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Abstract. This paper studies variance functions of Cauchy–Stieltjes
Kernel (CSK) families generated by compactly supported centered proba-
bility measures. We describe several operations that allow us to construct
additional variance functions from known ones. We construct a class of ex-
amples which exhausts all cubic variance functions, and provide examples
of polynomial variance functions of arbitrary degree. We also relate CSK
families with polynomial variance functions to generalized orthogonality.
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1. INTRODUCTION AND MAIN RESULTS

The Cauchy–Stieltjes Kernel (CSK) families of probability measures were in-
troduced in [11] and extended to non-compact setting in [13]. The constructive
approach adopted in these papers is based on an idea of kernel family from an
unpublished manuscript [46]. The construction emphasizes analogies with expo-
nential families, using the Cauchy–Stieltjes kernel 1/(1 − θx) instead of the ex-
ponential kernel exp(θx), and establishing parametrization by the mean. Kernels
of the form h(xθ), including 1/(1 − θx)a, appear also in [28] and the references
cited therein.

After reparametrization by the mean, CSK families are also a special case
q = 0 of the q-exponential families from [14]. The non-constructive definition from
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[14], Section 4, is most convenient for our purposes, as it emphasizes the role of
the pseudo-variance function, which appears directly in the definition.

DEFINITION 1.1. The CSK family with a pseudo-variance function V gener-
ated by a compactly supported non-degenerate probability measure ν is a family
of probability measures

{Qm(dx) := f(x,m)ν(dx) : m ∈ (m−,m+)},

where

(1.1) f(x,m) :=


V(m)

V(m)+m(m−x) , m 6= 0,

1, m = 0,V(0) 6= 0,
V′(0)

V′(0)−x , m = 0,V(0) = 0.

The interval (m−,m+) is sometimes called the domain of means, but it will
not play a major role here. We will only assume that 0 ∈ (m−,m+) and V(0) 6= 0.
Then (1.1) is the solution of the difference equation

(1.2)
f(x,m)− f(x, 0)

m
=
x−m
V(m)

f(x,m), f(x, 0) = 1,

which is a discrete analog of the differential equation for exponential families noted
in [45], Theorem 2 (see also [17], Section 5, and [14]).

It is known that measure ν, if it exists, is uniquely determined (up to the
mean) by V, see [11]. It is also known that any non-degenerate compactly sup-
ported probability measure ν gives rise to a unique (real analytic) function V,
which will sometimes be denoted by Vν . On the other hand, not every function
V can appear as a pseudo-variance function. The question of determining whether
a given class of functions V corresponds to some measures ν generated a sizeable
literature both for the exponential and more recently for the CSK families. In the
theory of exponential families, all quadratic variance functions were determined
in [24] and in [37]. All cubic variance functions up to affine transformations are
described in [30]. In [20], cubic variance functions are characterized by general-
ized orthogonality. Numerous non-polynomial variance functions have also been
studied, see [29]; see also [14], Section 2.

The literature about the variance functions of the CSK families is less compre-
hensive. CSK families with quadratic variance functions were determined in [11],
[14], see also [18]. Cubic (pseudo) variance functions with V(0) = 0 have been
studied in [13] and they correspond to measures without first moment. In contrast
to exponential families, CSK families are not invariant under translation, so cubic
variance functions with V(0) 6= 0 cannot be reduced to the case studied in [13] and
require separate investigation. This paper is devoted solely to the case V(0) 6= 0.

Probability and Mathematical Statistics 39, z. 2, 2019 
© for this edition by CNS



CSK with polynomial variance functions 239

We now recall some formulas and assumptions that we will rely upon. It is
known (see [13], Proposition 3.1, or [14], (3.4)) that for m 6= 0

(1.3)
∫
xQm(dx) = m,

so the family {Qm : m ∈ (m−,m+)} is indeed parameterized by the mean. One
can show that if ν has all moments, 0 ∈ (m−,m+) and V(0) 6= 0, then (1.3) ex-
tends by continuity to

(1.4)
∫
xν(dx) = 0.

We will simply assume (1.4). It is then known, and easy to check, that the pseudo-
variance function that appears in (1.1) is indeed the variance function,

(1.5) V(m) =
∫
(x−m)2Qm(dx),

see [13], Proposition 3.2, and [14], (3.4), where a more general case was consid-
ered.

Denote by V the class of variance functions corresponding to probability mea-
sures ν such that ν is compactly supported, centered:

∫
xν(dx) = 0, with variance∫

x2ν(dx) = 1, so that Vν(0) = 1. Denote by V∞ the class of those V ∈ V that
the function m 7→ V(cm) is in V for every real c.

We begin with some algebraic operations that allow us to build new variance
functions from known ones. (Here we write V(m) for a function, not its value.)

THEOREM 1.1. Assume that V(m) ∈ V, V1(m),V2(m) ∈ V∞ and c  1.
Then:

(i) V(m/c) ∈ V;
(ii) V(m) + am ∈ V and V1(m) + am ∈ V∞ for any a ∈ R;

(iii) V1(m) + V2(m)− 1 ∈ V∞ and cV1(m)− c+ 1 ∈ V∞;
(iv) V1(m)−m2 ∈ V;
(v) V(m) +m2 ∈ V∞.

The proof of this theorem appears in Section 2.3.

COROLLARY 1.1. The map V(m) 7→V(m)−m2 is a bijection of V∞ onto V .

Next, we describe the class of cubic variance functions.

THEOREM 1.2. Fix a, b, c ∈ R. A cubic function V(m) = 1 + am + bm2 +
cm3 is in V if and only if (b+ 1)3  27c2. Furthermore, V is in V∞ if and only if
b3  27c2.

The proof of this theorem appears in Section 2.4.
Our final result relates polynomial variance functions for a CSK family to

generalized orthogonality. Suppose {Pn(x) : n = 0, 1, 2, . . . } is a family of real
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polynomials, indexed by their degree nwith P0(x) = 1; it is sometimes convenient
to set Pk(x) = 0 for k < 0.

There is a substantial literature on generalized orthogonality and finite-step
recursions for polynomials. We introduce the following generalized orthogonality
condition.

DEFINITION 1.2. Fix d ∈ N and a probability measure ν with moments of all
orders. We say that polynomials {Pn} are (ν; d)-orthogonal if

∫
Pn(x)ν(dx)=0

for all n  1, and∫
Pn(x)Pk(x)ν(dx) = 0 for all n  2 + (k − 1)d, k = 1, 2, . . .

It is clear that for measures with infinite support, (ν; 1)-orthogonality is just
the standard orthogonality. For d = 2, we recover [20], Definition 3.1. The con-
cept of d-orthogonality introduced in [42] is different as even for d = 1 it has no
positivity requirements for the functional/measure. When d > 2, the condition of
pseudo-orthogonality in [25], [26] is also different. It is somewhat interesting to
note that various concepts of generalized orthogonality are related to (d+ 2)-step
recursions for the polynomials, so the distinctions sometimes rely on minute tech-
nicalities, see the paragraph above Corollary 3.1.

The following result is a generalization of Theorem 3.2 in [18] to d > 1, and
a CSK-version of Theorem 3.1 in [20] when d = 2.

THEOREM 1.3. Suppose that V is a variance function of a CSK family gen-
erated by a non-degenerate compactly supported probability measure ν with mean
zero and variance one. Consider the family of polynomials {Pn(x)} with generat-
ing function

(1.6) f(x,m) =
∞∑
n=0

Pn(x)m
n,

where f(x,m) is given by (1.1). Then the following statements are equivalent:
(i) V(m) = 1 +

∑d+1
k=1 akm

k is a polynomial of degree at most d+ 1.
(ii) There exist constants {bk : k = 1, . . . , d+1} such that polynomials {Pn}

satisfy the recursion

(1.7) xPn(x) = Pn+1(x) +
(d+1)∧n∑
k=1

bkPn+1−k(x), n  1,

with initial conditions P0(x) = 1, P1(x) = x.
(iii) Polynomials {Pn(x)} are (ν; d)-orthogonal.

Note that the upper limit of the sum on the right-hand side of (1.7) is d + 1
under the convention that Pk(x) = 0 for k < 0, and that Proposition 2.3 below
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provides examples of polynomial variance functions of arbitrarily high degree. The
proof of Theorem 1.3 appears in Section 3.1.

The paper is organized as follows. In Section 2 we introduce free probability
notation and use it to prove the first two theorems. We also include some addi-
tional examples of variance functions. Section 3 is independent of Section 2 and
discusses results on polynomials that imply Theorem 1.3. In Section 4 we provide
a combinatorial example involving sequences A001764, A098746 and A106228
from OEIS [41]. We also discuss generating functions and sharpness of some re-
sults.

2. VARIANCE FUNCTIONS AND FREE PROBABILITY

Recall that a dilation Dt(ν) of a probability measure ν by a non-zero real
number t is a measure µ(U) = ν(U/t), and D−1(ν) is called the reflection of ν.
In the language of probability theory, dilation changes the law of random variable
X to the law of tX .

2.1. Notation from free probability. For a probability measure µ on R we put

Mµ(z) :=
∫ µ(dx)

1− xz
, Gµ(z) :=

∫ µ(dx)
z − x

, Fµ(z) := 1/Gµ(z),

where Mµ is called the moment generating function, and Gµ(z) is the Cauchy–
Stieltjes transform. The free R-transform can be defined by the equation

(2.1) Rµ
(
zMµ(z)

)
+ 1 =Mµ(z).

The coefficients κn(µ) in the Taylor expansionRµ(z) =
∑∞

n=1 κn(µ)z
n are called

free cumulants. We will also use

(2.2) rµ(z) := Rµ(z)/z.

Equation (2.1) can also be written as

(2.3) zMµ(z)rµ
(
zMµ(z)

)
=Mµ(z)− 1.

Note that for the dilated measure we have

(2.4) MDt(µ)(z) =Mµ(tz), RDt(µ)(z) = Rµ(tz), rDt(µ)(z) = trµ(tz).

If |z| 6= 0 is small enough, then

(2.5) Gµ

(
rµ(z) +

1

z

)
= z, Fµ

(
rµ(z) +

1

z

)
=

1

z
.

The sum of two R-transforms is an R-transform and defines the free additive
convolution of measures µ� ν by Rµ�ν(z) = Rµ(z) +Rν(z). For any real t  1,

Probability and Mathematical Statistics 39, z. 2, 2019 
© for this edition by CNS



242 W. Bryc et al.

it is known that tRµ(z) is an R-transform and defines an additive free convolution
power µ�t (see [38]).

Probability measure µ is called �-infinitely divisible if its free convolution
power µ�t is well-defined for all real t > 0. If λ 6= 0, then µ is �-infinitely divisi-
ble if and only if Dλ(µ) is �-infinitely divisible.

It is known, see [6], [21], that a compactly supported µ with the first moment
m0 =

∫
xµ(dx) is �-infinitely divisible if and only if there exists a compactly

supported finite measure ω on R such that ω(R) =
∫
(x−m0)

2µ(dx) and

rµ(z) = m0 + z
∫ ω(dx)

1− zx
.

In particular, if ν is a generating measure of a CSK family, then under our mo-
ment assumptions, ν is free-infinitely divisible if and only if there is a compactly
supported probability measure ω such that

(2.6) rν(z) = zMω(z).

For a probability measure µ 6= δ0 with support in [0,∞), the S-transform is
defined by

(2.7) Rµ
(
zSµ(z)

)
= z or Mµ

(
z

1 + z
Sµ(z)

)
= 1 + z,

see e.g. [22], (5). Note that, in particular,
∫
xµ(dx) = 1/Sµ(0).

The product of S-transforms is an S-transform and defines the multiplicative
free convolution µ1 � µ2 by Sµ1�µ2(z) = Sµ1(z)Sµ2(z). Multiplicative free con-
volution powers µ�p are defined at least for all p  1 (see [5], Theorem 2.17) by
Sµ�p(z) = Sµ(z)

p.
The Marchenko–Pastur measure with parameter λ > 0,

πλ(dx) = (1− λ)+δ0 +
√
4λ− (x− 1− λ)2

2πx
1x∈[(1−

√
λ)2,(1+

√
λ)2]dx,

plays in free probability the role of the Poisson distribution, see [39]. Since Sπλ(z)=
1/(λ+ z), we have

SDb(π1/b)(z) =
1

1 + bz
.

It is known (see [22], Section 2; [3], Theorem 1.2, and [4], [34]) that if p>0,
b > 0, then µ =

(
Db(π1/b)

)�p exists if and only if max{p, 1/b}  1. This mea-
sure µ has compact support in [0,∞) and its S-transform equals

(2.8) Sµ(z) =
1

(1 + bz)p
.

For additional details and background on free probability we refer to [39]
and [44].
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2.2. Formulas for variance functions. A variance function V of a CSK family
generated by a compactly supported centered probability measure ν 6= δ0 is real
analytic at m = 0, so it extends to the analytic mapping z 7→ V(z) on an open disk
near z = 0. Our assumptions on the first two moments of ν imply that rν(z) =
z + κ3(ν)z

2 + . . . is invertible near z = 0 and its composition inverse is z/Vν(z)
([11], Theorem 3.3), so that

(2.9) rν(z) = zVν
(
rν(z)

)
.

Replacing z by z/V(z), from equation (2.5) we get

(2.10) Fν

(
z +

Vν(z)
z

)
=

Vν(z)
z

.

(This was first noted in [14], (4.4), and exploited in [11]–[13].)
The following result is known but we prove it for completeness.

LEMMA 2.1. If z 7→ V(z) is a variance function, then so is z 7→ V(−z).

P r o o f. Put ν− := D−1(ν). Then, by (2.4), rν−(z) = −rν(−z) and from
(2.9) we have Vν−(z) = Vν(−z). �

The following relates the class V∞ of variance functions to free probability.

PROPOSITION 2.1. If V = Vν , then ν�λ
2

exists if and only if V(z/λ) ∈ V . In
particular, V∞ is the class of those Vν ∈ V that ν is �-infinitely divisible.

P r o o f. Suppose ν�λ
2

exists and define νλ := D1/λ(ν
�λ2). Then, by (2.4),

we have rνλ(z) = λrν(z/λ) and

rνλ(z)

V
(
rνλ(z)/λ

) =
λrν(z/λ)

V
(
rν(z/λ)

) = λ
z

λ
= z,

which proves that Vνλ(z) = V(z/λ). Conversely, by the first equality, if V(z/λ)
is a variance function of some νλ, then rνλ(z)/λ = rν(z/λ), so ν�λ

2
= Dλ(νλ)

exists.
In particular, from Lemma 2.1 we see that V ∈ V∞ if and only if ν is �-

infinitely divisible. �

From (2.9), (2.6) and (2.1) we get the following.

PROPOSITION 2.2. A function V(z) belongs to V∞ if and only if there is a
compactly supported probability measure ω on R such that V(z) = 1 +Rω(z).

We remark that the perturbation theorem in [8] generates a large number of
implicit examples of variance functions in V∞. In particular, for every d  3 there
is a δ > 0 such that V(z) = 1 + z2 +

∑d
k=3 ckz

k is in V∞ when maxk |ck| < δ.
Corollary 2.5 in [15] yields explicit characterization of such variance functions for
d = 4.
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2.3. Proof of Theorem 1.1. We need the following lemma that will be used
with α = 1, β = 0.

LEMMA 2.2. If ω is a probability distribution on R, α > 0, β ∈ R, then there
exists a non-degenerate probability distribution µ such that

(2.11) Mµ(z) =
1

1− βz − αz2Mω(z)
.

Conversely, if µ is a probability measure with moments∫
xµ(dx) = β,

∫
(x− β)2µ(dx) = α > 0,

then there exists a probability measure ω such that (2.11) holds.

P r o o f. For the F -transform of µ we have Mµ(z) = 1/
(
zFµ(1/z)

)
, so rela-

tion (2.11) becomes
Fµ(z) = z − β − α

Fω(z)
.

Now, it suffices to apply Proposition 5.2 from [7] (see also [21], Section 3.3).
To prove the converse, we apply Proposition 5.2 from [7] to the analytic func-

tion
F (z) :=

α

z − β − Fµ(z)
,

which becomes the F -transform of a probability measure. To verify the assump-
tions in [7], we note that since µ is non-degenerate, we have =Fµ(z) > =z (see
comments below and [31], Proposition 2.1). So F maps C+ into itself. Series ex-
pansion at infinity gives z − β − Fµ(z) = α/z + o(1/z) as |z| → ∞. �

P r o o f o f T h e o r e m 1.1. Statement (i) follows from Proposition 2.1, as
the free convolution power ν�c

2
exists for c  1.

(ii) LetG(z)=Mν(1/z)/z be the Cauchy–Stieltjes transform of ν andF (z) =
1/G(z). The continued fraction expansion for G gives

F (z) = z − b0 −
c0

z − b1 −
c1

z − b2 −
c2
. . .

,

where bn, cn are the Jacobi coefficients in the three-step recursion for the monic
orthogonal polynomials with respect to measure ν,

xpn(x) = pn+1(x) + bnpn(x) + cn−1pn−1(x), n  0.
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(This can be read out from [23], Section 2.6. The recursion and the continued
fraction terminate at cN = 0 if ν is purely atomic with N + 1 atoms.)

Define Fa(z) = F (z − a) + a. Then Fa(z) has the same continued fraction
expansion with the same coefficients cn, the same coefficient b0, and for k  1
the coefficient bk is replaced by bk + a. Therefore, by Favard’s theorem (the usual
version, or a finite version when cN = 0; the latter can be read out from the first
page of Section 2.5 in [23]), Fa(z) is the inverse of a Cauchy–Stieltjes transform
of a probability measure νa. The first two moments of νa are not affected by the
change of b1, b2, . . . , so νa has mean zero and variance one.

Since F is well-defined outside of the support of ν, we have F (x) > 0 for
x > K and F (x) < 0 for x < −K. So Fa also extends to the real axis far away
from zero, and therefore νa has compact support. (This fact is sometimes called
Krein’s theorem [27], see e.g. [15], Theorem 3.9.)

Since F satisfies (2.10), the function Va(z) = V(z) + az satisfies the same
identity with Fa in place of F , identifying the variance function.

Suppose now that V ∈ V∞. Then V(cz) is a variance function for any real c,
so by the previous reasoning with a replaced by ac, we see that V(cz) + acz =
Va(cz) is in V , i.e., Va ∈ V∞.

(iii) We use Proposition 2.2. If V1(z)=Vν1(z)=1 +Rω1(z), V2(z)=Vν2(z)
= 1 +Rω2(z), then

V1(z) + V2(z)− 1 = 1 +Rω1(z) +Rω2(z) = 1 +Rω1�ω2(z),

and similarly

cV1(z)− c+ 1 = 1 + cRω1(z) = 1 +Rω1
�c(z).

(iv) Let V1 = Vν1 and define r1 := rν1 . Then r1(z) = zMω(z) for some prob-
ability measure ω. Using Lemma 2.2, let ν be a probability measure such that
Mν(z) = 1/

(
1 − zr1(z)

)
. It is clear that ν has mean zero and variance one. Let

Mν =M , rν := r and put z̃ := zM(z). Then, by (2.3),

z =
z̃

M(z)
=

z̃

z̃r(z̃) + 1

and

r1(z) =
M(z)− 1

zM(z)
= r(z̃).

Applying these identities to the equality

r1(z)

V1

(
r1(z)

) = z
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yields
r(z̃)

V1

(
r(z̃)

) =
z̃

z̃r(z̃) + 1

or, equivalently,
r(z̃)

V1

(
r(z̃)

)
− r(z̃)2

= z̃,

which proves that Vν(z) = V1(z)− z2.
(v) Let ν be the measure corresponding to V. By the converse part of Lem-

ma 2.2, there exists a compactly supported probability measure ω such that Mν(z)
= 1/

(
1− z2Mω(z)

)
. Then (2.6) defines a measure ν1 with rν1(z) = zMω(z) and

the relation V(z) = Vν1(z)− z2 holds by the proof of part (iv). �

2.4. Proof of Theorem 1.2. The proof of Proposition 2.3 uses S-transforms
from (2.8).

LEMMA 2.3. Suppose that µ 6= δ0 is a probability measure with compact sup-
port in [0,∞) and that Sµ(0) = 1. Then

(2.12) V(z) =
1 + z

Sµ(z)

is in V∞.

P r o o f. Define ω(dx) = xµ(dx) and note that this is a probability measure
since ω(R) =

∫
xµ(dx) = 1/Sµ(0) = 1. Let ν be the �-infinitely divisible prob-

ability measure defined by (2.6). Then Mµ(z) = 1 + rν(z), so (2.7) gives

rν

(
z

1 + z
Sµ(z)

)
= z.

Recalling that the composition inverse of z 7→ r(z) is z/Vν(z), in a neighborhood
of z = 0 we get (2.12). �

Lemma 2.3 yields a class of variance functions in V∞ of the following form.

LEMMA 2.4. Let β1, . . . , βd > 0, p1, . . . , p2 > 0, with max{pj , 1/βj}  1.
Then the function

(2.13) V(z) = (1 + z)
d∏
j=1

(1 + βjz)
pj

is in V∞.
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P r o o f. For j  1, choose µj with Sµj (z) = (1 + βjz)
−pj , see [3], [22].

Define µ = µ1 � µ2 � . . .� µd so that

Sµ(z) =
d∏
j=1

(1 + βjz)
−pj .

Lemma 2.3 completes the proof. �

We will deduce sufficiency in Theorem 1.2 from the following general result.

PROPOSITION 2.3. Let us assume that d∈N, a, b∈R, c>0, b1, . . . , bd>0,
p1, . . . , pd > 0 and that max{pj , c/bj}  1 for 1 ¬ j ¬ d. Put

V(z) = az + bz2 + (1 + cz)
d∏
j=1

(1 + bjz)
pj .

If b  −1, then V ∈ V . If b  0, then V ∈ V∞.

In the present paper we are mainly interested in polynomial variance functions,
however here we would like to emphasize that the exponents pj do not have to be
integers; for example, (1 + z)

√
2 or (1 + z)3/2(1 + 2z)3/2 are variance functions

in V∞.

P r o o f. Put V1(z) := 1 + az + bz2, V2(z) := (1 + cz)
∏d
j=1(1 + bjz)

pj .
Then V2 ∈ V∞ in view of Lemma 2.4 with βj = bj/c. If b  0, then V1 ∈ V∞ (see
[11], Theorem 3.2 and the comments therein), and consequently V(z) = V1(z) +
V2(z)− 1 ∈ V∞ by Theorem 1.1(iii), which proves the second part. When b  −1,
we apply Theorem 1.1(iv) to z2 + V1(z) + V2(z)− 1 ∈ V∞. �

We are now ready to prove Theorem 1.2.

P r o o f o f T h e o r e m 1.2. The case c = 0 is well understood: V ∈ V if
and only if b + 1  0 and V ∈ V∞ if and only if b  0, see [11]. In view of
Lemma 2.1 we can assume that c > 0.

Applying Proposition 2.3 with d = 1, b1 = c and p1 = 2, we see that

az + bz2 + (1 + cz)3 = 1 + (a+ 3c)z + (b+ 3c2)z2 + c3z3

is in V for any b  −1, and in V∞ for any b  0, with any real a, c. Replacing
a+ 3c, b+ 3c2, c3 by a, b, c, respectively, we get the sufficient conditions for V ∈
V and for V ∈ V∞, as stated (recall that c > 0).

It remains to show that if b3 < 27c2, then V(z) = 1 + az + bz2 + cz3 is not
in V∞. By Theorem 1.1(ii), without loss of generality we may assume a = 0.

We proceed by contradiction. Suppose V ∈ V∞. If b > 0, then by scaling we
would get 1 + z2 + cz3 ∈ V∞ for some (different) c2 > 1/27. By Proposition 2.2
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this would mean that there exists a compactly supported probability measure ω
with rω(z) = z + cz2, contradicting Corollary 2.5 in [15], which says this to be
possible if and only if c2 ¬ 1/27.

Suppose now that b ¬ 0. Then by Theorem 1.1(iii) with V2(z) = 1 + |b|z2
we would get 1 + cz3 ∈ V∞. Since c > 0, we would be able to rescale and get,
say, 1 + 2z3 ∈ V∞. Using Theorem 1.1(iii) again, we would get 1 + z2 + 2z3 ∈
V∞, contradicting Corollary 2.5 in [15] again. (In fact, as explained in Remark 4.2
below, 1 + 2z3 is not in V .) �

3. VARIANCE FUNCTIONS AND POLYNOMIALS

In general, if V is (real) analytic at zero and V(0) 6= 0, it is easy to see that
expansion (1.6) holds, and its coefficients are polynomials {Pn(x)} which solve
the recursion

(3.1) xPn(x) = Pn−1(x) +
n∑
k=0

V(k)(0)

k!
Pn+1−k(x), n  0,

with initial polynomials P−1(x) = 0 and P0(x) = 1. (In particular, polynomials
{Pn} are monic when V(0) = 1.) To derive (3.1), multiply (1.2) by mV(m), ex-
pand V into the power series at m = 0, expand f(x,m) into power series (recall
that V(0) 6= 0), and compare the coefficients at the powers of m.

We therefore consider a slightly more general recursion than (1.7). Suppose
that polynomials {Pn} satisfy the recursion

(3.2) xPn(x) = Pn−1(x) +
n∑
k=0

akPn+1−k(x), n  0,

with a0 6= 0 and initial polynomials P−1(x) = 0 and P0(x) = 1.

PROPOSITION 3.1. Suppose that there are A,R > 0 such that |ak| ¬ ARk
for all k = 0, 1, . . . Define V(z) =

∑∞
k=0 akz

k for |z| < 1/R.
(i) If polynomials {Pn} satisfy recursion (3.2), then

(3.3)
∞∑
n=0

Pn(x)z
n =

V(z)
V(z) + z(z − x)

and the series converges uniformly over x ∈ K for any compact set K ⊂ R. That
is, there is r > 0 that does not depend on x ∈ K such that the series converges
uniformly over x ∈ K for all |z| < r.

(ii) If polynomials {Pn} satisfy recursion (3.2) and there is a non-degenerate
compactly supported centered probability measure ν such that

∫
Pn(x)ν(dx) = 0

for all n  1, then a0 = V(0) > 0 and V(·) is the variance function of a CSK
family generated by ν.
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(iii) If V(·) is a variance function of a CSK family generated by a non-
degenerate centered compactly supported probability measure ν and {Pn} are
polynomials from (1.6), then

∫
Pn(x)ν(dx) = 0 for n  1.

P r o o f. (i) Since P0(x) = 1, without loss of generality, we may assume that
A = 1. Let M = supx∈K |x|. Choose C > R such that

(3.4)
M

C
+

1

C2
+

R

C −R
¬ |a0|.

We now check by induction that with this choice of C we have

(3.5) sup
x∈K
|Pn(x)| ¬ Cn for all n  0.

Clearly, |P0(x)| ¬ 1 ¬ C0 and supx∈K |P1(x)|=supx∈K |x/a0|¬M/|a0|¬C.
Suppose that N  1 is such that (3.5) holds for all Pn with n ¬ N . From (3.2) we
see that

|a0| sup
x∈K
|PN+1(x)|

¬ sup
x∈K
|xPN (x)|+ sup

x∈K
|PN−1(x)|+

N∑
k=1

Rk sup
x∈K
|PN+1−k(x)|

¬MCN + CN−1 + CN+1
N∑
k=1

(
R
C

)k
¬ CN+1

(
M
C

+ 1
C2 + R

C−R

)
¬ |a0|CN+1

by (3.4). This proves (3.5) by induction.
From (3.5) it is clear that with r = 1/C the series (1.6) converges uniformly

over x ∈ K for all (complex) |m| < r.
To identify the limit, denote the sum of the series by φ(x, z). Multiplying (3.2)

by zn 6= 0 and summing over n, we get

(3.6) xφ(x, z) = zφ(x, z) +
1

z

∞∑
n=0

n∑
k=0

zkakz
n+1−kPn+1−k(x).

Changing the order of summation, we obtain
∞∑
n=0

n∑
k=0

zkakz
n+1−kPn+1−k(x) =

∞∑
k=0

zkak
∞∑
n=k

zn+1−kPn+1−k(x)

=
∞∑
k=0

zkak
(
φ(x, z)− 1

)
= V(z)

(
φ(x, z)− 1

)
.

Inserting this into (3.6), we see that

xφ(x, z) = zφ(x, z) +
V(z)
z

(
φ(x, z)− 1

)
.

The solution of this equation is φ(x, z) = V(z)
V(z)+z(z−x) , as claimed.
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(ii) Since the polynomial P2(x) = x2/a20 − a1x/a20 − 1/a0 integrates to zero,
and

∫
xν(dx) = 0 by assumption, we see that a0 > 0. So V(m)  0 in some

neighborhood of zero and on the support of ν the generating function f(x,m)  0
for m small enough.

Since
∫
Pn(x)ν(dx) = 0 for n  1, and by part (i) the series (3.3) converges

uniformly on the support of ν, integrating term-by-term we get
∫
f(x,m)ν(dx)

= 1, i.e., V is the variance function of the CSK family generated by ν.
(iii) Suppose that {Pn} are polynomials from (1.6) and ν(dx) has compact

support. Then (3.1) implies (3.2) with ak = V(k)(0)/k!. Since V(0) 6= 0 and V is
real analytic, one can find R > 1 such that |V(k)(0)| ¬ k!V(0)Rk, so the assump-
tion on the growth of |ak| is satisfied. By uniform convergence for all small enough
m we can integrate series (1.6) term-by-term. We get

1 =
∫
f(x;m)ν(dx) = 1 +

∞∑
n=1

mn
∫
Pn(x)ν(dx).

Thus
∫
Pn(x)ν(dx) = 0 for all n  1. �

Next, we relate polynomial variance functions to (ν; d)-orthogonality.

PROPOSITION 3.2. Suppose that V is a variance function of a CSK family
generated by a non-degenerate compactly supported probability measure ν with
mean zero and variance one. Consider the family of polynomials {Pn(x)} with
generating function (1.6), where f(x,m) is given by (1.1). Then:

(i)
∫
Pn(x)ν(dx) = 0 for n  1.

(ii) Assume that the polynomial P2(x) is orthogonal in L2(ν) to all polyno-
mials {Pn(x) : n  2+ d}. Then the family {Pn(x)} is (ν; d)-orthogonal, satisfies
recursion (1.7) and V is a polynomial of degree at most d+ 1.

(iii) Conversely, if the variance function V of a CSK family generated by mea-
sure ν is a polynomial of degree at most d+1, then the polynomials from expansion
(1.6) are (ν; d)-orthogonal.

P r o o f. (i) This is included in Proposition 3.1(iii).
(ii) Since P2(x) = x2 − V′(0)x− 1 and V(m) is given by (1.5), we see that

(3.7)
∫
P2(x)f(x,m)ν(dx) = V(m) +m2 − V′(0)m− 1.

On the other hand, due to uniform convergence (Lemma 3.1), for all small enough
m we can integrate series (1.6) term-by-term. Since, by assumption, it follows that∫
P2(x)Pk(x)ν(dx) = 0 for k  2 + d, we get

(3.8)
∫
P2(x)f(x,m)ν(dx) =

∫
P2(x)

∞∑
k=0

Pk(x)m
kν(dx)

=
∞∑
k=0

mk
∫
P2(x)Pk(x)ν(dx) =

d+1∑
k=0

mk
∫
P2(x)Pk(x)ν(dx).
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Thus, comparing the right-hand sides of (3.7) and (3.8), we see that

V(m) = 1−m2 + V′(0)m+
d+1∑
k=0

ckm
k

is a polynomial of degree at most d+ 1, where ck =
∫
P2(x)Pk(x)ν(dx).

(iii) We now prove the converse claim. If V is a polynomial of degree d + 1,
then recursion (3.1) becomes (1.7). Proposition 3.1(iii) gives

∫
Pn(x)ν(dx) = 0

for n  1. Noting that {Pj(x) : j ¬ k} span the same subspace as monomials, to
prove (ν; d)-orthogonality it remains to verify that

(3.9)
∫
xkPn(x)ν(dx) = 0 for all n  2 + (k − 1)d

for all k ∈ N.
The proof proceeds by induction on k. Consider first the case k = 1. From

(1.7) we see that xPn is a linear combination of Pn+1, Pn, . . . , Pn−d. Thus,∫
xPn(x)ν(dx) = 0 if n  d+ 1. If n = 2, . . . , d, then (1.7) shows that xPn is a

linear combination of Pn+1, . . . , P1, thus
∫
xPn(x)ν(dx) = 0, too.

Suppose now that (3.9) holds for some k  1. Take n  2 + kd. Then n >
d + 1, so from (1.7) we see that the polynomial xk+1Pn(x) is a linear combi-
nation of polynomials {xkPj(x) : j = n − d, n − d + 1, . . . , n + 1}. Since j 
n − d  2 + kd − d = 2 + (k − 1)d, each of the polynomials xkPj(x) in the
linear combination satisfies the inductive assumption,

∫
xkPj(x)ν(dx) = 0. Thus∫

xk+1Pn(d)ν(dx) = 0, proving that (3.9) holds for all k ∈ N. �

Combining the above results with Theorem 1.2, we have the following; com-
pare [32], Théorème 2.1, and [42], Theorem 3.1, where the authors study polyno-
mials given by finite recursions under regularity conditions which fail in the case
we are interested in. (The paper [16] gives a nice introduction to their theory.)

COROLLARY 3.1. Let us consider polynomials {Pn(x)} given by the four-
step recursion:

xP1(x) = P2(x) + aP1(x) + P0(x),

xP2(x) = P3(x) + aP2(x) + bP1(x),

xPn(x) = Pn+1(x) + aPn(x) + bPn−1(x) + cPn−2(x), n  3,

with P0(x) = 1, P1(x) = x. Then the following conditions are equivalent:
(i) b3  27c2.

(ii) Polynomials {Pn} are (ν; 2)-orthogonal for some probability measure ν
(which then necessarily has mean zero, variance one and compact support).

P r o o f. If b3  27c2, then by Theorem 1.2, V(m) = 1+ am+ (b− 1)m2 +
cm3 is a variance function, and (1.6) holds. So Proposition 3.2(iii) implies (ii).
Conversely, if (ii) holds, then, by Proposition 3.1(ii), we have V(m) = 1 + am+
(b− 1)m2 + cm3 ∈ V , so Theorem 1.2 implies (i). �
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3.1. Proof of Theorem 1.3. By Proposition 3.1, for a family of monic polyno-
mials {Pn(x)}, recursion (1.7) holds if and only if the generating function (1.6) is
given by (1.1) with

(3.10) V(m) = 1 + b1m+ (b2 − 1)m2 +
d+1∑
k=3

bkm
k.

Thus, statements (i) and (ii) are equivalent.
Proposition 3.2(ii) gives the implication (iii)⇒(i), as it says that already a

special case of (ν; d)-orthogonality implies (i); the implication (i)⇒(iii) is Proposi-
tion 3.2(iii).

4. ADDITIONAL RESULTS AND COMMENTS

4.1. A combinatorial example. Consider the probability distribution on [0,∞),
which in [34] was denoted by µ(3, 1). Its moments are 1

3n+1

(
3n+1
n

)
(Fuss numbers

of order three, A001764 in OEIS) and the moment generating function, denoted by
B3(z), is

B3(z) =
3

3− 4 sin2 α
=

2 sinα√
3z

,

where α = 1
3 arcsin

√
27z/4. The first expression was obtained in [35], the second

can be obtained by elementary manipulations. The density function was described
in [40], [36]. We are going to study a probability distribution which is a transfor-
mation of µ(3, 1).

PROPOSITION 4.1. If µ is a probability measure on [0,∞), with the moment
generating function Mµ(z), then there exists a probability measure µ1 on [0,∞)
such that Mµ1(z) =

1
1−zMµ(z)

.

P r o o f. This is a consequence of Proposition 6.1 in [7] with

ψ(z) =
zMµ(z)

1− zMµ(z)
.

Namely, since Mµ(z) is C+ → C+, the function

z

1− zMµ(z)
=
z − |z|2Mµ(z)

|1− zMµ(z)|2

is also C+ → C+. �

Let µ denote the probability measure which satisfies

Mµ(z) =
1

1− zB3(z)
=

3

3− 2
√
3z sinα

,

Probability and Mathematical Statistics 39, z. 2, 2019 
© for this edition by CNS



CSK with polynomial variance functions 253

α = 1
3 arcsin

√
27z/4. This identity implies that moments s(n) of µ satisfy the

following recurrence relation: s(0) = 1 and for n  1

s(n) =
n−1∑
i=0

1

3i+ 1

(
3i+ 1

i

)
s(n− 1− i).

This sequence appears in OEIS as A098746:

1, 1, 2, 6, 23, 102, 495, 2549, 13682, 75714, 428882, . . . ,

and counts permutations which avoid patterns 4231 and 42513, see [1], [33]. For
n  1 we have also

s(n) =
n∑
i=0

n− i
n+ 2i

(
n+ 2i

i

)
.

From the equation B3(z) = 1 + zB3(z)3 (see [19]) we obtain the identity

(4.1) zMµ(z)
2
(
Mµ(z)− 1

)
= z2Mµ(z)

3 +
(
Mµ(z)− 1

)3
,

which yields the free S-transform

Sµ(z) =
1 + z +

√
(1 + z)(1− 3z)

2(1 + z)
.

Substituting zMµ(z) 7→ z in (4.1) and applying (2.1), we get

z
(
Rµ(z) + 1

)
Rµ(z) = z2

(
Rµ(z) + 1

)
+Rµ(z)

3.

Putting Rµ(z) = zrµ(z) yields

(4.2) rµ(z)− 1 = zrµ(z)
(
1− rµ(z) + rµ(z)

2
)
.

This implies that rµ(z) is the generating function for the sequence A106228:

1, 1, 2, 6, 21, 80, 322, 1347, 5798, 25512, 114236, 518848, . . . ,

which counts Motzkin paths of a special kind. These are free cumulants of µ,
namely κn(µ) = A106228(n− 1) for n  1. Note that the shifted sequence

1, 2, 6, 21, 80, 322, 1347, 5798, 25512, 114236, 518848, . . .

is not positive definite, for example det
(
κi+j+2(µ)

)5
i,j=0

= −3374, so µ is not
�-infinitely divisible, see [39].

From (4.2) one can read out that the centered measure ν with rν(z)=rµ(z)−1
(so that ν is the translation of µ by −1) has

Vν(z) = 1 + 2z + 2z2 + z3

and the comment above (or Theorem 1.2) shows that Vν 6∈ V∞.
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4.2. More on generating functions. Several authors considered families of
polynomials {Tn} with the generating function of the form

(4.3)
∞∑
n=0

Tn(x)z
n =

M(z)

N(z)− zx
,

where z 7→ M(z) and z 7→ N(z) are analytic functions in the neighborhood of
0 ∈ C with M(0) = N(0) 6= 0. See [2], Lemma 2, with u(z) = z/M(z) and
f(z) = N(z)/z or the generating function in [18], (3.10). (See also [9], [28] and
the discussion in [10].)

At first sight (4.3) looks more general than (1.6), but in fact the difference is
superficial. The following result was inspired by results in Section 3.2 of [18].

PROPOSITION 4.2. Let ν be a non-degenerate compactly supported probabil-
ity measure with mean zero. Suppose the sequence of polynomials {Tn} has gener-
ating function (4.3),

∫
Tn(x)ν(dx) = 0 for n  1, and

∫
Tn(x)T1(x)ν(dx) = 0

for n  2. Let V be the variance function of the CSK family generated by ν.
Then, with t = V(0)/M(0) we have

M(z) = V(tz)/t and N(z) = V(zt)/t+ tz2.

In particular, Tn(x) = tnPn(x) for all n = 0, 1, 2, . . . , where the sequence {Pn}
is given by expansion (1.6) for the density of the CSK family generated by ν.

(Polynomials {Pn} are monic if the variance of ν is one.)
We remark that if in addition,

∫
T2(x)Tn(x)ν(dx) = 0 for n  d + 2, then

by Proposition 3.2 the variance function of the CSK family generated by ν is a
polynomial of degree at most d + 1. When d = 1, this recovers Corollary 3.6 in
[18]. For related results with exponential rather than Cauchy generating functions
see [25], [43].

In order to be able to integrate the series term-by-term, we first confirm that
the series converges uniformly over x from any compact set. (Compare Proposi-
tion 3.1(i).)

LEMMA 4.1. Fix M > 0. Then there is r > 0 such that the series (4.3) con-
verges for all |x| < M and all |m| < r.

P r o o f. The x-dependent radius r(x) of convergence of the series is the min-
imum modulus root of the equation N(z) − zx = 0. Since N(0) 6= 0, it is clear
that for every M > 0 there is r > 0 such that |N(z)| > |zx| for all |z| < r and all
|x| < M . So there are no roots in the disk |z| < r and the radius of convergence is
at least r. �

P r o o f o f P r o p o s i t i o n 4.2. Choose r > 0 such that the series (4.3)
converges for all x from the support of ν. Integrating term-by-term with respect
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to ν, we get∫ ( ∞∑
n=0

Tn(x)z
n
)
ν(dx) =

∞∑
n=0

∫
Tn(x)z

nν(dx) =
∫
T0(x)ν(dx)

=
∫ M(0)

N(0)
ν(dx) = 1.

We therefore get

(4.4)
∫ M(z)

N(z)− zx
ν(dx) = 1

for all real z close enough to zero.
Using this and (4.3), we compute T1(x) =

(
x+M ′(0)−N ′(0)

)
/M(0). Since∫

T1(x)ν(dx) = 0, we see thatM ′(0) = H ′(0) and T1(x) = αxwithα = 1/M(0)
6= 0.

Since T1(x) is bounded on the support of ν and the series converges uniformly,
integrating term-by-term, we get∫ ( ∞∑

n=0

Tn(x)T1(x)z
n
)
ν(dx) =

∞∑
n=0

∫
Tn(x)T1(x)z

nν(dx)(4.5)

= z
∫
T 2
1 (x)ν(dx) = α2V(0)z,

where V(0) > 0 is the variance of ν (recall that ν is non-degenerate). On the other
hand, using partial fractions, we get

(4.6)
∫ M(z)

N(z)− zx
T1(x)ν(dx) = α

∫
M(z)

(
N(z)

z
(
N(z)− xz

) − 1

z

)
ν(dx)

=
αN(z)

z

∫ M(z)

N(z)− xz
ν(dx)− αM(z)

z

∫
1ν(dx) = α

N(z)−M(z)

z
.

(Here, we used (4.4) and the fact that ν is a probability measure.) Therefore, with
t = αV(0) = V(0)/M(0) 6= 0, since (4.5) and (4.6) are equal, we get N(z) =
M(z) + tz2, and (4.4) takes the form∫ M(z)

M(z) + tz2 − zx
ν(dx) = 1.

Substituting z = m/t and setting V(m) = tM(m/t), we see that∫ V(m)

V(m) +m(m− x)
ν(dx) = 1.

This shows that V(m) = tM(m/t) is the variance function of the CSK family
generated by ν, and it defines the corresponding polynomials {Pn} via (1.6).

To relate polynomials Tn and polynomials Pn, we use the above identities to
rewrite (4.3) as follows:
∞∑
n=0

Tn(x)

tn
mn =

M(m/t)

N(m/t)−mx/t
=

V(m)

V(m) +m(m− x)
=
∞∑
n=0

Pn(x)m
n. �
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4.3. Sharpness of some results.
REMARK 4.1. Corollary 2.5 in [15] implies sharp results about general quar-

tic polynomials. For example, one can deduce that 1 + az4 ∈ V if and only if
−1 ¬ 12a ¬ 3.

REMARK 4.2. Theorem 1.1(iii) does not extend to V1,V2 ∈ V . To see this,
consider V1(z) = V2(z) = 1 + z3/6, which is in V by Theorem 1.2. Applying the
operation V1 + V2 − 1 twelve times, we would get 1 + 2z3 ∈ V . The latter is not
possible. Using recursion (1.7) and Proposition 3.2(i), one can compute low order
moments of the measure corresponding to the variance function 1 + cz3. The first
six moments are (m1, . . . ,m6) = (0, 1, 0, 2, c, 5). The 4 × 4 Hankel determinant
of these moments is 1− c2, so 1 + 2z3 is not a variance function.

REMARK 4.3. Theorem 1.1(iv) does not extend to V1 ∈ V . To see this, con-
sider V1(z) = 1 + 4z2 + 2z3, which is in V by Theorem 1.2, and apply the op-
eration four times to get 1 + 2z3, which is not in V, as was already noted in
Remark 4.2.
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[10] M. Bożejko and N. Demni, Topics on Meixner families, in: Noncommutative Harmonic
Analysis with Applications to Probability II, M. Bożejko (Ed.), Banach Center Publ., Warsaw
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[42] J . Van Iseghem, Approximants de Padé vectoriels, PhD thesis, Université des sciences et
techniques de Lille-Flandres-Artois, 1987.

[43] S. Varma, A characterization theorem and its applications for d-orthogonality of Sheffer poly-
nomial sets, arXiv:1603.07261 (2016).

[44] D. V. Voiculescu, K. J . Dykema, and A. Nica, Free Random Variables: A Noncom-
mutative Probability Approach to Free Products with Applications to Random Matrices, Oper-
ator Algebras and Harmonic Analysis on Free Groups, American Mathematical Society, Prov-
idence, RI, 1992.

[45] R. W. M. Wedderburn, Quasi-likelihood functions, generalized linear models, and the
Gauss–Newton method, Biometrika 61 (1974), pp. 439–447.

[46] J . Wesołowski, Kernel families, unpublished manuscript, 1999.

Włodzimierz Bryc
Department of Mathematical Sciences
University of Cincinnati
Cincinnati, OH 45221-0025, USA
E-mail: Wlodzimierz.Bryc@uc.edu

Raouf Fakhfakh
Mathematics Department

College of Science and Arts in Gurayat
Jouf University

Gurayat, Saudi Arabia, and
Laboratory of Probability and Statistics

Sfax University, Sfax
Tunisia

E-mail: fakhfakh.raouf@gmail.com
Wojciech Młotkowski
Institute of Mathematics
University of Wrocław
pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
E-mail: mlotkow@math.uni.wroc.pl

Received on 16.6.2017;
revised version on 30.1.2018

Probability and Mathematical Statistics 39, z. 2, 2019 
© for this edition by CNS




