alpha r+1>0$ for a fixed α, then

$$
w \mathcal{B M O}_{r}(\alpha)=w \mathcal{B M O}_{2}(\alpha)
$$

with equivalent norms.
Theorem 4.1. Suppose that $\alpha \geqslant 0$. Then

$$
w \mathcal{B M O}_{2}(\alpha)=w B M O_{2}(\alpha)
$$

with equivalent norms.
Proof. Let $p=\frac{1}{1+\alpha}$. Since $\left(\mathcal{H}_{p, \infty}^{s}\right)^{*} \subset\left(\bar{H}_{p, \infty}^{s}\right)^{*}$, it follows from Proposition [3.0 and Lemma [.] that

$$
w B M O_{2}(\alpha) \subset w \mathcal{B M O}_{2}(\alpha)
$$

To obtain

$$
w B M O_{2}(\alpha) \supset w \mathcal{B M}_{2}(\alpha),
$$

we shall show that

$$
C\|f\|_{w \mathcal{B M O}_{2}(\alpha)} \geqslant\|f\|_{w B M O_{2}(\alpha)}
$$

for any $f \in w \mathcal{B M O}_{2}(\alpha)$. Suppose that $\left\{\nu_{k}\right\}_{k \in \mathbb{Z}}$ is an arbitrary stopping time sequence such that $\left\{2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}\right\}_{k \in \mathbb{Z}} \in \ell_{\infty}$. Let

$$
B=\sup _{k} 2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / p}
$$

We can claim that

$$
\sum_{k=-\infty}^{\infty} t_{\alpha}^{2}\left(B^{p} 2^{-k p}\right) \leqslant C\|f\|_{w \mathcal{B} \mathcal{M O}_{2}(\alpha)}
$$

To this end, let $C_{k}=B 2^{-k p}$. Then, for any $x \in\left(C_{k+1}, C_{k}\right)$, we have

$$
C_{k+1}^{1 / 2+\alpha} t_{\alpha}^{2}\left(C_{k+1}\right) \leqslant x^{1 / 2+\alpha} t_{\alpha}^{2}(x) \leqslant C_{k}^{1 / 2+\alpha} t_{\alpha}^{2}\left(C_{k}\right)
$$

We refer to [17], p. 144, for a more general case of the inequalities above. Hence,

$$
\int_{0}^{\infty} \frac{t_{\alpha}^{2}(x)}{x} d x=\sum_{k=-\infty}^{\infty} \int_{C_{k+1}}^{C_{k}} \frac{t_{\alpha}^{2}(x)}{x} d x \geqslant\left(1-2^{-p}\right) 2^{-p(1 / 2+\alpha)} \sum_{k=-\infty}^{\infty} t_{\alpha}^{2}\left(B^{p} 2^{-k p}\right) .
$$

On the other hand, since $B^{p} 2^{-k p} \geqslant \mathbb{P}\left(\nu_{k}<\infty\right)$ for all k, we have

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} t_{\alpha}^{2}\left(B^{p} 2^{-k p}\right) & \geqslant \sum_{k=-\infty}^{\infty} \frac{2^{k}\left(B^{p} 2^{-k p}\right)^{1 / 2}\left\|f-f^{\nu_{k}}\right\|_{2}}{B} \\
& \geqslant \sum_{k=-\infty}^{\infty} \frac{2^{k} \mathbb{P}\left(\nu_{k}<\infty\right)^{1 / 2}\left\|f-f^{\nu_{k}}\right\|_{2}}{B}
\end{aligned}
$$

By the definition of $w \mathrm{BMO}_{2}(\alpha)$, we complete the proof.
REMARK 4.1. If one proves the dual space of $\mathcal{H}_{p, \infty}^{s}$ is $w \mathcal{B M O}(\alpha)$, then Theorem [.]1 holds. If one shows $\mathcal{H}_{p, \infty}^{s}=\bar{H}_{p, \infty}^{s}$, then Proposition 3.11 implies Theorem T.ll We leave the proofs to the interested reader.

Now we are ready to prove the main result of the paper.
Proof of Theorem [.]. It directly follows from Theorems [3.1] and 4.1$]$ and Lemma 4.2.

Acknowledgments. The authors would like to thank the anonymous referee for helpful comments and suggestions to improve the paper.

REFERENCES

[1] W. Abu-Shammala and A. Torchinsky, The Hardy-Lorentz spaces $H^{p, q}\left(\mathbb{R}^{n}\right)$, Studia Math. 182 (3) (2007), pp. 283-294.
[2] L. Grafakos, Classical Fourier Analysis, second edition, Springer, New York 2008.
[3] Z. Hao, Y. Jiao, F. Weisz, and D. Zhou, Atomic subspaces of L_{1}-martingale spaces, Acta Math. Hungar. 150 (2) (2016), pp. 423-440.
[4] C. Herz, H_{p}-spaces of martingales, $0<p \leqslant 1$, Z. Wahrsch. Verw. Gebiete 28 (1973/74), pp. 189-205.
[5] K. Ho, Atomic decompositions, dual spaces and interpolations of martingale Hardy-LorentzKaramata spaces, Q. J. Math. 65 (3) (2014), pp. 985-1009.
[6] Y. Jiao, P. Lihua, and L. Peide, Atomic decompositions of Lorentz martingale spaces and applications, J. Funct. Spaces 7 (2) (2009), pp. 153-166.
[7] Y. Jiao, L. Wu, and L. Peng, Weak Orlicz-Hardy martingale spaces, Internat. J. Math. 26 (8) (2015), 1550062.
[8] Y. Jiao, L. Wu, A. Yang, and R. Yi, The predual and John-Nirenberg inequalities on generalized BMO martingale spaces, Trans. Amer. Math. Soc. 369 (1) (2017), pp. 537-553.
[9] Y. Jiao, D. Zhou, F. Weisz, and L. Wu, Variable martingale Hardy spaces and their applications in Fourier analysis, submitted, 2018.
[10] Y. Jiao, Y. Zuo, D. Zhou, and L. Wu, Variable Hardy-Lorentz spaces $H^{p(\cdot), q}\left(\mathbb{R}^{n}\right)$, Math. Nachr. (to appear).
[11] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), pp. 415-426.
[12] K. Liu and D. Zhou, Dual spaces of weak martingale Hardy-Lorentz-Karamata spaces, Acta Math. Hungar. 151 (1) (2017), pp. 50-68.
[13] K. Liu, D. Zhou, and L. Peng, A weak type John-Nirenberg theorem for martingales, Statist. Probab. Lett. 122 (2017), pp. 190-197.
[14] R. L. Long, Martingale Spaces and Inequalities, Peking University Press, Beijing 1993.
[15] F. Weisz, Martingale Hardy spaces for $0<p \leqslant 1$, Probab. Theory Related Fields 84 (3) (1990), pp. 361-376.
[16] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Springer, Berlin 1994.
[17] F. Weisz, Weak martingale Hardy spaces, Probab. Math. Statist. 18 (1) (1998), pp. 133-148.
[18] R. Yi, L. Wu, and Y. Jiao, New John-Nirenberg inequalities for martingales, Statist. Probab. Lett. 86 (2014), pp. 68-73.

Dejian Zhou	Weiwei Li
School of Mathematics and Statistics	School of Mathematics and Statistics
Central South University	Central South University
Changsha 410075, China	Changsha 410075, China
E-mail: zhoudejian@csu.edu.cn	E-mail: liweiweionline@hotmail.com

Yong Jiao
School of Mathematics and Statistics
Central South University
Changsha 410075, China
E-mail: jiaoyong@csu.edu.cn
Received on 8.4.2015;
revised version on 15.3.2017

[^0]: * Research supported by NSFC (11471337) and Hunan Province Natural Science Foundation (14JJ1004).

