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Abstract. In the first n steps of a two-state (success and failure)
Markov chain, the longest success run L(n) has been attracting consider-
able attention due to its various applications. In this paper, we study L(n) in
terms of its two closely connected properties: moment generating function
and large deviations. This study generalizes several existing results in the
literature, and also finds an application in statistical inference. Our method
on the moment generating function is based on a global estimate of the cu-
mulative distribution function of L(n) proposed in this paper, and the proofs
of the large deviations include the Gärtner–Ellis theorem and the moment
generating function.

2010 AMS Mathematics Subject Classification: Primary: 60F10,
44A1; Secondary: 60J10, 60G70.

Key words and phrases: Longest run, moment generating function,
large deviation principle, Markov chain.

1. INTRODUCTION

Let {Xk}k1 be a time-homogeneous two-state (success and failure) Markov
chain. We assume that the initial distribution is P(X1 = 0) = p0 and P(X1 = 1) =
p1 = 1− p0, with ‘1’ and ‘0’ denoting the ‘success’ and ‘failure’, respectively. The
transition matrix of {Xk}k1 is written as

T =

[
p00 p01
p10 p11

]
.

To avoid triviality, it is assumed throughout the paper that 0 < p0 < 1 and 0 <
pij < 1 for i, j = 0, 1, which indicates that the Markov chain is ergodic. In the
first n steps of the Markov chain, the longest success run L(n), namely the longest
stretch of consecutive successes, has been attracting considerable attention due to
its applications in various fields, such as reliability and statistics (cf. [1]). We refer
to [4] and [5] for the first few seminal works in the 1970s, and [8]–[11] for the
latest progress.
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Among various studies on the longest success run L(n), the probability esti-
mating of L(n) for large n (such as large deviations) is an important topic. Part of
the reason is that the exact distribution of L(n) (cf. [7]) is intricate despite known
explicit formulas, which gives no information as n approaches infinity. Even in
the identically independent case (that is, {Xk}k1 are independent and identically
distributed), there is much complexity of the exact distribution of L(n) which can
be seen (for instance cf. [8]) as follows:

P(L(n) < k) =

[n+1
k+1

]∑
r=0

(−1)rprk1 pr−10

[(
n− rk
r − 1

)
+ p0

(
n− rk

r

)]
,

where [·] denotes the integer part of a constant. One topic of this paper is to study
the large deviations of L(n) in a Markov chain {Xk}k1 defined above. To appro-
priately propose such deviations, recall a law of large numbers (cf. e.g. [14]):

L(n)

log1/p11 n
→ 1 in probability as n→∞.

Such a limit in independent trails is a well-known result (cf. [4], [5], [12]). This sug-
gests to study the large deviation probabilities in the form P

(
L(n)/log1/p11 n∈A

)
,

where the set A does not include the most probable point 1. Our first result is for-
mulated as follows.

THEOREM 1.1. For each x > 0, we have

lim
n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
 1 + x

)
= −x · ln(1/p11).(1.1)

For each 0 < x < 1, we have

lim
n→∞

1

log1/p11 n
ln

[
− lnP

(
L(n)

log1/p11 n
¬ 1− x

)]
= x · ln(1/p11).(1.2)

Theorem 1.1 tells that the probability P
(
L(n)/ log1/p11 n  1 + x

)
decays

in a power rate, while the probability P
(
L(n)/ log1/p11 n ¬ 1 − x

)
decays expo-

nentially fast. If {Xk}k1 is a sequence of identically independent trails, namely
p00 = p10 = p0 and p01 = p11 = p1, then the limits (1.1) and (1.2) trivially hold
because of a well global estimate (cf. [7] and [9]): for k = 1, . . . , n,

(1− pk1)
n−k+1 ¬ P

(
L(n) < k

)
¬ (1− p0p

k
1)

n−k+1.(1.3)

Due to the lack of satisfactory estimates as above (namely (1.3)) for general Markov
chains {Xk}k1, the proof of Theorem 1.1 will be based on a less precise global
estimate proposed below (see Lemma 2.1) in this paper. Here we note that essen-
tially the same large deviation probability as (1.1) was claimed to be proved in [14]
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in the form: for all x > 0,

lim
n→∞

1

log1/p11 n
lnP

(
L(n)− ⌊log1/p11 n⌋  x · log1/p11 n

)
= −x · ln(1/p11).

(1.4)

Unfortunately, the proof of (1.4) therein contains a mistake stemming from the
employed (Stein–Chen) method, which seems to be impossible to be corrected in
principle. Section 4 includes detailed explanations on this aspect.

A natural generalization of the limit (1.1) (not (1.2)) is a large deviation prin-
ciple for the family of random variables L(n)/ log1/p11 n. For identically indepen-
dent trails {Xk}k1, large deviation principles were recently derived in [9] based
on (1.3). There are also related discussions on the large deviations of L(n) in [7]
and [11]. The second result of this paper is to establish a large deviation principle
for L(n), which includes (1.1) (or (1.4)) as a special case. To this end, we define a
function Λ∗(x) as

(1.5) Λ∗(x) =

{
+∞, x < 1,

(x− 1) ln(1/p11), x  1.

THEOREM 1.2. The normalized longest success run L(n)/ log1/p11 n satisfies
a large deviation principle with a good rate function Λ∗(x) given by (1.5) and a
speed log1/p11 n. Namely,

(i) for any open set O ⊆ R,

lim inf
n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
∈ O

)
 − inf

x∈O
Λ∗(x);(1.6)

(ii) for any closed set F ⊆ R,

lim sup
n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
∈ F

)
¬ − inf

x∈F
Λ∗(x).(1.7)

It is clear that the special case (1.1) (or (1.4)) comes from Theorem 1.2 with
an open set O = (1 + x,∞) and a closed set F = [1 + x,∞). The proof of Theo-
rem 1.2 is given in Section 3.2.

The large deviation principle in Theorem 1.2 is non-trivial since the rate func-
tion Λ∗(x) is not always zero or infinity. Now an interesting question arises: besides
the family of random variables L(n)/ log1/p11 n, are there other families which ad-
mit non-trivial large deviation principles? Note that large deviation principles have
very close connections with the corresponding Laplace transforms (or the moment
generating functions; see the Gärtner–Ellis theorem [3]), thus the above question
leads to the third result of this paper: precise logarithmic asymptotics for the mo-
ment generating function of L(n) as formulated in the following theorem, based on
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which there are (only) two families which admit non-trivial large deviation prin-
ciples: {L(n)/ log1/p11 n} and {L(n)/n}. Throughout the paper, a(n) ∼ b(n) as
n→∞ stands for limn→∞ a(n)/b(n) = 1.

THEOREM 1.3. The moment generating function of L(n) has the following
logarithmic asymptotics:

(i) for λ < ln(1/p11),

lnEeλL(n) ∼ λ log1/p11 n;

(ii) for λ = ln(1/p11),

lnEeλL(n) ∼ 2λ log1/p11 n;

(iii) for λ > ln(1/p11),

λ− ln(1/p11) ¬ lim inf
n→∞

1

n
lnEeλL(n) ¬ lim sup

n→∞

1

n
lnEeλL(n)

¬ max

{
λ− ln(1/p11), λ− ln

1

|p00 − p10|

}
,

and, in particular, if p10 ¬ p00 + p11, then

lnEeλL(n) ∼ λ− ln(1/p11).

Similar results for the identically independent case have been recently proved
in [9], where the condition p10 ¬ p00 + p11 is automatically fulfilled. Technically
speaking, the condition p10 ¬ p00 + p11 is due to an extra error term e(n) in
Lemma 2.2 below. In terms of the structure of the Markov chain, this condition
means that the transition probability p10 from the state ‘1’ to the state ‘0’ should
not exceed the probability that the chain stays still, which is p00 + p11. Although
we think that such a condition can be removed by using a more precise estimate
than the one in Lemma 2.2, the current method in this paper cannot get rid of this
condition.

Several new difficulties arise in the proof of Theorem 1.3 due to the lack of sat-
isfactory global estimates of the cumulative distribution function of L(n), and we
overcome them using suitable non-global estimates included in Section 2.2. To see
how Theorem 1.3 yields non-trivial large deviation principles, we first consider the
logarithmic moment generating function of L(n)/ log1/p11n (according to (i) and
(ii) of Theorem 1.3) defined as Λn(λ) = lnE exp{λ ·L(n)/ log1/p11 n} for λ ∈ R,
and the cumulant defined as Λ(λ) := limn→∞ Λn(λ · log1/p11 n)/ log1/p11 n. Then
the Gärtner–Ellis theorem (cf. [3], Section 2.3) suggests that there is a non-trivial
large deviation principle for the family L(n)/ log1/p11 n with a rate function Λ∗

defined via the Fenchel–Legendre transform of Λ: Λ∗(x) = supλ∈R[λ · x−Λ(λ)].
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This is verified in detail in Theorem 1.2. Now, according to (iii) of Theorem 1.3,
we can also consider the logarithmic moment generating function of L(n)/n as
Λ̃n(λ) = lnE exp {λ · L(n)/n} for any λ ∈ R, and obtain the cumulant, under
the condition p10 ¬ p00 + p11, in the form

Λ̃(λ) := lim
n→∞

1

n
Λ̃n(λ · n) =

{
λ− ln(1/p11), λ  ln(1/p11),

0, λ < ln(1/p11).

The Gärtner–Ellis theorem again suggests that there is a non-trivial large deviation
principle for the family L(n)/n with a rate function Λ̃∗(x) defined as the Fenchel–
Legendre transform of Λ̃(λ):

(1.8) Λ̃∗(x) =


+∞, x < 0,

x ln(1/p11), 0 ¬ x ¬ 1,

+∞, x > 1.

This large deviation principle for the family {L(n)/n} corresponds to the law of
large numbers L(n)/n→ 0 which is directly from L(n)/ log1/p11 n→ 1. We for-
mulate this observation as our last result in the following theorem.

THEOREM 1.4. If p10 ¬ p00 + p11, then the normalized longest success run
L(n)/n satisfies a large deviation principle with a good rate function Λ̃∗(x) given
by (1.8) and a speed n. Namely,

(i) for any open set O ⊆ R,

lim inf
n→∞

1

n
lnP

(
L(n)

n
∈ O

)
 − inf

x∈O
Λ̃∗(x);(1.9)

(ii) for any closed set F ⊆ R,

lim sup
n→∞

1

n
lnP

(
L(n)

n
∈ F

)
¬ − inf

x∈F
Λ̃∗(x).(1.10)

Here we draw the reader’s attention that the Gärtner–Ellis theorem will be
used to prove the aforementioned two large deviation principles. It should be noted
that there are other methods to achieve such large deviation principles, such as the
Bryc’s Inverse Varadhan Lemma (cf. Section 4.4 in [3]). In [10] the Bryc’s Inverse
Varadhan Lemma was used to obtain a large deviation principle for L(n) with a
general speed in the identically independent case.

The rest of the paper is organized as follows. Section 2 includes global and
non-global estimates of the cumulative distribution function of L(n) which will
be used throughout the paper. In the first part of Section 3, we give the proof of
the main result of the paper: the precise logarithmic asymptotics for the moment
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generating function (Theorem 1.3). Then we show that the two large deviation
principles (Theorems 1.2 and 1.4) follow from Theorem 1.3 and the Gärtner–Ellis
theorem, which is included in the second part of Section 3. The last part of Sec-
tion 3 contains a very concise proof of Theorem 1.1. The use of the Stein–Chen
method in estimating the large deviation probabilities of L(n) is briefly described
in Section 4, where a mistake of proving (1.4) in [14] is pointed out. Finally, an
application of the derived results to statistical inference is presented in Section 5.

2. ESTIMATES OF THE DISTRIBUTION FUNCTION

In this section, we first propose a global estimate for the cumulative distribu-
tion function of L(n) which will be used throughout the paper. Then we present
several special non-global estimates which have more explicit forms.

2.1. Global estimate.

LEMMA 2.1. For all k = 1, . . . , n, we have

1− pk−111 [c1 · (n− k) + c2]− c(n, k) ¬ P
(
L(n) < k

)
¬ (1− c3 · pk−111 )n−k+1,

(2.1)

where

c1 =
p01p10

p01 + p10
> 0, c2 =

p01(p0p01 − p1p10)

(p01 + p10)2
,

c3 = min

{
p1,

c1 + (p01 + p10) ·min{0, c2, c2(p00 − p10), c2(p00 − p10)
2}

1 + c1/p01 + |c2|(p01 + p10)/p01

}
(c3 > 0), and

c(n, k) =
c1p

k−1
11

1− p11
− c2(p01 + p10)

p01
(p00 − p10)

n−1

− c2(p01 + p10)

p11
· (p00 − p10)

n − pk−111 (p00 − p10)
n−k

p00 − p10 − p11
> 0.

P r o o f. We first note that the exact distribution of L(n) has been known (cf.
[7]), but it hardly helps to gain useful information on the asymptotics as n→∞.
The proof of Lemma 2.1 is based on a newly built Markov chain {ηk}1¬k¬n, where
ηk is defined as the length of success runs at the end of the k-th step, namely

{ηk = i} is equivalent to {Xk = 1, . . . , Xk−i+1 = 1, Xk−i = 0}.

In this setting, the longest success run L(n) = max1¬k¬n ηk. This enables us to
estimate P

(
L(n) < k

)
a little more explicitly, using the probabilities involving ηk.

This idea was introduced in [6], where the derived results are

P
(
L(n) < k

)
 1− p01p

k−1
11

n−1∑
i=k

b(i− k)− c(n, k)(2.2)

Probability and Mathematical Statistics 38, z. 2, 2018 
© for this edition by CNS



Longest runs in Markov chains 413

and

P
(
L(n) < k

)
¬ (1− p1p

k−1
11 )

n∏
i=k+1

1− p01p
k−1
11 b(i− k)

b(i− 1) + p01
k−1∑
j=1

pj−111 b(i− j − 1)


(2.3)

with

b(i) = p0(p00 − p10)
i−1 +

p10
(
1− (p00 − p10)

i−1)
1− p00 + p10

.

To achieve the upper bound in (2.1) from (2.3), we note that p1  c3, and

p01b(i− k)

b(i− 1) + p01
k−1∑
j=1

pj−111 b(i− j − 1)

 p01minj b(j)

maxj b(j) + 1
,

since p01
∑k−1

j=1 p
j−1
11 b(i− j − 1) = P(ηi = 0, 1, . . . , k − 1) ¬ 1. To estimate two

quantities minj b(j) and maxj b(j), we rewrite b(j) as

b(j) = α+ β · (p00 − p10)
j−1, where α =

p10
p01 + p10

and β =
p0p01 − p1p10
p01 + p10

.

It then follows that
max

j
b(j) ¬ α+ |β|,

and

min
j

b(j)  min{α, α+ β, α+ β(p00 − p10), α+ β(p00 − p10)
2}.

Therefore,
p01minj b(j)

maxj b(j) + 1
 c3,

which implies the upper bound in (2.1).
To obtain the lower bound in (2.1) from (2.2), we see that the sum in (2.2) is

n−1∑
i=k

b(i− k) = (n− k)α+ β · 1− (p00 − p10)
n−k

1− (p00 − p10)

¬ (n− k)α+ β · 1

p01 + p10
,

which gives the lower bound. To see the positivity of c(n, k), we note that

c(n, k) = P(ηn ∈ {k, k + 1, . . . , n}) > 0. �
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2.2. Non-global estimates. One might be interested in comparing the global
estimate (2.1) in Lemma 2.1 with the i.i.d. case (1.3). They actually look alike
under suitable conditions, which will be summarized as follows.

LEMMA 2.2. If n > k := k(n)  1 + log1/p11

(
n(c1/(1−p11)+|c2|)

2

)
, then we

have

(1− c5 · pk11)n−k+1 − e(n) ¬ P
(
L(n) < k

)
¬ (1− c4 · pk11)n−k+1(2.4)

for large n, where c4 and c5 are two (uniform) positive constants, and e(n) is a
term which converges to zero exponentially fast as n → ∞ (note that e(n) = 0
when p00 = p10).

P r o o f. In (2.4) the claimed upper bound P
(
L(n)<k

)
¬
(
1− c4 · pk11

)n−k+1

comes directly from the upper bound of (2.1) by setting c4 = c3/p11, uniformly
in k. To achieve the lower bound of (2.4), we first rewrite the lower bound of (2.1)
as follows:

P
(
L(n) < k

)
 1− pk−111 [c1 · (n− k) + c2]− c(n, k)

= 1− pk−111

[
c1 · (n− k) + c2 +

c1
1− p11

]
+

c2(p01 + p10)

p01
(p00 − p10)

n−1

+
c2(p01 + p10)

p11
· (p00 − p10)

n − pk−111 (p00 − p10)
n−k

p00 − p10 − p11

=: 1− pk−111

[
c1 · (n− k) + c2 +

c1
1− p11

]
+ e(n).

It is clear that the term e(n) converges to zero exponentially fast for all k, and
e(n) = 0 if p00 = p10. If we define c∗ = c1/(1− p11) + |c2|, then (with k < n)

1− pk−111

[
c1 · (n− k) + c2 +

c1
1− p11

]
 1− pk−111 · c∗ · (n− k).

In order to estimate 1− pk−111 · c∗ · (n− k), we set N = n− k + 1, a = pk−111 · c∗,
and obtain

(1− a)N ¬ 1− (N − 1)a(1− a)N−2
[

N

N − 1
(1− a)−Na/2

]
.

Since n > k(n)  1 + log1/p11

(
n(c1/(1−p11)+|c2|)

2

)
and n is large, a is small.

Therefore,

(1− a)N−2 = [(1− a)1/a]a(N−2)  [(1− a)1/a]c∗·p
c−1
11  (e/2)c∗·p

c−1
11
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with c = 1− log1/p11(2/c∗),

N

N − 1
(1− a)  1 + δ

for some small δ > 0, and
Na/2 ¬ 1.

In summary, we have

(1− a)N ¬ 1− (N − 1)a · δ(e/2)c∗·p
c−1
11 ,

which gives

(1− c∗ · pk−111 )n−k+1 ¬ 1− (n− k) · c∗ · pk−111 · δ(e/2)
c∗·pc−1

11 .

Replacing c∗ by c∗/δ(e/2)
c∗·pc−1

11 proves the lower bound of (2.4). �

In Lemma 2.2, if k is exactly the size α · log1/p11 n with α > 1, then we have
the following more explicit estimate.

LEMMA 2.3. If x > 0 and k(n) = [(1 + x) log1/p11 n], then

c6 · n−(1+x) (n− k) ¬ P
(
L(n) > k

)
¬ c7 · n−(1+x) (n− k)

for large n, where c6 and c7 are two (uniform) positive constants.

P r o o f. To see the lower bound, we infer from Lemma 2.2 that

P
(
L(n) > k

)
= 1− P

(
L(n) ¬ k

)
 1− (1− c4 · pk+1

11 )n−k

= 1− [(1− c4 · pk+1
11 )1/(c4·p

k+1
11 )]c4·p

k+1
11 (n−k)

= −[(1− c4 · pk+1
11 )1/(c4·p

k+1
11 )]θn · ln

(
(1− c4 · pk+1

11 )1/(c4·p
k+1
11 )

)
× c4 · pk+1

11 (n− k)

 const · pk11(n− k)  const · n−(1+x)(n− k),

where θn ∈ [0, c4 · pk+1
11 (n − k)]. The upper bound can be similarly handled by

noticing that

e(n) ∼ const · exp
{
−n · ln 1

|p00 − p10|

}
¬ const · n−(1+x) (n− k) . �

The next estimate is the case when k is of size α · log1/p11 n with α < 1.
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LEMMA 2.4. If 0 < x < 1 and k(n) = [(1− x) log1/p11 n], then

c8 · nx ¬ lnP
(
L(n) < k

)
¬ c9 · nx

for large n, where c8 and c9 are two (uniform) negative constants.

P r o o f. With k(n) = [(1− x) log1/p11 n], it follows from Lemma 2.1 that

P
(
L(n) < k

)
 1− pk−111 [c1 · (n− k) + c2]− c(n, k)

 1− const1 · pk11(n− k)− const2 · |p00− p10|n− const3 · pk11|p00− p10|n−k.

If we apply the inequality ln(1− a)  −2a for 0 < a < 1/2, then

lnP
(
L(n) < k

)
 −2 const1 pk11(n− k)− 2 const2|p00 − p10|n − 2 const3 pk11|p00 − p10|n−k

 const · n−x.

The upper bound is similarly proved with the help of the arguments in the proof of
Lemma 2.3. �

3. MOMENT GENERATING FUNCTION AND LARGE DEVIATIONS

In this section, we first give a proof of Theorem 1.3 regarding the precise
logarithmic asymptotics for the moment generating function, which is the main
result of the paper. Then, using this proved result, we derive two large deviation
principles (Theorems 1.2 and 1.4) with the help of the Gärtner–Ellis theorem. At
the end, a very concise proof of Theorem 1.1 is included.

3.1. Proof of Theorem 1.3.
S t e p 1. The following estimate holds for all λ ∈ R:

lim inf
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}  λ.

The case when λ = 0 is trivial. If λ > 0, then

1

log1/p11 n
lnE exp {λ · L(n)}

 1

log1/p11 n
lnE

(
exp{λ · L(n)},

{∣∣∣∣ L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

})
 1

log1/p11 n
ln exp{λ · (1− ε) log1/p11 n} · P

(∣∣∣∣ L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

)
= λ · (1− ε) +

1

log1/p11 n
lnP

(∣∣∣∣ L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

)
.
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Since L(n)/ log1/p11n converges to one almost surely, we have

lim
ε→0+

lim inf
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}  lim

ε→0+
λ · (1− ε) = λ.

If λ < 0, a similar argument as above yields

lim
ε→0+

lim inf
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}  lim

ε→0+
λ · (1 + ε) = λ.

S t e p 2. The following estimate holds for λ < ln(1/p11):

lim sup
n→∞

1

log1/p11 n
lnE exp {λ · L(n)} ¬ λ.

To see this, we first rewrite

lnE exp {λ · L(n)}

= lnE
(
exp{λ ·L(n)},

{∣∣∣∣ L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

}
∪
{∣∣∣∣ L(n)

log1/p11 n
− 1

∣∣∣∣ > ε

})
.

Therefore,

(3.1) lim sup
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}

= max

{
lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ ·L(n)},

{∣∣∣∣ L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

})
,

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{∣∣∣∣ L(n)

log1/p11 n
− 1

∣∣∣∣ > ε

})}
.

It is clear that the first limit satisfies

(3.2) lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{∣∣∣∣ L(n)

log1/p11 n
− 1

∣∣∣∣ ¬ ε

})
¬

{
λ(1 + ε), λ > 0,

λ(1− ε), λ < 0.

The second limit is more complicated, and the assumption λ < ln(1/p11) is needed.
We rewrite
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lnE
(
exp{λ · L(n)},

{∣∣∣∣ L(n)

log1/p11 n
− 1

∣∣∣∣ > ε

})
= lnE

(
exp{λ ·L(n)},

{
L(n)

log1/p11 n
− 1 > ε

}
∪
{

L(n)

log1/p11 n
− 1 < −ε

})
.

On the first part
{

L(n)
log1/p11 n − 1 > ε

}
, if λ < 0, then similar things can be done as

above. But if λ > 0, then we need to make the following separation:

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 > ε

})
= lim sup

n→∞

1

log1/p11 n

× lnE
(
exp{λ · L(n)},

∞∪
k=1

{
1 + kε <

L(n)

log1/p11 n
¬ 1 + (k + 1)ε

})
¬ lim sup

n→∞

1

log1/p11 n
ln

( ∞∑
k=1

eλ[1+(1+k)ε] log1/p11 n · P
(
1 + kε <

L(n)

log1/p11 n

))
= λ(1+ε)+lim sup

n→∞

1

log1/p11 n
ln

( ∞∑
k=1

eλkε log1/p11 n · P
(
1+kε<

L(n)

log1/p11 n

))
.

It now follows from Lemma 2.3 that

P
(
1 + kε <

L(n)

log1/p11 n

)
= 1− P

(
L(n)

log1/p11 n
¬ 1 + kε

)
¬ const · n−kε,

which gives

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 > ε

})
= λ(1 + ε)

+ lim sup
n→∞

1

log1/p11 n
ln

( ∞∑
k=1

eλkε log1/p11 n · P
(
1 + kε <

L(n)

log1/p11 n

))
¬ λ(1 + ε) + lim sup

n→∞

1

log1/p11 n
ln
( ∞∑
k=1

eλkε log1/p11 n · n−kε
)

= λ(1 + ε) + lim sup
n→∞

1

log1/p11 n
ln
( ∞∑

k=1

n
−(1− λ

ln(1/p11)
)kε

)
¬ λ(1 + ε),

where the last step follows from the fact that λ < ln(1/p11). Namely, we have
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proved that

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 > ε

})
¬ λ(1 + ε).

(3.3)

On the second part
{

L(n)
log1/p11 n − 1 < −ε

}
, the case when λ > 0 can be similarly

handled. For the case λ < 0, we can do a similar separation to that in the proof of
(3.3), but the argument here is a little different. We have

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 < −ε

})
= lim sup

n→∞

1

log1/p11 n

× lnE
(
exp{λ · L(n)},

[1/ε]−1∪
k=1

{
1− (k + 1)ε <

L(n)

log1/p11 n
¬ 1− kε

})
¬ lim sup

n→∞

1

log1/p11 n

× ln

( [1/ε]−1∑
k=1

eλ[1−(k+1)ε] log1/p11 n · P
(
1−(k+1)ε<

L(n)

log1/p11 n
¬1−kε

))
.

Since there are only finite terms in the summation, we can simplify the above
quantity, noticing that it is less than or equal to

max
1¬k¬[1/ε]−1

{
λ[1−(k+1)ε]+lim sup

n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
<1−kε

)}
= max

1¬k¬[1/ε]−1
{λ[1− (k + 1)ε]−∞} = −∞,

where the ‘−∞’ appears because of Lemma 2.4. Therefore,

(3.4)

lim sup
n→∞

1

log1/p11 n
lnE

(
exp{λ · L(n)},

{
L(n)

log1/p11 n
− 1 < −ε

})
= −∞.

Now the proof is done by taking the estimates (3.2), (3.3) and (3.4) back into (3.1).

S t e p 3. If λ = ln(1/p11), then

lim
n→∞

1

log1/p11 n
lnE exp {λ · L(n)} = 2λ.

On the one hand, it follows from Lemma 2.3 that, for every ε > 0,
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1

log1/p11 n
lnE exp {λ · L(n)}

 1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
> 1 + ε

}}
=

1

log1/p11 n

× lnE exp

{
λ · L(n),

q∪
k=1

{
1 + kε <

L(n)

log1/p11 n
¬ 1 + (k + 1)ε

}}
=: K,

where (and in the sequel) we put

q =

[
1

ε

(
n

log1/p11 n
− 1

)]
.

Now we have

K  1

log1/p11 n
ln

q∑
k=1

exp{(1 + kε)(log1/p11 n) · ln(1/p11)}

×
(
P
{

L(n)

log1/p11 n
> 1 + kε

}
− P

{
L(n)

log1/p11 n
> 1 + (k + 1)ε

})
 ln(1/p11) +

1

log1/p11 n
ln

q∑
k=1

nkε
(
c6 · n−(1+kε)

(
n− (1 + kε) log1/p11 n

)
− c7 · n−(1+(k+1)ε)

(
n−

(
1 + (k + 1)ε

)
log1/p11 n

))
= ln(1/p11) +

1

log1/p11 n
ln

q∑
k=1

(
c6
n

(
n− (1 + kε) log1/p11 n

)
− c7

n1+ε

(
n−

(
1 + (k + 1)ε

)
log1/p11 n

))
∼ ln(1/p11) +

1

log1/p11 n
ln

[
c6
n
· n2

2ε log1/p11 n
− c7

n1+ε
· n2

2ε log1/p11 n

]
∼ ln(1/p11) +

1

log1/p11 n
ln

[
c6
n
· n2

2ε log1/p11 n

]
∼ ln(1/p11) + ln(1/p11) = 2 ln(1/p11).

On the other hand,

lim sup
n→∞

1

log1/p11 n
lnE exp {λ · L(n)}

= max

{
lim sup
n→∞

1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
¬ 1 + ε

}}
,

lim sup
n→∞

1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
> 1 + ε

}}}
.
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The first limit is estimated as

lim sup
n→∞

1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
¬ 1 + ε

}}
¬ lim sup

n→∞

1

log1/p11 n
ln exp{(1+ε) log1/p11 n·ln(1/p11)}P

{
L(n)

log1/p11 n
¬1+ε

}
= (1 + ε) ln(1/p11).

The second limit is estimated as

1

log1/p11 n
lnE exp

{
λ · L(n),

{
L(n)

log1/p11 n
> 1 + ε

}}
=

1

log1/p11 n
lnE exp

{
λ · L(n),

q∪
k=1

{
1 + kε <

L(n)

log1/p11 n
¬ 1 + (k + 1)ε

}}
¬ 1

log1/p11 n
ln

q∑
k=1

exp
{(

1 + (k + 1)ε
)
log1/p11 n · ln(1/p11)

}
× P

{
L(n)

log1/p11 n
> 1 + kε

}
¬ (1 + ε) ln(1/p11)

+
1

log1/p11 n
ln

q∑
k=1

nkε · c7 · n−(1+kε)
(
n− (1 + kε) log1/p11 n

)
∼ (1 + ε) ln(1/p11) +

1

log1/p11 n
ln

c7
n
· n2

ε log1/p11 n

∼ (1 + ε) ln(1/p11) + ln(1/p11).

Therefore,

lim sup
n→∞

1

log1/p11 n
lnE exp {λ · L(n)} ¬ (1 + ε) ln(1/p11) + ln(1/p11),

which completes the proof.

S t e p 4. In order to study the asymptotic behavior of E exp {λ · L(n)} when
λ > ln(1/p11), we need to consider a large deviation probability which may be of
independent interest.

LEMMA 3.1. For a fixed 0 < x < 1, we have

lim inf
n→∞

1

n
lnP

(
L(n)

n
 x

)
 −x ln(1/p11)

and

lim sup
n→∞

1

n
lnP

(
L(n)

n
 x

)
¬ max

{
−x ln(1/p11), − ln

1

|p00 − p10|

}
.
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In particular, if p10 ¬ p00 + p11, then

lim
n→∞

1

n
lnP

(
L(n)

n
 x

)
= −x ln(1/p11).

P r o o f o f L e m m a 3.1. We apply Lemma 2.2 with k(n) = [nx] and ob-
tain the following:

1− (1− c4 · pk11)n−k+1 ¬ P
(
L(n)

n
 x

)
¬ 1− (1− c5 · pk11)n−k+1 + e(n).

The lower bound can be handled as

1− (1− c4 · pk11)n−k+1

= 1− [(1− c4 · pk11)1/(c4·p
k
11)]c4·p

k
11(n−k+1)

= −[(1− c4 · pk11)1/(c4·p
k
11)]θn ln

(
(1− c4 · pk11)1/(c4·p

k
11)

)
· c4 · pk11(n− k + 1),

where θn ∈ [0, c4 · pk11(n− k + 1)]. Therefore, for big enough n, the lower bound
satisfies

1− (1− c4 · pk11)n−k+1  c4 · (1− δ)pk11(n− k + 1)

for some small δ > 0, which proves the lower bound. The upper bound can be
handled similarly except for the extra term e(n). In this case,

lim sup
n→∞

1

n
ln |e(n)|

¬ lim sup
n→∞

1

n
ln[const1 · |p00 − p10|n + const2 · pk11|p00 − p10|n−k]

¬ max

{
− ln

1

|p00 − p10|
, −x ln(1/p11)

}
,

from which the upper bound follows. �

S t e p 5. If λ > ln(1/p11), then

λ− ln(1/p11) ¬ lim inf
n→∞

1

n
lnEeλL(n) ¬ lim sup

n→∞

1

n
lnEeλL(n)

¬ max

{
λ− ln(1/p11), λ− ln

1

|p00 − p10|

}
.

It follows from Lemma 3.1 that, for any 0 < x < 1,
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lim inf
n→∞

1

n
lnE exp {λ · L(n)}

 lim inf
n→∞

1

n
lnE

[
exp{λ · L(n)},

{
L(n)

n
> x

}]
 λx+ lim inf

n→∞

1

n
lnP

(
L(n)

n
> x

)
= λx− x ln(1/p11) = λ− ln(1/p11) as x→ 1.

Furthermore,

lim sup
n→∞

1

n
lnE exp {λ · L(n)}

= lim sup
n→∞

1

n
lnE

(
exp{λ · L(n)},

{
L(n)

n
¬ ε

}
∪
{
L(n)

n
> ε

})
= max

{
lim sup
n→∞

1

n
lnE

(
exp {λ · L(n)} ,

{
L(n)

n
¬ ε

})
,

lim sup
n→∞

1

n
lnE

(
exp {λ · L(n)} ,

{
L(n)

n
> ε

})}
.

The first limit is

lim sup
n→∞

1

n
lnE

(
exp {λ · L(n)},

{
L(n)

n
¬ ε

})
¬ λε.

The second limit is handled as follows:

lim sup
n→∞

1

n
lnE

(
exp {λ · L(n)},

{
L(n)

n
> ε

})
= lim sup

n→∞

1

n
lnE

(
exp {λ · L(n)},

[1/ε]−1∪
k=1

{
kε <

L(n)

n
¬ (k + 1)ε

})
= max

1¬k¬[1/ε]−1

{
λ(k + 1)ε+ lim sup

n→∞

1

n
lnP

(
kε <

L(n)

n

)}
¬ max

1¬k¬[1/ε]−1

{
λ(k + 1)ε+max

{
−kε ln(1/p11), − ln

1

|p00 − p10|

}}
= max

1¬k¬[1/ε]−1

{
λ · ε+ kε

(
λ− ln(1/p11)

)
, λ(k + 1)ε− ln

1

|p00 − p10|

}
= max

{
λ− ln(1/p11) + λ · ε, λ− ln

1

|p00 − p10|

}
.

The condition λ > ln(1/p11) is used when the maximum is attained with k =
[1/ε]− 1. The proof now follows by taking ε→ 0+.

Probability and Mathematical Statistics 38, z. 2, 2018 
© for this edition by CNS



424 Z. Liu and X. Yang

3.2. Proofs of Theorems 1.2 and 1.4. Using the proved Theorem 1.3, we are
now ready to prove Theorems 1.2 and 1.4 with the help of the Gärtner–Ellis the-
orem. The proofs of Theorems 1.2 and 1.4 are essentially the same, and here we
only show the details for the one of Theorem 1.4. Let us define the logarithmic
moment generating function of L(n)/n as

Λ̃n(λ) = lnE exp{λ · L(n)/n}, λ ∈ R,

and the cumulant as

Λ̃(λ) := lim
n→∞

1

n
Λ̃n(λ · n) =

{
λ− ln(1/p11), λ  ln(1/p11),

0, λ < ln(1/p11),

where the last limit is from Theorem 1.3, under the condition p10 ¬ p00 + p11.
Then the large deviation upper bound (1.10) follows directly from the Gärtner–
Ellis theorem (cf. [3], Section 2.3) with the rate function Λ̃∗ in (1.8) defined by the
Fenchel–Legendre transform of Λ̃ as Λ̃∗(x) = supλ∈R[λ · x− Λ̃(λ)].

For the large deviation lower bound (1.9), it suffices to prove that for a fixed
point 0 < y < 1,

lim
δ→0

lim inf
n→∞

1

n
lnP

(
L(n)

n
∈ By,δ

)
 −y ln(1/p11),(3.5)

where By,δ is the open ball centered at y with a radius δ. To achieve (3.5), we write

P
(
L(n)

n
∈ By,δ

)
= P

(
L(n)

n
> y − δ

)
− P

(
L(n)

n
 y + δ

)
,

and apply an inequality in the form ln(a− b)  ln(a)− b
a−b for a > b > 0 to show

that

(3.6) lim
δ→0

lim inf
n→∞

1

n
lnP

(
L(n)

n
∈ By,δ

)
 lim

δ→0
lim inf
n→∞

1

n

(
ln

[
P
(
L(n)

n
> y − δ

)]
−

P
(
L(n)/n  y + δ

)
P
(
L(n)/n > y − δ

)
− P

(
L(n)/n  y + δ

)).
Lemma 3.1 implies that the first limit is, under the assumption p10 ¬ p00 + p11,

(3.7) lim
δ→0

lim inf
n→∞

1

n
ln

[
P
(
L(n)

n
> y − δ

)]
= lim

δ→0
−(y − δ) ln(1/p11) = −y ln(1/p11).

Probability and Mathematical Statistics 38, z. 2, 2018 
© for this edition by CNS



Longest runs in Markov chains 425

For the second ratio term, applying Lemma 3.1 twice gives

(3.8)
P
(
L(n)/n  y + δ

)
P
(
L(n)/n > y − δ

)
− P

(
L(n)/n  y + δ

)
=

1

P
(
L(n)/n > y − δ

)
/P

(
L(n)/n  y + δ

)
− 1

¬ 1

e(2δ ln(1/p11)−ε)n − 1
→ 0,

as n → ∞, for sufficiently small ε > 0 with 2δ ln(1/p11) − ε > 0. Then (3.5)
follows by taking (3.7) and (3.8) back into (3.6).

3.3. Proof of Theorem 1.1. The limit (1.1) comes directly from Lemma 2.3.
For the limit (1.2), we apply Lemma 2.4 for each 0 < x < 1 and obtain

ln [−c9 · nx] ¬ ln

[
− lnP

(
L(n)

log1/p11 n
¬ 1− x

)]
¬ ln[−c8 · nx].

Then the proof follows directly by taking the limit limn→∞ 1/ log1/p11 n.

4. THE STEIN–CHEN METHOD

The aim of this section is to introduce the use of the Stein–Chen method in es-
timating the large deviation probabilities of L(n) in [14], and point out a mistake
in the proof of (1.4). It turns out that the employed Stein–Chen method is insuffi-
cient to prove such large deviation probabilities. Let us recall the limit (1.4): for all
x > 0,

lim
n→∞

1

log1/p11 n
lnP

(
L(n)− ⌊log1/p11 n⌋  x · log1/p11 n

)
= −x · ln(1/p11).

The idea used in the proof of (1.4) in [14] is to approximate the large devi-
ation probabilities P

(
L(n)− ⌊log1/p11 n⌋  x · log1/p11 n

)
by the ones involving

Poisson random variables, and then to control the error term using the Stein–Chen
method.

By setting k =
⌊
⌊log1/p11 n⌋ + x · log1/p11 n

⌋
+ 1, it was proved on p. 1947

of [14] that

(4.1)
∣∣P(L(n)− ⌊log1/p11 n⌋  x · log1/p11 n

)
−
(
1− exp{−nπ1(1− p11)p

k−1
11 + o(1)}

)∣∣
¬ Error

(
W (n), Po

(
λ(n)

))
,
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where π1 is a constant, W (n) is a random variable depending on n, defined on
p. 1941, and Po

(
λ(n)

)
is a Poisson random variable whose intensity λ(n), also

depending on n, was defined on p. 1942. It was then proved that(
1− exp{−nπ1(1− p11)p

k−1
11 + o(1)}

)
= O(1)n−x.

The error term was estimated via the Stein–Chen method as

Error
(
W (n), Po

(
λ(n)

))
= O

(
ln(n)

n

)
.

It is then obvious true that if 0 < x < 1, then the limit (1.4) holds since the error
term (which is of order O

( ln(n)
n

)
) is smaller than n−x. But the problem occurs

when x > 1, since in this case the error term is much bigger than the target n−x,
and the limit in (1.4) is unclear. Therefore, while employing this method, the limit
(1.4) is true only for 0 < x < 1. Furthermore, the Stein–Chen method seems to
be impossible to remove the restriction 0 < x < 1 since it gives an error of power
orders, while the target term n−x is also of power order which can be any size
depending on x.

5. AN APPLICATION IN CONFIDENCE INTERVALS

Given simulations of the Markov chain {Xk}1¬k¬n with the transition matrix[
p00 p01
p10 p11

]
,

the aim of this section is to make statistical inferences on the transition probabilities
pij . Since our interest throughout the paper is the longest success run, we will apply
Theorem 1.2 to study the confidence intervals of p11.

Theorem 1.2 implies that for each x  1,

lim
n→∞

1

log1/p11 n
lnP

(
L(n)

log1/p11 n
 x

)
= −(x− 1) · ln(1/p11).

If x = 1 − ln(α)/ ln(n) with a given small α > 0, then it holds true asymptoti-
cally that P(p11 < e−(ln(n)−ln(α))/L(n)) = α. This suggests a 100(1− α)% lower
confidence bound of p11 as follows:

Ip11 =

(
exp

{
− ln(n)− ln(α)

L̂(n)

}
, 1

)
,

where L̂(n) is a point estimate of L(n). A reasonable point estimate of L(n) is
the observed longest success run. We can also obtain a point estimate p̂11 of p11
using the observed (state ‘1’→ state ‘1’) proportion. For estimating the transition
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probabilities in terms of confidence intervals, there are many existing (more com-
plicated) methods (cf. [2] and [13] for instance), but the advantage of our method
is that the lower confidence bound is very simple and neat involving only one ob-
servation L̂(n).

Below in Table 1 we have simulations for different transition matrices. Al-
though the point estimate p̂11 does not work well, the derived lower confidence
bound Ip11 works really good. We chose the p which is close to 1, since p̂11 is
only a lower confidence bound. As the other transition probabilities change (see
T2 and T3), the confidence interval Ip11 does not change much. This is as expected
since the observed longest success run L̂(n) is not supposed to change when the
other transition probabilities change. Meanwhile, the point estimates p̂11 are quite
different due to the fact that the Markov chain with T3 will have more chance to
stay at the state ‘0’ when it is at ‘0’ now.

Table 1. 100(1− α)% lower confidence bound of p11.

T1 =

[
0.4 0.6

0.05 0.95

]
n = 1000 α = 0.05

p̂11 = 0.8810 p̂11 = 0.8650 p̂11 = 0.8780 p̂11 = 0.8900 p̂11 = 0.8630

L̂(n) = 111 L̂(n) = 102 L̂(n) = 190 L̂(n) = 99 L̂(n) = 127

Ip11 = (0.9146, 1) Ip11 = (0.9075, 1) Ip11 = (0.9492, 1) Ip11 = (0.9048, 1) Ip11 = (0.9250, 1)

T2 =

[
0.4 0.6

0.02 0.98

]
n = 1000 α = 0.05

p̂11 = 0.9510 p̂11 = 0.9450 p̂11 = 0.9530 p̂11 = 0.9500 p̂11 = 0.9660

L̂(n) = 302 L̂(n) = 156 L̂(n) = 259 L̂(n) = 212 L̂(n) = 319

Ip11 = (0.9677, 1) Ip11 = (0.9385, 1) Ip11 = (0.9625, 1) Ip11 = (0.9544, 1) Ip11 = (0.9694, 1)

T3 =

[
0.9 0.1

0.02 0.98

]
n = 1000 α = 0.05

p̂11 = 0.8510 p̂11 = 0.9250 p̂11 = 0.9140 p̂11 = 0.8200 p̂11 = 0.7680

L̂(n) = 227 L̂(n) = 396 L̂(n) = 203 L̂(n) = 232 L̂(n) = 155

Ip11 = (0.9573, 1) Ip11 = (0.9753, 1) Ip11 = (0.9524, 1) Ip11 = (0.9582, 1) Ip11 = (0.9381, 1)

We remark that the lower confidence bound presented above is very conser-
vative since Theorem 1.2 gives an equivalence up to logarithm. This can be seen
from the coverage probabilities. From simulations, the coverage probabilities with
the transition matrices Ti, i = 1, 2, 3, are all near 100%, which are much higher
than the confidence coefficient 100(1− 0.05)%.

It has been seen that Theorem 1.2 yields the lower confidence bound using
x  1. In the same way, Theorem 1.1 can give a two-sided confidence interval
of p11. Furthermore, hypothesis testings on p11 can be done in a similar way.
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