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Abstract. For fixed l  0 and m  1, let X(0)
n ,X

(1)
n , . . . ,X

(l)
n be in-

dependent random n × n matrices with independent entries, let F
(0)
n :=

X
(0)
n (X

(1)
n )−1 . . . (X

(l)
n )−1, and let F

(1)
n , . . . ,F

(m)
n be independent ran-

dom matrices of the same form as F
(0)
n . We show that as n → ∞, the

matrices F
(0)
n and m−(l+1)/2(F

(1)
n + . . . + F

(m)
n ) have the same limiting

eigenvalue distribution.
To obtain our results, we apply the general framework recently intro-

duced in Götze, Kösters, and Tikhomirov (2015) to sums of products of in-
dependent random matrices and their inverses. We establish the universality
of the limiting singular value and eigenvalue distributions, and we provide
a closer description of the limiting distributions in terms of free probability
theory.
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1. INTRODUCTION AND MAIN RESULTS

The investigation of the asymptotic spectral distributions of random matrices
is a major topic in random matrix theory. In recent years, sums and products of
independent non-Hermitian random matrices with independent entries have found
increasing attention; see e.g. [1], [3], [11], [13]–[18], [20], [25], [27], [29], [31],
[35]–[37] for results on global spectral distributions, and also the survey paper [2]
and the references therein for results on local spectral distributions. In particular,
the paper [18] provides a general framework for the investigation of the limiting
(global) spectral distributions of products of independent random matrices with
independent entries. Furthermore, the paper [37] shows that this approach proves
useful for the investigation of sums of products as well. The aim of the present
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360 H. Kösters and A. Tikhomirov

paper is to show that certain products of independent random matrices give rise
to random matrices with stable limiting eigenvalue distributions, in the sense that
the sums of several independent copies of these products have the same limiting
eigenvalue distribution after appropriate rescaling.

Throughout this paper, for each n  1, let X(1)
n ,X

(2)
n ,X

(3)
n , . . . be indepen-

dent random matrices of size n × n with independent entries. More precisely,
we assume that

X(q)
n =

(
1√
n
X

(q)
jk

)
j,k=1,...,n

,(1.1)

where (X
(q)
jk )j,k,q∈N is a family of independent real or complex random variables

such that

EX(q)
jk = 0, E(X(q)

jk )2 = 1 in the real case,(1.2)

and

(1.3) EX(q)
jk = 0, E(X(q)

jk )2 = 0, E|X(q)
jk |

2 = 1 in the complex case,

and we additionally assume that this family is uniformly square-integrable, i.e.

lim
a→∞

sup
j,k,q∈N

E
(
|X(q)

jk |
2 111{|X(q)

jk |a}

)
= 0.(1.4)

In this case we also say the matrices X(q)
n are independent Girko–Ginibre matrices.

In the special case where the entries have real or complex Gaussian distributions,
we usually write Y

(q)
n =

(
1√
n
Y

(q)
jk

)
j,k=1,...,n

instead of X(q)
n =

(
1√
n
X

(q)
jk

)
j,k=1,...,n

and call the matrices Y
(q)
n Gaussian random matrices or Ginibre matrices. Note

that the assumption (1.4) is clearly satisfied in this special case, the random vari-
ables Y (q)

jk being independent and identically distributed (i.i.d.).
We will be interested in the limiting spectral distributions of random matrices

Fn given by sums of products of the matrices X(q)
n and their inverses. Let Fn have

the singular values s1(Fn)  . . .  sn(Fn) and eigenvalues λ1(Fn), . . . , λn(Fn).
Then we write νn := ν(Fn) :=

1
n

∑n
j=1 δsj(Fn) for the (empirical) singular value

distribution of Fn and µn := µ(Fn) :=
1
n

∑n
j=1 δλj(Fn) for the (empirical) eigen-

value distribution of Fn. The corresponding weak limits in probability (if existent)
will be denoted by ν := νF and µ := µF, respectively. Note that µ will in general
be a probability measure on the complex plane, the random matrices Fn being non-
Hermitian. The density of µ (if existent) will be denoted by f(z), or by f(r) (with
r = |z|) in case it is rotation-invariant with respect to the origin.

Let us mention some relevant results from the literature.

EXAMPLES 1.1.
(a) (Circular law) Let Fn = X

(1)
n . Then f(r) = 1

π 111[0,1](r), i.e. µ is the uni-
form distribution on the unit disk.
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(b) Let Fn = X
(1)
n + . . . + X

(m)
n . Then Fn is a random matrix with inde-

pendent entries of mean zero and variance m/n, so, by simple rescaling, f(r) =
1

mπ 111[0,
√
m](r). In particular, for the rescaled matrices 1√

m
Fn, the limiting eigen-

value distribution is again the uniform distribution on the unit disk.
(c) Let Fn = X

(1)
n X

(2)
n . Then f(r) = 1

2πr 111[0,1](r), i.e. µ is the induced dis-
tribution of the uniform distribution on the unit disk under the mapping z 7→ z2.
See e.g. [18], Section 8.2.2, for a “simple” derivation.

(d) Let Fn = X
(1)
n X

(2)
n + . . .+X

(2m−1)
n X

(2m)
n . Then

f(r) =
1

π
√
(m− 1)2 + 4r2

111[0,
√
m](r);

see [37], Section 2.
(e) (Spherical law) Let Fn = X

(1)
n (X

(2)
n )−1. Then

f(r) =
1

π(1 + r2)2
,

i.e. µ is the spherical distribution on the complex plane.
(f) Let Fn = X

(1)
n (X

(2)
n )−1 + . . .+X

(2m−1)
n (X

(2m)
n )−1. Then

f(r) =
m2

π(m2 + r2)2
;

see [37], Section 3. Thus, for the rescaled matrices 1
mFn, the limiting eigenvalue

distribution is again the spherical distribution on the complex plane.

In view of examples (b) and (f), it seems natural to ask whether there exist
further examples of random matrices F

(0)
n such that for any m ∈ N, the sums of

m independent matrices of the same form as F
(0)
n have the same limiting eigen-

value distribution as the original random matrices F(0)
n , after appropriate rescaling.

We will answer this question in the affirmative by proving the following result,
which contains examples (b) and (f) as special cases:

THEOREM 1.1. Fix m ∈ N and l ∈ N0, let

F(0)
n := (X(0)

n )(X(1)
n )−1 . . . (X(l)

n )−1,(1.5)

where X
(0)
n ,X

(1)
n , . . . ,X

(l)
n are independent random matrices as in (1.1)–(1.4),

and let F(1)
n , . . . ,F

(m)
n be independent matrices of the same form as F

(0)
n . Then

the matricesm−(l+1)/2(F
(1)
n + . . .+F

(m)
n ) and F

(0)
n have the same limiting eigen-

value distribution µ. More precisely, we have µ = H
(
σs
(

2
l+1

))
, where σs

(
2

l+1

)
is the symmetric �-stable distribution with parameter 2

l+1 (see Section 2.3) and
H
(
σs
(

2
l+1

))
is the associated rotation-invariant distribution on C (see Section 2.1).
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Moreover, as we will see in Section 3, apart from a possible permutation of the
exponents±1, the matrices F(0)

n in Theorem 1.1 are the only examples of products
of independent Girko–Ginibre matrices and their inverses such that for anym ∈ N,
F
(0)
n and F

(1)
n + . . . + F

(m)
n have the same limiting eigenvalue distribution after

appropriate rescaling. In particular, the matrices

F(0)
n := X(1)

n . . .X(k)
n (X(k+1)

n )−1 . . . (X(k+l)
n )−1(1.6)

with k > 1 do not share this property.
However, the same limiting eigenvalue distributions may arise for products

involving powers of random matrices:

THEOREM 1.2. Fix m ∈ N, k ∈ N0 and l1, . . . , lk ∈ N, let l := l1 + . . .+ lk
and define

F(0)
n := (X(0)

n )(X(1)
n )−l1 . . . (X(k)

n )−lk ,(1.7)

where X
(0)
n ,X

(1)
n , . . . ,X

(k)
n are independent random matrices as in (1.1)–(1.4),

and let F(1)
n , . . . ,F

(m)
n be independent matrices of the same form as F

(0)
n . Then

the matricesm−(l+1)/2(F
(1)
n + . . .+F

(m)
n ) and F

(0)
n have the same limiting eigen-

value distribution µ, which is the same as in Theorem 1.1.

Theorem 1.1 will be deduced from a more general result about random matri-
ces of the form

Fn(X) :=
m∑
q=1

F(q)
n (X) :=

m∑
q=1

l∏
r=1

(X((q−1)l+r)
n )εr ,(1.8)

where m, l ∈ N and ε1, . . . , εl ∈ {+1,−1} are fixed. (Thus, the matrices F(q)
n (X)

are independent random matrices of the same form as the matrix
∏l

r=1(X
(r)
n )εr .)

Let us note that under the assumptions (1.1)–(1.4), each matrix X
(r)
n is invertible

with probability 1 + o(1) as n→∞ (see e.g. Lemma 4.9), so that Fn(X) is de-
fined with probability 1 + o(1) as n → ∞. Here we have the following result,
which establishes the existence of the limiting singular value and eigenvalue dis-
tributions and provides a closer description of them in terms of free probability
theory:

THEOREM 1.3. Let the matrices Fn(X) be defined as in (1.8). Then there ex-
ist non-random probability measures ν and µ on (0,∞) and C, respectively, such
that limn→∞ ν

(
Fn(X)

)
= ν and limn→∞ µ

(
Fn(X)

)
= µ weakly in probability,

and the limiting distributions are the same as those for the matrices Fn(Y) derived
from Gaussian random matrices. More precisely, the limiting measures ν and µ are
given by

(1.9) Sν =
(
Q−1(γε1 � . . .� γεl)

)�m
and µ = H(Sν),
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where γ is the Marchenko–Pastur distribution, γ−1 is the inverse Marchenko–
Pastur distribution, � and � denote the additive and multiplicative free convolu-
tion, and S, Q andH are the operators described in Section 2.1 below.

In particular, this result shows that the limiting spectral distributions are uni-
versal, i.e. they do not depend on the distributions of the matrix entries apart from
a few moment conditions as in (1.2)–(1.4).

REMARK 1.1. As will follow from the proof, Theorem 1.3 extends to cer-
tain sums of products of powers of independent Girko–Ginibre matrices and their
inverses, namely to random matrices of the form

(1.10) Fn(X) :=
m∑
q=1

F(q)
n (X) :=

m∑
q=1

k∏
r=1

(
(X((q−1)k+r)

n )εr
)lr ,

where m, k ∈ N, ε1, . . . , εk ∈ {−1,+1} and l1, . . . , lk ∈ N are fixed, and

for some r = 1, . . . , k, we have lr = 1.(1.11)

Here, with the notation as above, the limiting measures ν and µ are given by

(1.12) Sν =
(
Q−1

(
(γε1)�l1 � . . .� (γεk)�lk

))�m
and µ = H(Sν).

This will be important for the proof of Theorem 1.2.

To obtain the preceding results, we apply the general framework from [18]
for the investigation of (global) limiting spectral distributions to sums of products
of independent Girko–Ginibre random matrices and their inverses (see Section 4).
Related results for various special cases can be found e.g. in [1], [3], [11], [13],
[14], [16], [20], [25], [27], [29], [35], [37]. In particular, in the Gaussian case,
the limiting eigenvalue and singular value distributions of the products (1.6) were
recently obtained in [1] and [16], respectively.

To apply the framework from [18], we need to verify certain technical condi-
tions, see Conditions A, B and C in Section 4.2 for details. This will be achieved
by means of a suitable induction argument, which forms the major part of Sec-
tion 4 and which represents the main contribution of this work. Furthermore, to
identify the limiting spectral distributions, we use tools from free probability the-
ory. Here it is worth emphasizing that for the matrices in Theorems 1.1 and 1.2 the
limiting spectral distributions may be described relatively explicitly. It seems that
comparable results are available only in a few special cases, see e. g. [10], [21],
[22], [26]. Let us mention, however, the very recent work [6], [33], [7] which pro-
vides an algorithm for calculating the Brown measures of general polynomials in
free non-commutative random variables. This should yield many further examples
where the limiting spectral distributions may now be determined.
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2. BACKGROUND

In this section we recall some well-known concepts and results from the liter-
ature which will be needed later.

2.1. Results from random matrix theory. The derivation of our results on
limiting eigenvalue distributions will be based on Girko’s Hermitization method
(see also [12]). Thus, we will first study the limiting eigenvalue distributions of the
Hermitian matrices

Vn :=

[
O Fn

F∗n O

]
and Wn := FnF

∗
n.(2.1)

Note that if the singular values of Fn are given by s1, . . . , sn, then the eigen-
values of Vn and Wn are given by ±s1, . . . ,±sn and s21, . . . , s

2
n, respectively.

It is easy to see that knowledge of one of the distributions ν(Fn), µ(Vn), µ(Wn)
(or its convergence) implies knowledge of the other two (or their convergence).
More precisely, if S denotes the operator which associates with each distribution ν
on (0,∞) its symmetrization on R∗, and Q denotes the operator which associates
with each symmetric distribution µ on R∗ its induced distribution on (0,∞) under
the mapping x 7→ x2, the operators S and Q are one-to-one, and we have

µ(Vn) = Sν(Fn) and µ(Wn) = Qµ(Vn).(2.2)

Furthermore, given a symmetric distribution µV on R∗ such that∫
log+ |t| dµV(t) <∞,(2.3)

we writeHµV for the rotation-invariant distribution on C (if existent) such that

UV(α) := −
∫
log |z − α| d(HµV)(z) = −

∫
log |x| d

(
µV �B(α)

)
(x)(2.4)

for any α ∈ C. Here, the function UV(α) is the so-called logarithmic potential of
the measure HµV, B(α) := 1

2δ−|α| +
1
2δ+|α| denotes the Bernoulli distribution,

and � denotes free additive convolution. It follows from basic results in logarith-
mic potential theory that such a distribution HµV, if it exists, is uniquely deter-
mined by (2.4), see e.g. [32], and also the comments at the end of Section 2.2.

Girko’s Hermitization method (see also [12]) now states that under appropriate
assumptions, the weak convergence of the eigenvalue distributions µ(Fn) follows
from the weak convergence of the singular value distributions ν(Fn − αIn) of the
shifted matrices Fn − αIn for all α ∈ C. We will only need the following special
case:

THEOREM 2.1 ([18], Theorem 7.6). If the random matrices Fn satisfy Con-
dition C in Section 4 below and there exists a non-random probability measure νF
on (0,∞) such that for all α ∈ C, Sν(Fn − αIn) → (SνF) � B(α) weakly in
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probability, then µ(Fn)→ µF := H(SνF) weakly in probability. Moreover, with
the notation from [18] and under regularity conditions, the measure µF has the
Lebesgue density

f(u, v) =
1

2π|α|2

(
u
∂ψ

∂u
+ v

∂ψ

∂v

)
,(2.5)

where α = u+ iv and ψ is a continuous function on C∗ taking values in [0, 1] and
satisfying

ψ(α)
(
1− ψ(α)

)
= −|α|2

(
1− ψ(α)

)2(
SV

(
−
(
1− ψ(α)

)))2
.(2.6)

Here, SV denotes the S-transform of the symmetric probability measure µV =
SνF (see [30], [4], [18]).

Furthermore, as the starting point for the proof of Theorem 1.3 (which will be
by induction on the number of factors and summands in (1.8)), we will rely upon
the well-known Marchenko–Pastur theorem, which states that when Fn = X

(1)
n ,

n ∈ N, then µ(Wn)→ γ weakly in probability, where

γ(dx) =
1

2π

√
4− x
x

111(0,4)(x)λλ(dx)(2.7)

is the Marchenko–Pastur distribution (with parameter one). Therefore, when Fn =

(X
(1)
n )−1, n ∈ N, we have µ(Wn)→ γ−1 weakly in probability, where γ−1 is the

induced measure of γ under the mapping x 7→ x−1. We will call this measure the
inverse Marchenko–Pastur distribution. Finally, let us note that the S-transforms
of γ and γ−1 are given by

(2.8) Sγ(z) =
1

z + 1
and Sγ−1(z) = −z,

respectively, see e.g. Section 8.1.1 in [18].

2.2. Results from free probability theory. To describe the limiting singular
value distributions of the random matrices Fn in Theorem 1.3, we will use various
concepts and results from free probability theory. See e.g. [38], [28] for a thorough
introduction to free probability theory, or Section 5 in [18] for a brief introduction
tailored to our purposes. In particular, we will use the free additive and multiplica-
tive convolutions � and �, the associated R and S transforms (also for probability
measures with unbounded support), and the asymptotic freeness of random matri-
ces. Furthermore, we will frequently use the following result:

PROPOSITION 2.1 (Asymptotic freeness). For each n ∈ N, let An and Bn

be independent bi-unitary invariant random matrices of size n× n such that

sup
n∈N

max
{
E
(
1
n trace(AnA

∗
n)

k
)
,E

(
1
n trace(BnB

∗
n)

k
)}

<∞
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for all k ∈ N, and suppose that there exist compactly supported (deterministic)
probability measures µAA∗ and µBB∗ on (0,∞) such that µ(AnA

∗
n) → µAA∗

and µ(BnB
∗
n)→ µBB∗ weakly in probability. Then one has the following:

(a) The families {An,A
∗
n} and {Bn,B

∗
n} are asymptotically free, and

(AnBn)(AnBn)
∗ → µAA∗ � µBB∗ in moments.

(b) For any k, l ∈ N, the matrices (Ak
n)
∗Ak

n and Al
n(A

l
n)
∗ are asymptoti-

cally free, and for any k ∈ N,

Ak
n(A

k
n)
∗ → µ�k

AA∗ in moments.

(c) The matrices Vn(An) and Vn(Bn) are asymptotically free, and

Vn(An) +Vn(Bn)→ µV(A) � µV(B) in moments.

(d) The matrices Vn(An) and Jn(α) are asymptotically free, and

Vn(An) + Jn(α)→ µV(A) �B(α) in moments.

Here,V(An) and V(Bn) are defined as in equation (2.1), µV(A) and µV(B)

denote the corresponding limiting distributions, and

Jn(α) :=

[
O −αIn
−αIn O

]
.(2.9)

Parts (a) and (b) follow from the results in Section 4.3 in [23], part (d) is proved
in Section 5 in [18], and part (c) follows by similar arguments. Also, let us mention
that part (c) is already implicit in [37].

REMARK 2.1. Observe that Proposition 2.1 may be used to establish the weak
convergence of the mean singular value distributions of the matrices AnBn, A

k
n

and An + Bn. However, in most of the situations in which we will use Propo-
sition 2.1 later, this already implies the weak convergence in probability of the
singular value distributions of these matrices (see e.g. Section A.1 in [18]).

It is worth mentioning that there is another description of the limiting density
f(u, v) in Theorem 2.1 due to Haagerup and Larsen [21] and Haagerup and Schultz
[22]. Actually, in these papers, the density f is shown to describe the Brown mea-
sure of a so-called R-diagonal element in a W ∗-probability space. Roughly speak-
ing, an R-diagonal element is a non-commutative random variable of the form uh,
where u is Haar unitary and h is a positive element ∗-free from u.

For our purposes, this description of the density f may be summarized as fol-
lows. In the situation of Theorem 2.1, let νF be the limiting singular value distri-
bution of the matrices Fn, set µV = SνF and µW = QνV (which are the limiting
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eigenvalue distributions of the matrices Vn and Wn in (2.1), respectively), and
suppose that µW is not a Dirac measure. Let SW denote the S-transform of µW,
and set

F (t) :=
1√

SW(t− 1)
.

Then F is a smooth bijection from the interval (0, 1) to the interval

(a, b) :=
(( ∫

x−2 dνF(x)
)−1/2

,
( ∫

x2 dνF(x)
)1/2)

(where 1/∞ := 0 and 1/0 :=∞), and the limiting eigenvalue distribution µF =
HµV of the matrices Fn has a rotation-invariant density f(r) given by

f(r) =
1

2πr F ′
(
F−1(r)

)111(a,b)(r)(2.10)

(see [21], Section 4, and [22], Section 4). Clearly, the connection to Theorem 2.1
arises from the fact that ψ = F−1 on the interval (a, b). Moreover, equation (2.10)
shows that F−1(r) =

∫ r

0
2πs f(s) ds, which implies that µW, and hence µV, is

uniquely determined by µF. Thus, the mapping µV 7→ µF is one-to-one.
Furthermore, it follows from the results in [21], [22] that the measure HµV

exists for any symmetric probability measure µV on R∗ satisfying (2.3) and that
the operatorH thus defined furnishes a one-to-one correspondence between the set
of these distributions on R∗ and a certain set H of rotation-invariant distributions
on C. Finally, it is easy to see that for any symmetric distribution µ on R∗ satisfying
(2.3), we have

H(Dcµ) = DcH(µ)(2.11)

for all c > 0, where Dc is the scaling operator which maps a probability measure
on R or C to its induced measure under the mapping x 7→ cx.

2.3. Results on �-stable distributions. Let us collect some results on �-stable
distributions which will be needed later. A distribution µ on R is called (strictly)
�-stable if there exists a constant α > 0 such that µ�m = Dm1/αµ for all m ∈ N.
Here, Dc is defined as in equation (2.11). We will often call the constant α the
stability index of µ.

The (strictly) �-stable distributions have been investigated in [9], [8] and [4].
First of all, let us recall that for any �-stable distribution, α ∈ ]0, 2]. We will need
the following result, which is contained in Appendix A of [8] and in [4]:

PROPOSITION 2.2. Fix α ∈ ]0, 2]. For a symmetric probability measure µ on
R∗, the following are equivalent:

(i) µ is (strictly) �-stable with stability index α.
(ii) Rµ(z) = bzα−1, where b ∈ C∗ with arg b = −π + απ/2.
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(iii) Sµ(z) = z(1/α)−1/b1/α, where b ∈ C∗ with arg b = −π + απ/2.
Moreover, in this case, the constants b in parts (ii) and (iii) are the same.

Here, for the S-transform Sµ(z), we make the convention that we take argu-
ments in ]−π,+π] to define powers of b and arguments in (−2π, 0) to define pow-
ers of z. Then, with i the imaginary unit, we have Sµ(z) ∈ (0,∞)i for z ∈ (−1, 0),
in line with the convention in [18].

Henceforward, we write σs(α) for the (unique) symmetric �-stable distribu-
tion with parameters α ∈ ]0, 2] and b := e(−π+απ/2)i. Note that in the special cases
α = 2 and α = 1, we obtain the standard semicircle and Cauchy distribution, re-
spectively. Furthermore, let us recall from [8], Appendix A, that the distribution
σs(α) has a continuous density fα such that fα(x) = O(|x|−α−1) as |x| → ∞.
Thus, in particular, the distribution σs(α) satisfies condition (2.3).

3. PROOF OF THEOREMS 1.1 AND 1.2

In this section, we prove Theorems 1.1 and 1.2 using Theorem 1.3 and Re-
mark 1.1, respectively.

P r o o f o f T h e o r e m 1.1. By Theorem 1.3, the limiting eigenvalue dis-
tributions of the matrices Fn := F

(0)
n and F̃n := m−(l+1)/2(F

(1)
n + . . .+F

(m)
n ) in

Theorem 1.1 are given by

µF = H
(
Q−1

(
γ � (γ−1)�l

))
and

µ
F̃
= H

(
Dm−(l+1)/2

(
Q−1

(
γ � (γ−1)�l

))�m)
,

respectively, where Dc is defined as in equation (2.11). To obtain the description
asserted in the theorem, we calculate the S-transform ofQ−1

(
γ � (γ−1)�l

)
. Using

(2.8) and the relation Sν1�ν2(z) = Sν1(z)Sν2(z), we find that

SW(z) = Sγ�(γ−1)�l(z) =
(−z)l

z + 1
,

and therefore

SV(z) = SQ−1(γ�(γ−1)�l)(z) =

√
z + 1

z
SW(z) =

√
z + 1

z

(−z)l
z + 1

= ilz(l−1)/2.

By Proposition 2.2, the corresponding distribution is Q−1
(
γ � (γ−1)�l

)
=

σs
(

2
l+1

)
, the symmetric �-stable distribution of parameter 2

l+1 . Thus, µF =

H
(
σs
(

2
l+1

))
. Also, using the defining property of a �-stable distribution, we get

Dm−(l+1)/2

((
Q−1

(
γ � (γ−1)�l

))�m)
=Dm−(l+1)/2

((
σs
(

2
l+1

))�m)
=σs

(
2

l+1

)
.

Thus, µ
F̃
= H

(
σs
(

2
l+1

))
as well, and the proof of Theorem 1.1 is complete. �
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P r o o f o f T h e o r e m 1.2. By Theorem 1.3 and Remark 1.1, the limiting
eigenvalue distributions of the matrices

Fn := F(0)
n and F̃n := m−(l+1)/2(F(1)

n + . . .+ F(m)
n )

in Theorem 1.2 are given by

µF = H
(
Q−1

(
γ � (γ−1)�l1 � . . .� (γ−1)�lk

))
and

µ
F̃
= H

(
Dm−(l+1)/2

(
Q−1

(
γ � (γ−1)�l1 � . . .� (γ−1)�lk

))�m)
,

respectively. But (γ−1)�l1 � . . . � (γ−1)�lk = (γ−1)�l, so the assertion follows
in the same way as in the previous proof. �

REMARK 3.1. In principle, the density of the limiting distribution µF in The-
orems 1.1 and 1.2 can be found by means of Theorem 7.6 in [18]. In our situation,
it is easy to check that equation (2.6) reduces to

ψ(α)
(
1− ψ(α)

)
= |α|2

(
1− ψ(α)

)l+1
.

(Recall from Section 2.3 that SV(z) takes values in (0,∞)i when z ∈ (−1, 0).)
Thus, since ψ(α) is continuous with values in [0, 1] and ψ(α) ̸= 1 for α ≈ 0 (see
Sections 6 and 7 in [18]), we obtain, for l = 0, 1, 2, 3,

ψ0(r) = 1 ∧ r2, ψ1(r) =
r2

1 + r2
, ψ2(r) = 1− 2√

1 + 4r2 + 1
,

ψ3(r) = 1− 3(
1 + v2(r) + w2(r)

)2 ,
and therefore

f0(r) =
1

π
111(0,1)(r), f1(r) =

1

π(1 + r2)2
,

f2(r) =
2

π
√
1 + 4r2(1 + 2r2 +

√
1 + 4r2)

,

f3(r) =
27
(
v(r) + w(r)

)
π
√
4 + 27r2

(
1 + v2(r) + w2(r)

)3 ,
where we have set

v(r) :=
(
1
2

√
4 + 27r2 + 1

2

√
27r

)1/3
and w(r) :=

(
1
2

√
4 + 27r2 − 1

2

√
27r

)1/3
for abbreviation. �
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REMARK 3.2. It seems natural to ask whether there exist further examples of
random matrices F(0)

n such that for any m ∈ N, F(0)
n and F

(1)
n + . . .+ F

(m)
n have

the same limiting eigenvalue distributions after appropriate rescaling. However,
it turns out that within the class of products of independent Girko–Ginibre matri-
ces and their inverses, there exist no further examples beyond those mentioned in
Theorem 1.1, apart from possible permutations of the exponents ±1. Indeed, sup-
pose that F(0)

n is a product of p factors Y
(r)
n and q factors (Y

(r)
n )−1 (all of them

independent, and in arbitrary order), and let Vn and Wn be defined as in (2.1).
Then, arguing as in the proof of Theorem 1.1, we find that the corresponding S-
transforms SW and SV are given by

SW(z) =
(−z)q

(1 + z)p
and SV(z) =

iq z(q−1)/2

(1 + z)(p−1)/2
,

respectively, and by Proposition 2.2, the latter is the S-transform of a symmetric
�-stable distribution if and only if p = 1 and q ∈ N0. Now use the observation
that, by equation (2.11), if µ�m is not a rescaled version of µ, thenH(µ�m) is not
a rescaled version ofH(µ). �

REMARK 3.3. The limiting eigenvalue distribution in Theorems 1.1 and 1.2
may be interpreted as a stable distribution with respect to an appropriately defined
convolution ⊕. To define this convolution, suppose that µ1 and µ2 are two prob-
ability measures which belong to the class H introduced above equation (2.11)
and that An and Bn are independent bi-unitary invariant random matrices with
limiting eigenvalue distributions µ1 and µ2, respectively. Also, suppose that these
matrices satisfy the assumptions of Theorem 2.1. Then, if ν̃1 and ν̃2 are the limiting
symmetrized singular value distributions of An and Bn, we have µ1 = H(ν̃1) and
µ2 = H(ν̃2) by Theorem 2.1. Furthermore, suppose that the matrix sums An +Bn

have the limiting symmetrized singular value distribution ν̃1 � ν̃2 (which seems
natural in view of Proposition 2.1) and that they also satisfy the assumptions of
Theorem 2.1. Then, again by Theorem 2.1, the associated limiting eigenvalue dis-
tribution is given byH(ν̃1 � ν̃2). This motivates the following definition:

DEFINITION 3.1. Given two probability measures µ1 and µ2 of class H , set
µ1 ⊕ µ2 := H

(
H−1(µ1)�H−1(µ2)

)
.

This convolution⊕may also be interpreted in terms of free probability. Indeed,
given µ1 and µ2 in H, pick R-diagonal elements x1 and x2 (in some W ∗-proba-
bility space) such that the Brown measure of x1 is µ1, the Brown measure of x2 is
µ2, and x1 and x2 are ∗-free. Then µ1 ⊕ µ2 is the Brown measure of x1 + x2, as
follows from the results in [21] and [22].

It is now natural to introduce the concept of a (strictly) ⊕-stable distribution:
A probability measure µ of classH is called (strictly)⊕-stable if there exists a con-
stant α > 0 such that µ⊕m = Dm1/αµ for all m ∈ N. Then, by equation (2.11), ν̃
is �-stable if and only ifH(ν̃) is ⊕-stable. Therefore, the ⊕-stable distributions in
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H are in one-to-one correspondence with the symmetric �-stable distributions on
R∗, and the limiting spectral distributions occurring in Theorems 1.1 and 1.2 are
special examples of this type. �

4. PROOF OF THEOREM 1.3

4.1. Overview. In this section we prove Theorem 1.3 using the general frame-
work from [18]. In Subsection 4.2, we summarize the technical conditions and
the main universality results from [18] to make the presentation reasonably self-
contained. Subsections 4.3–4.5 prepare for the proof of Theorem 1.3 by verifying
the technical conditions from [18]. Subsection 4.6 contains the core of the proof
of Theorem 1.3, and Subsection 4.7 describes the necessary modifications for Re-
mark 1.1. Some auxiliary results from the literature are collected in Subsection 4.8.

4.2. General framework. A major step in [18] is to prove the universality
of the limiting singular value and eigenvalue distributions, i.e. to show that these
distributions (if existent) do not depend on the distributions of the matrix entries,
apart from a few moment conditions as in (1.2)–(1.4). To state this more precisely,
we need two sets of random matrices.

To this end, it seems convenient to regard Fn in (1.8) as a matrix function
(by slight abuse of notation) and to write

Fn(Z
(1)
n , . . . ,Z(ml)

n ) :=
m∑
q=1

l∏
r=1

(Z((q−1)l+r)
n )εr ,(4.1)

where m, l ∈ N and ε1, . . . , εl ∈ {−1,+1} are the same as in (1.8), and Z
(q)
n =

(Z
(q)
jk )j,k=1,...,n is a matrix in the indeterminates Z(q)

jk , q = 1, . . . ,ml. Then, we

may write Fn(X) := Fn(X
(1)
n , . . . ,X

(ml)
n ) for the random matrices built from the

random matrices X(q)
n :=

(
1√
n
X

(q)
jk

)
j,k=1,...,n

, and Fn(Y) :=Fn(Y
(1)
n , . . . ,Y

(ml)
n )

for the corresponding random matrices built from the Gaussian random matrices
Y

(q)
n :=

(
1√
n
Y

(q)
jk

)
j,k=1,...,n

. We always assume that the families (X(q)
jk )j,k,q∈N and

(Y
(q)
jk )j,k,q∈N are defined on the same probability space and independent. When the

choice of the matrices X(1)
n , . . . ,X

(ml)
n is clear from the context, we also write Fn

instead of Fn(X).

REMARK 4.1. More generally, using the arguments from this section, we
might deal with matrix functions of the form

Fn(Z
(1)
n ,Z

(n)
2 ,Z

(n)
3 , . . .) :=

m∑
q=1

lq∏
r=1

(Z
(iq,r)
n )εq,r ,

wherem, l1, . . . , lm ∈ N, εq,r ∈ {+1,−1}, the indices iq,r ∈ N are pairwise diffe-
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rent, and all parameters do not depend on n. That is to say, the numbers and the
types of the factors in the m summands need not be the same.

In our investigation of the limiting spectral distributions of the matrices Fn,
we will also consider the shifted matrices Fn − αIn, with α ∈ C, the regularized
matrices Fn,t, with t > 0, and their combinations Fn,t−αIn. Here, the regularized
matrices Fn,t arise from the regularized matrix functions

Fn,t(Z
(1)
n , . . . ,Z(ml)

n ) :=
m∑
q=1

l∏
r=1

(Z((q−1)l+r)
n )εrt ,(4.2)

where (Zn)
ε
t := Zn for ε = +1 and (Zn)

ε
t := (Z∗nZn + tIn)

−1Z∗n for ε = −1.
Note that, by definition, the regularization has no effect when ε = +1 and that
limt↓0(Zn)

−1
t = (Zn)

−1 when Zn is invertible.
Furthermore, fix a sequence (τn)n∈N of positive real numbers such that τn→0

and τn
√
n→∞, and for 0 ¬ φ ¬ π/2, set

Z
(q)
jk (φ) :=(cosφ)X

(q)
jk 111{|X(q)

jk |¬τn
√
n}+(sinφ)Y

(q)
jk 111{|Y (q)

jk |¬τn
√
n} (j, k, q∈N),

Z
(q)
n (φ) :=

(
1√
n
Z

(q)
jk (φ)

)
j,k=1,...,n

(q ∈ N), Fn(φ) :=Fn

(
Z
(1)
n (φ), . . . ,Z

(ml)
n (φ)

)
.

Note that the matrices Z(q)
n (φ) provide an interpolation between truncated versions

of the matrices X(q)
n (for φ = 0) and Y

(q)
n (for φ = π/2).

With this notation, we have to check the following Conditions A, B and C.

CONDITION A. For Fn = Fn(X) and Fn = Fn(Y), the matrices Fn satisfy
the following condition:

For each α∈C and z∈C+, we have limt→0 lim supn→∞ |sn,t(z)− sn(z)|=0
in probability, where sn(z) and sn,t(z) are the Stieltjes transforms of the Hermitian
matrices (Fn − αIn)(Fn − αIn)∗ and (Fn,t − αIn)(Fn,t − αIn)∗, respectively.

CONDITION B. For each t > 0, α ∈ C, z ∈ C+, we have

sup
φ∈[0;π/2]

sup
q,j,k

max
D

∥∥E{Dg(q)j,k (φ)
∣∣X(q)

jk , Y
(q)
jk

}∥∥
∞ ¬ A <∞,

where the maximum is over all partial derivatives D of orders zero, one and two in
the matrix entries ReZ(q)

jk and ImZ
(q)
jk , g(q)j,k (φ) may be either

g
(q)
j,k (φ) =

(
∂

∂ Re Z
(q)
jk

trace
(
Vn,t(α;φ)− zI2n

)−1)∣∣∣
Z

(q)
jk →θZ

(q)
jk

or

g
(q)
j,k (φ) =

(
∂

∂ Im Z
(q)
jk

trace
(
Vn,t(α;φ)− zI2n

)−1)∣∣∣
Z

(q)
jk →θZ

(q)
jk

,
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the Vn,t(α;φ) are the Hermitizations of the matrices Fn(φ), but with Fn replaced
by Fn,t − αIn, and θ (the rescaling parameter in the substitution Z(q)

j,k → θZ
(q)
j,k )

is a random variable which is uniformly distributed on [0, 1] and independent of
everything else.

CONDITION C. For Fn = Fn(X) and Fn = Fn(Y), the matrices Fn satisfy
the following conditions:

(C0) There exists some p > 0 such that 1
n

∑n
k=1 s

p
k(Fn) is bounded in proba-

bility as n→∞.
(C1) For any fixed α ∈ C, there exists some Q > 0 such that

lim
n→∞

P
(
sn(Fn − αIn) ¬ n−Q

)
= 0.

(C2) For any fixed α ∈ C, there exists some 0 < γ < 1 such that for any
sequence (δn)n∈N with δn → 0,

lim
n→∞

P
(
1
n

∑
n1¬j¬n2

| log sj(Fn − αIn)| > ε
)
= 0 for all ε > 0,

where n1 = [n− nδn] + 1 and n2 = [n− nγ ].

REMARK 4.2 (Condition Csimple). It will be convenient to consider Condi-
tion C for more general random matrices Fn (with Fn of dimension n × n) than
in (1.8). If a sequence of random matrices Fn satisfies Conditions (C0), (C1) and
(C2), we say that the matrices Fn satisfy Condition C. Also, if a sequence of ran-
dom matrices Fn satisfies Condition (C0) as well as Conditions (C1) and (C2) with
α = 0, we say that the matrices Fn satisfy Condition Csimple.

The following universality result is implicitly contained in [18]:

THEOREM 4.1 (Universality of singular value and eigenvalue distributions).
Let Fn(X), Fn(Y) be defined as above, and let νn(X), νn(Y) and µn(X), µn(Y)
denote the associated singular value and eigenvalue distributions, respectively.

(a) If Conditions A and B hold, νn(X)− νn(Y)→ 0 weakly in probability.
(b) If Conditions A, B and C hold, µn(X)−µn(Y)→0 weakly in probability.

P r o o f. (a) Set α := 0. For Z = X and Z = Y, let mn(z;Z) and sn(z;Z)
denote the Stieltjes transforms of the Hermitian matrices

Vn(Z) :=

[
O Fn(Z)

F∗n(Z) O

]
and Wn(Z) := Fn(Z)F

∗
n(Z),

and let mn,t(z;Z) and sn,t(z;Z) denote the corresponding Stieltjes transforms
when Fn(Z) is replaced with Fn,t(Z). Fix t > 0. By Condition B and Theorem 3.2
in [18], we have, for each z ∈ C+, mn,t(z;X) −mn,t(z;Y)→ 0 in probability,
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and therefore sn,t(z;X)− sn,t(z;Y)→ 0 in probability. (Note that the Lindeberg
condition in [18] holds by our assumption (1.4), while the rank condition in [18]
follows from basic inequalities for the rank of matrix sums and matrix products.) It
therefore follows from Condition A that, for each z ∈ C+, sn(z;X)−sn(z;Y)→0
in probability, which implies the claim.

(b) By the same argument as in (a), the conclusion of (a) holds not only for
the singular value distributions of the matrices Fn, but also for the singular value
distributions of the shifted matrices Fn −αIn for any fixed α ∈ C. Thus, the claim
follows from Condition C and Remark 4.2 in [18]. �

REMARK 4.3. As follows from the proof, if one is only interested in the lim-
iting singular value distributions of the matrices Fn, it suffices to assume that
Conditions A and B hold with α = 0.

We will use Theorem 4.1 to establish Theorem 1.3. This requires verifying
Conditions A, B and C, of course. For this purpose, we provide some auxiliary
results in the next three subsections.

4.3. On Condition A. Let Fn = Fn(X) be defined as in (1.8). To obtain a
matrix function which is smooth in the matrix entries (as needed for Condition B),
we replace all inverses (X

(q)
n )−1 with regularized inverses (X

(q)
n )−1t . We do this

in a step-by-step fashion. Hence, fix t > 0, fix an index Q such that εQ = −1,
and for all the other indices q with εq = −1, fix a choice between (X

(q)
n )−1 and

(X
(q)
n )−1t . Then it suffices to consider random matrices of the form

Fn = An(Xn)
−1Bn +Cn,(4.3)

where Xn ≡ X
(Q)
n (we omit the index Q for simplicity) and An, Bn and Cn

depend only on the matrices X(q)
n with q ̸= Q.

Fix α ∈ C, and for 0 ¬ u ¬ t, let

(4.4) Fn,u := An(Xn)
−1
u Bn +Cn := An(X

∗
nXn + u)−1X∗nBn +Cn

and

sn,u(z) :=
1
n trace

(
(Fn,u − αIn)(Fn,u − αIn)∗ − zIn

)−1
.(4.5)

Note that Fn,0 coincides with Fn if Xn is invertible. Then, by way of induction, it
will suffice to prove the following lemma:

LEMMA 4.1. For each n∈N, let Xn=
(

1√
n
Xjk

)
j,k=1,...,n

be as in (1.1)–(1.4).
Furthermore, for each n ∈ N, let An, Bn and Cn be random matrices of dimen-
sion n × n such that the singular value distributions of the random matrices Bn

and Cn converge weakly in probability to (non-random) probability measures on
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(0,∞) and [0,∞), respectively, and let Fn,u and sn,u(z) be defined as in (4.4)
and (4.5). Then, for any z = u+ iv ∈ C+, we have

lim
t→0

lim sup
n→∞

|sn,t(z)− sn,0(z)| = 0 in probability.(4.6)

REMARK 4.4. Let us emphasize that although the matrices An, Bn, Cn and
Xn in the decomposition (4.3) are independent, this is not required in Lemma 4.1.

REMARK 4.5. Lemma 8.16 in [18] contains a similar result for the case
Cn = 0, although under additional assumptions and with a proof which does not
seem to extend to the case Cn ̸= 0. The main difference in the proof of Lemma 4.1
(as compared to that of Lemma 8.16 in [18]) is that we control the auxiliary modifi-
cations of the matrices Bn and Cn via the matrix rank, and not via the resolvent.

REMARK 4.6. Let us illustrate the way Lemma 4.1 will be used later. Consider
an l-fold product Fn(X) = (X

(1)
n )ε1 . . . (X

(l)
n )εl , where ε1, . . . , εl ∈ {−1,+1},

and suppose by way of induction that we have weak convergence for any matrix
product with less than l factors, possibly regularized. Then, setting Fn,t1,...,tl :=

(X
(1)
n )ε1t1 . . . (X

(l)
n )εltl and

sn(t1, . . . , tl; z) :=
1
n trace

(
(Fn,t1,...,tl − αIn)(Fn,t1,...,tl − αIn)

∗ − zIn
)−1

and writing tk := (t, . . . , t, 0, . . . , 0) for the vector consisting of k t’s and l − k
0’s, we have the estimate

|sn,t(z)− sn,0(z)| ¬
l∑

k=1

|sn(tk; z)− sn(tk−1; z)|.(4.7)

Now, for each k = 1, . . . , l, the kth summand on the right-hand side in (4.7) satis-
fies (4.6), either trivially (when εk = +1) or by Lemma 4.1 (when εk = −1). Thus,
the left-hand side in (4.7) satisfies (4.6) as well, and Condition A is proved for
the l-fold product Fn(X).

P r o o f o f L e m m a 4.1. For the sake of simplicity, we consider only the
case α = 0 here, the extension to the case α ̸= 0 being straightforward. We have
to show that for any given ε > 0 and δ > 0,

lim sup
t→0

lim sup
n→∞

P
(
|sn,t(z)− sn,0(z)| > ε

)
< δ.(4.8)

Hence, fix ε > 0 and δ > 0. As in the proof of Lemma 8.16 in [18], we introduce
auxiliary modifications of the matrices Bn and Cn before we regularize the inverse
matrices X−1n .

For an n× nmatrix M, let s1(M)  . . .  sn(M) denote the singular values.
Since the singular value distributions of Bn and Cn converge weakly in probability
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to (non-random) probability measures on (0,∞) and [0,∞), respectively, we may
find K > 1 and N ∈ N such that for n  N , we have

P
(
1

n

n∑
k=1

111{sk(Bn)<K−1 or sk(Bn)>K} >
εv

24
or

1

n

n∑
k=1

111{sk(Cn)>K} >
εv

24

)
<
δ

2
.

Then, the modifications B̃n and C̃n are defined as follows. For the matrix Cn,
take the singular value decomposition Cn = U∆V∗, let ∆̃ be the diagonal matrix
obtained from ∆ by replacing the diagonal elements ∆kk with ∆̃kk := ∆kk ∧K,
and set C̃n := U∆̃V∗. For the matrix Bn, take the singular value decomposition
Bn = U∆V∗, let ∆̃ be the diagonal matrix obtained from ∆ by replacing the
diagonal elements ∆kk with ∆̃kk := (∆kk ∧K) ∨K−1, and set B̃n := U∆̃V∗.
Then we have

∥B̃n∥ ¬ K, ∥B̃−1n ∥ ¬ K, ∥C̃n∥ ¬ K,(4.9)

and for n  N , with a probability of at least 1− δ/2, we also have

1
n rank(Bn − B̃n) ¬ εv/24, 1

n rank(Cn − C̃n) ¬ εv/24.(4.10)

Furthermore, let F̃n,u and s̃n,u(z) be defined as in (4.4) and (4.5), but with Bn

and Cn replaced by B̃n and C̃n. It then follows from (4.10) that for n  N , with
a probability of at least 1− δ/2, we have

1
n rank(Fn,uF

∗
n,u − F̃n,uF̃

∗
n,u) ¬ εv/6,

and therefore, by the rank inequality (compare e.g. [5], Lemma 6.9),

|sn,u(z)− s̃n,u(z)| ¬ ε/3.

Thus, we have reduced the proof of (4.8) to showing that

lim
t→0

lim sup
n→∞

|s̃n,t(z)− s̃n,0(z)| = 0 in probability.(4.11)

Since we only deal with the modified matrices for the rest of the proof, we omit
the tildes and write Bn,Cn,Fn,u and sn,u(z) instead of B̃n, C̃n, F̃n,u and s̃n,u(z),
respectively. Moreover, for brevity, we usually omit the index n.

To establish (4.11), we may proceed as in the proof of Lemma 8.16 in [18].
Setting Ru := (FuF

∗
u − zI)−1, 0 ¬ u ¬ t, we have the estimates

(4.12)
∥Ru∥ ¬ v−1, ∥F∗uRuFu∥ ¬ 1 + |z|v−1,

∥RuFu∥¬
(
v−1(1 + |z|v−1)

)1/2
, ∥F∗uRu∥¬

(
v−1(1 + |z|v−1)

)1/2
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as well as the representation

Rt −R0 =
t∫
0

dRu

du
du = −

t∫
0

Ru
d(FuF

∗
u)

du
Ru du.(4.13)

Thus, it is straightforward to check that∣∣ 1
n trace(Rt −R0)

∣∣ ¬ t∫
0

∣∣ 1
n trace

(
RuFuB

−1(XX∗+uI)−1BF∗uRu

)∣∣du
+

t∫
0

∣∣ 1
n trace

(
RuCB−1(XX∗+uI)−1BF∗uRu

)∣∣du
+

t∫
0

∣∣ 1
n trace

(
RuFuB

∗(XX∗+uI)−1(B∗)−1F∗uRu

)∣∣du
+

t∫
0

∣∣ 1
n trace

(
RuFuB

∗(XX∗+uI)−1(B∗)−1C∗Ru

)∣∣du.
Using the inequality |trace(M1M2M3)| ¬ ∥M1∥∥M3∥ trace(M2) (which holds
for any n× n matrices M1, M2, M3 such that M2 is positive definite) as well as
(4.9) and (4.12), we therefore obtain

(4.14)
∣∣ 1
n trace(Rt −R0)

∣∣ ¬ C(K, z) t∫
0

1
n trace(XX∗ + uI)−1 du,

where C(K, z) is some constant depending only on K and z. Thus, it remains
to show that

(4.15) lim
t→0

lim sup
n→∞

t∫
0

1
n trace(XnX

∗
n + uIn)

−1 du = 0 in probability.

But this follows from the fact that the random matrices Xn satisfy Condition C;
see the proof of Lemma 8.14 in [18] for details. �

4.4. On Condition B. Here we have the following result:

LEMMA 4.2. With Fn defined as in equation (1.8), Condition B holds.

The proof follows from similar estimates to those in Section 8.1 in [18]. Since
the required modifications are relatively straightforward, we omit the details.

4.5. On Condition C. Here we provide a number of lemmas which will be
helpful in verifying Conditions C and Csimple. Recall that Condition Csimple was
introduced in Remark 4.2.

LEMMA 4.3. For each n ∈ N, let Fn and Gn be random matrices of dimen-
sion n × n. If the matrices Fn and Gn satisfy Condition Csimple, then the ma-
trix products FnGn also satisfy Condition Csimple.
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Since this result follows from similar arguments to those in the proof of The-
orem 8.22 in [18] or to those for Lemma 4.6 below, we omit the proof.

LEMMA 4.4. For each n ∈ N, let Xn =
(

1√
n
Xjk

)
j,k=1,...,n

be as in the as-

sumptions (1.1)–(1.4). Then the matrices Xn and X−1n satisfy Condition C.

For the matrices Xn, Condition C is checked in [20] (in fact, it follows from
the relation E∥X∥22 = n and from Lemmas 4.9 and 4.10), and for the matrices
X−1n , Condition C follows from the arguments given in the proof of Theorem 8.22
in [18]. We therefore omit the details.

REMARK 4.7. A careful analysis of the proof of Theorem 8.22 in [18] shows
that if the matrices Gn satisfy Condition Csimple, then the inverse matrices G−1n

satisfy Conditions (C1) and (C2) with α = 0.

LEMMA 4.5. Let Fn = (X
(i1)
n )ε1 . . . (X

(il)
n )εl , where l ∈ N, i1, . . . , il ∈ N

(not necessarily different), and ε1, . . . , εl ∈ {−1,+1} are fixed. Then Fn satisfies
Condition Csimple.

P r o o f. By Lemma 4.4, the claim is true (even with the stronger Condition C)
for l = 1. By Lemma 4.3 and induction, the claim remains true for l > 1. �

LEMMA 4.6. For each n ∈ N, let Xn =
(

1√
n
Xjk

)
j,k=1,...,n

be as in the as-
sumptions (1.1)–(1.4). Furthermore, for each n ∈ N, let An, Bn and Cn be ran-
dom matrices of dimension n× n such that An,Bn,Cn and Xn are independent.

(a) If the matrices An and Bn satisfy Condition Csimple and the matrices Cn

satisfy Condition (C0), then the matrices AnXnBn +Cn satisfy Condition C.
(b) If the matrices An and Bn satisfy Condition Csimple and the matrices Cn

satisfy Condition C or Cn = 0 for all n ∈ N, then the matrices AnX
−1
n Bn +Cn

satisfy Condition C.

P r o o f. To shorten the notation, we omit the index n throughout this proof.
First of all, let us note that if a sequence of random matrices Gn (with Gn of
dimension n× n) satisfies Condition (C0), there exists some LG > 0 such that

lim
n→∞

P(∥Gn∥  nLG) = 0.(4.16)

In fact, if p > 0 is such that 1
n

∑n
k=1 s

p
k(Gn) is bounded in probability as n→∞

and ε > 0 is arbitrary, it follows that

lim sup
n→∞

P
(
s1(Gn)  n(1+ε)/p

)
¬ lim sup

n→∞
P
(
1
n

n∑
k=1

spk(Gn)  nε
)
= 0,

so that the assertion holds for any LG > 1/p.
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(a) Condition (C0) follows from Lemmas 4.8 and 4.7, Hölder’s inequality,
and the fact that the matrices A, B, C and X satisfy Condition (C0). To prove
Conditions (C1) and (C2), we use the factorization

AXB+C− αI = A
(
X+A−1(C− αI)B−1

)
B.

Then it remains to check that for each of the three factors Mn on the right-hand
side, we have, for some Q > 0,

P
(
sn(Mn) ¬ n−Q

)
= o(1) and 1

n

∑
n1¬n¬n2

log− sj(Mn) = oP (1).

For A and B, this is true by assumption. For X+A−1(C− αI)B−1, this follows
from Lemmas 4.9 and 4.10. More precisely, if the matrices A and B satisfy Con-
dition (C1) with α = 0 and Q > 0, and the matrices C satisfy (4.16) with LC > 0,
we have P

(
s1
(
A−1(C − αI)B−1

)
> 2n2Q+LC

)
→ 0 by Lemma 4.7. Thus, we

may use Lemmas 4.9 and 4.10 conditionally on A,B,C, and on the set of prob-
ability 1 + o(1) where s1

(
A−1(C− αI)B−1

)
¬ 2n2Q+LC .

(b) We consider only the case that the matrices C satisfy Condition C, leaving
the simpler case C = 0 to the reader. By reasoning as above, we see that Condition
(C0) follows from Lemmas 4.8 and 4.7, Hölder’s inequality, and the fact that the
matrices A, B, C and X−1 satisfy Condition (C0). To prove Conditions (C1) and
(C2), we use the factorization

AX−1B+C− αI = AX−1
(
B(C− αI)−1A+X

)
A−1(C− αI).

Then it remains to check that for each of the five factors Mn on the right-hand
side, we have, for some Q > 0,

P
(
sn(Mn) ¬ n−Q

)
= o(1) and 1

n

∑
n1¬n¬n2

log− sj(Mn) = oP (1).

But this is true (i) by assumption, (ii) by Lemma 4.4, (iii) by Lemmas 4.9 and 4.10
(applied conditionally on A, B, C), (iv) by Remark 4.7, and (v) again by assump-
tion. �

4.6. Proof of Theorem 1.3. After the preparations above, we may turn to the
proof of Theorem 1.3. Given a sequence of random matrices (Gn)n∈N, we write
ν(Gn) for the singular value distributions, µ(GnG

∗
n) for the squared singular

value distributions, Sν(Gn) for the symmetrized singular value distributions, and
νG, µGG∗ and SνG for the corresponding weak limits in probability (if existent).
Furthermore, for t > 0, let γ+1

t := γ+1 := γ, and let γ−1t be the induced measure
of γ under the mapping x 7→ (x + t)−1x(x + t)−1. These notions are motivated
by our regularization procedure in equation (4.2).
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Let us start with the singular value distributions. We will first use induction
on l to prove the claim for the case m = 1 and then use induction on m to prove
the claim for the case m > 1. More precisely, we will show the following:

The matrices Fn(X) from (1.8) satisfy Conditions A and B, and for any
t > 0, the singular value distributions of the matrices Fn,t(X) converge
weakly in probability to the probability measure νt on (0,∞) with sym-
metrization Sνt =

(
Q−1(γε1t � . . .� γεlt )

)�m.

(4.17)

Indeed, by Condition A, we may then let t→ 0 get the limiting singular value
distribution of the matrices Fn(X). Note that Condition B has already been estab-
lished in Lemma 4.2, so that it remains to check Condition A as well as the claim
about the limiting distribution.

Products of independent random matrices. For Fn(X) = Xn, Condition A
holds trivially, and for Fn(X) = X−1n , Condition A holds by Lemma 4.1. Further-
more, the Marchenko–Pastur theorem implies that, for any t > 0 and ε ∈ {−1,+1},
we have µ

(
Xε

n,t(X
ε
n,t)
∗)→ γεt . Thus, (4.17) is true for l = 1.

Now let l > 1, let Fn be an l-fold product of independent random matri-
ces, and suppose that (4.17) holds for any product Gn with less than l factors.
It then follows from Lemma 4.1 that the matrices Fn(X) satisfy Condition A;
see Remark 4.6 for details. Now consider the particular decomposition Fn(X) =
Xε

nGn(X), where ε = +1 or ε = −1 and Xn and Gn(X) are independent. Then,
for any t > 0, the matrices Yε

n,t and Gn,t(Y) are independent bi-unitary invariant
matrices with

µ
(
Yε

n,t(Y
ε
n,t)
∗)→ γεt and µ

(
Gn,t(Y)G∗n,t(Y)

)
→ µG(t)G(t)∗ ,

by the inductive hypothesis in the latter case. Therefore, by asymptotic freeness
(see Proposition 2.1 (a)),

µ
(
Fn,t(Y)F∗n,t(Y)

)
→ γεt � µG(t)G(t)∗ .

Thus, by Theorem 4.1 (a), (4.17) holds for the matrices Fn(X) as well.
Hence, by induction on l, we come to the conclusion that (4.17) holds for any

product of independent matrices (i.e. for the case m = 1).
Sums of products of independent random matrices. We have just proved (4.17)

for m = 1. Now let m > 1, let Fn be an m-fold sum of products of independent
random matrices, and suppose that (4.17) holds for any such sum Cn with less
than m summands. It then follows by Lemma 4.1 and a similar argument to that in
Remark 4.6 that the matrices Fn(X) satisfy Condition A. Now consider the par-
ticular decomposition Fn(X) = Gn(X) + Cn(X), where Gn(X) is a product,
Cn(X) is an (m − 1)-fold sum of products, and Gn(X) and Cn(X) are inde-
pendent. Then, for any t > 0, the matrices Gn,t(Y) and Cn,t(Y) are independent
bi-unitary invariant matrices with

Sν
(
Gn,t(Y)

)
→ SνG(t) and Sν

(
Cn,t(Y)

)
→ SνC(t)
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by the result for the case m = 1 and the inductive hypothesis, respectively. There-
fore, by asymptotic freeness (see Proposition 2.1 (c)),

Sν
(
Fn,t(Y)

)
→ SνC(t) � SνG(t).

Thus, by Theorem 4.1 (a), (4.17) holds for the matrices Fn(X) as well.
Hence, by induction on m, we come to the conclusion that (4.17) holds for

any sum of products of independent matrices (i.e. for the case m > 1).
Let us now consider the eigenvalue distributions. To begin with, by Lemma 4.6,

we may check by induction onm that the matrices Fn(X) satisfy Condition C, too.
Therefore, we may use Theorem 4.1 (b), and it remains to determine the limiting
eigenvalue distributions in the Gaussian case, i.e. for the matrices Fn(Y). Here,
it follows by asymptotic freeness (see Proposition 2.1 (d)) that Sν

(
Fn,t(Y)−αIn

)
→ Sνt,α := (Sνt)�B(α), withB(α) as in Theorem 2.1. Letting t→ 0 and using
Condition A, it further follows that Sν

(
Fn(Y)− αIn

)
→ Sνα := (Sν)�B(α),

where ν is the probability measure described in the theorem. Now apply Theo-
rem 2.1. �

4.7. Proof of Remark 1.1. A slight variation of the preceding arguments shows
that Conditions A, B and C continue to hold for random matrices Fn of the form
(1.10), provided that the extra condition (1.11) holds:

C o n d i t i o n A. Here we can regularize the matrices (X−1n )l by means of(
(Xn)

−1
t

)l (i.e. each factor in the power is regularized individually) and invoke
Lemma 4.1. For this, it is important that the matrices An, Bn and Cn in Lemma 4.1
need not be independent of Xn; see Remark 4.4.

C o n d i t i o n B. Here we may extend Lemma 4.2 to products of powers of
independent Girko–Ginibre matrices, using similar arguments to those in Sections
8.1.3 and 8.1.4 in [18].

C o n d i t i o n C. Under the extra condition (1.11), it follows from Lemma 4.6
(applied with X = X(r)) and by induction on m that the matrices Fn satisfy Con-
dition C. (Unfortunately, without the extra condition (1.11), Lemma 4.6 does not
allow us to draw this conclusion in general, even though we would expect that
Condition C continues to hold in this case.)

Now, the proof of Remark 1.1 is quite similar to that of Theorem 1.3, which is
why we omit the details. �

4.8. Auxiliary results. In this subsection we collect several auxiliary results
from the literature which we have used to verify Condition C. Let A and B be
n× n matrices, and recall that s1(M)  . . .  sn(M) denote the singular values
of the n× n matrix M.

LEMMA 4.7 ([24], Theorem 3.3.14). For all p > 0 and all k = 1, . . . , n, we
have

∑k
j=1

(
sj(AB)

)p ¬∑k
j=1

(
sj(A)sj(B)

)p
.
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LEMMA 4.8 ([24], Theorem 3.3.16). For all p>0, we have
∑n

j=1 s
p
j (A+B)

¬ Cp

(∑n
j=1 s

p
j (A) +

∑n
j=1 s

p
j (B)

)
, whereCp is a constant depending only on p.

Since sj(M−1) = s−1n−j+1(M), j = 1, . . . , n, it is clear that similar results
hold for the smallest singular values.

LEMMA 4.9 ([20], Section 5). Suppose that the conditions (1.1)–(1.4) hold.
Then, for any fixed K > 0 and L > 0, there exist positive constants A and B such
that for any non-random matrices Mn with ∥Mn∥2 ¬ KnL, we have

P
(
sn(Xn −Mn) ¬ n−A

)
¬ n−B.

LEMMA 4.10 ([20], Section 5). Suppose that the conditions (1.1)–(1.4) hold.
Then, for any fixed K > 0 and L > 0, there exists a constant 0 < γ < 1 such
that for any non-random matrices Mn with ∥Mn∥2 ¬ KnL and for any sequence
δn → 0, we have

lim
n→∞

1
n

∑
n1¬j¬n2

log− sj(Xn −Mn) = 0 almost surely,

where n1 = [n− nδn] + 1 and n2 = [n− nγ ].
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