
PROBABILITY
AND

MATHEMATICAL STATISTICS

Vol. 39, Fasc. 2 (2019), pp. 279–297
doi:10.19195/0208-4147.39.2.3

KARHUNEN–LOÈVE DECOMPOSITION OF GAUSSIAN MEASURES
ON BANACH SPACES∗

BY

XAVIER BAY (SAINT-ÉTIENNE) AND JEAN-CHARLES C RO I X (SAINT-ÉTIENNE)

Abstract. The study of Gaussian measures on Banach spaces is of ac-
tive interest both in pure and applied mathematics. In particular, the spec-
tral theorem for self-adjoint compact operators on Hilbert spaces provides
a canonical decomposition of Gaussian measures on Hilbert spaces, the so-
called Karhunen–Loève expansion. In this paper, we extend this result to
Gaussian measures on Banach spaces in a very similar and constructive
manner. In some sense, this can also be seen as a generalization of the
spectral theorem for covariance operators associated with Gaussian mea-
sures on Banach spaces. In the special case of the standard Wiener measure,
this decomposition matches with Lévy–Ciesielski construction of Brownian
motion.
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1. PRELIMINARIES ON GAUSSIAN MEASURES

Let us first remind a few properties of Gaussian measures on Banach spaces.
Our terminology and notation are essentially taken from [2] (alternative presenta-
tions can be found in [9], [18] or [5]). In this paper, we consider a separable Banach
spaceX equipped with its Borel σ-algebra B(X). Note that every probability mea-
sure on

(
X,B(X)

)
is Radon and that Borel and cylindrical σ-algebras are equal in

this setting.
A probability measure γ on

(
X,B(X)

)
is Gaussian if and only if for all f ∈

X∗ (the topological dual space of X), the pushforward measure γ ◦ f−1 (of γ

∗ Part of this research was conducted within the frame of the Chair in Applied Mathemat-
ics OQUAIDO, gathering partners in technological research (BRGM, CEA, IFPEN, IRSN, Safran,
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ble, University of Nice, University of Toulouse) around advanced methods for Computer Experi-
ments.
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through f ) is a Gaussian measure on
(
R,B(R)

)
. Here, we only consider the case γ

centered for simplicity (the general case being obtained through a translation). An
important tool in the study of a (Gaussian) measure is its characteristic functional
γ̂ (or Fourier transform)

γ̂ : f ∈ X∗ → γ̂(f) =
∫
X

ei〈x,f〉X,X∗γ(dx) ∈ C,

where 〈·, ·〉X,X∗ is the duality pairing. Since γ is a centered Gaussian measure, we
have

(1.1) ∀f ∈ X∗, γ̂(f) = exp

(
− Cγ(f, f)

2

)
,

where Cγ is the covariance function

Cγ : (f, g) ∈ X∗ ×X∗ →
∫
X

〈x, f〉X,X∗〈x, g〉X,X∗γ(dx) ∈ R.

One of the most striking results concerns integrability. Indeed, using a rotation
invariance principle, it has been shown that a Gaussian measure γ admits moments
(in a Bochner sense) of all orders (as a simple corollary of Fernique’s theorem, see
[2]). Consequently, its covariance operator may be defined as

Rγ : f ∈ X∗ →
∫
X

〈x, f〉X,X∗xγ(dx) ∈ X,

using Bochner’s integral, and is characterized by the following relation:

(1.2) ∀(f, g) ∈ X∗ ×X∗, 〈Rγf, g〉X,X∗ = Cγ(f, g).

Most noticeably,Rγ is a symmetric positive kernel (Hilbertian or Schwartz kernel)
in the following sense:

∀(f, g) ∈ X∗ ×X∗, 〈Rγf, g〉X,X∗ = 〈Rγg, f〉X,X∗ ,
∀f ∈ X∗, 〈Rγf, f〉X,X∗  0.

Furthermore, the Cameron–Martin space H(γ) associated with γ is the Hilbertian
subspace of X with Hilbertian kernel Rγ (see [15] and [1] for the usual case of
reproducing kernel Hilbert spaces). In particular, we will extensively use the so-
called reproducing property

∀h ∈ H(γ), ∀f ∈ X∗, 〈h, f〉X,X∗ = 〈h,Rγf〉γ ,

where 〈·, ·〉γ denotes the inner product of H(γ). Note that H(γ) is continuously
embedded in X and admits Rγ(X∗) as a dense subset. Additionally, the covari-
ance operator has been shown to be nuclear and, in particular, compact (see [18],
Chapter 3, for a detailed presentation and proofs).
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Our objective is to decompose any Gaussian measure γ on a (separable) Ba-
nach space X which, in fact, can be done by considering any Hilbert basis of the
Cameron–Martin spaceH(γ). Indeed, let (hn)n be any arbitrary orthonormal basis
ofH(γ), and (ξn)n a sequence of independent standard Gaussian random variables
defined on a probability space (Ω,F ,P). Then the series

(1.3)
∑
n

ξn(ω)hn

converges almost surely in X and the distribution of its sum is the Gaussian mea-
sure γ (cf. Theorem 3.5.1, p. 112, in [2]). This idea of using Hilbert bases in the
Cameron–Martin space goes back to the early seventieth (see [6] and [8]). In ad-
dition, the strongest result in this direction is the existence of such a basis (hn)n
which achieves ∑

n

‖hn‖2X < +∞.

WhenX is a Hilbert space, a canonical Hilbert basis of the Cameron–Martin space
H(γ) is given by the spectral decomposition of the covariance operator Rγ as
a self-adjoint compact operator on X (see Mercer’s theorem in the special case
X = L2[a, b] with [a, b] any compact interval of R). In this paper, we will show
how to define and construct such a basis in the case X being Banach by a direct
generalization of the Hilbert case. In particular, this “diagonalizing” basis will be
of the form hn = Rγh

∗
n, where h∗n is in the dual space X∗ for all n. As a special

case of the representation (1.3), the corresponding decomposition in X (for the
strong topology) will be

x =
∑
n

〈x, h∗n〉X,X∗hn

γ almost everywhere (since (h∗n)n is a sequence of independent standard normal
random variables by the reproducing property). It means that γ can be seen as the
countable product of the standard normal distribution N (0, 1) on the real line:

γ =⊗
n

N (0, 1).

For a recent review of the interplay between covariance operators and Gaussian
measures decomposition, consult [10]. To see how to construct such a basis, we
start with the Hilbert case.

2. GAUSSIAN MEASURES ON HILBERT SPACES

Hilbert geometry has nice features that are well understood, including Gaus-
sian measures structure (see [9] and [3] for a recent treatment). First of all, the
Riesz representation theorem allows us to identify X∗ with X . As a linear oper-
ator on a Hilbert space, the covariance operator Rγ of a Gaussian measure γ is
self-adjoint and compact. Spectral theory exhibits a particular Hilbert basis of X
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given by the set (xn)n of eigenvectors of Rγ . Using this specific basis, we obtain
the covariance operator in the form

Rγ : x ∈ X →
∑
n

λn〈x, xn〉Xxn ∈ X,

where 〈·, ·〉X is the inner product of X . A simple normalization, namely hn =√
λnxn, provides a Hilbert basis of H(γ). The nuclear property of Rγ simplifies

to the form ∑
n

‖hn‖2X =
∑
n

λn < +∞.

Using the terminology of random elements, let Y be the infinite-dimensional vector
defined almost surely by

Y (ω) =
∑
n

ξn(ω)hn =
∑
n

√
λnξn(ω)xn,

where (ξn)n is a sequence of independent standard normal random variables. Then
γ is the distribution of the Gaussian vector Y . In the context of stochastic processes,
this representation is well known as the Karhunen–Loève expansion ([7], [12]) of
the process Y = (Yt)t∈T (assumed to be mean-square continuous over a compact
interval T = [a, b] of R).

To extend this spectral decomposition to the Banach case, let us recall the
following simple property (where BX denotes the unit closed ball of X):

(2.1) λ0 = sup
x∈X\{0}

〈Rγx, x〉X
‖x‖2X

= max
x∈BX

〈Rγx, x〉X

is the largest eigenvalue of the covariance operator Rγ and is equal to the Rayleigh
quotient 〈Rγx0, x0〉X/‖x0‖2X , where x0 is any corresponding eigenvector. A sim-
ilar interpretation is valid for every n ∈ N:

λn = max
x∈BX∩span(x0,...,xn−1)⊥

〈Rγx, x〉X .

Keeping this interpretation in mind, we can now consider the Banach case.

3. GAUSSIAN MEASURES IN BANACH SPACES

In the context of Banach spaces, the previous spectral decomposition of the
covariance operator does not make sense anymore. Nevertheless, we will show in
Section 3.1 that the Rayleigh quotient is well defined in this context (Lemma 3.1).
Combining this and a simple decomposition method (Lemma 3.2), we give in Sec-
tion 3.2 an iterative decomposition scheme of a Gaussian measure. Main analysis
and results are given in the last Section 3.3.
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3.1. Rayleigh quotient and split decomposition. The first lemma in this sec-
tion is an existence result of particular linear functionals based on a compactness
property. The second one provides a method to separate a Banach space into two
components with respect to a linear functional and a Gaussian measure. These re-
sults are given independently to emphasize that Lemma 3.2 could be combined
with different linear functionals to define other iterative decomposition schemes
(see Section 3.2).

LEMMA 3.1. Let γ be a Gaussian measure on
(
X,B(X)

)
a separable Banach

space and set λ0 = supf∈BX∗
〈Rγf, f〉X,X∗ ∈ [0,+∞]. Then

∃f0 ∈ BX∗ , λ0 = 〈Rγf0, f0〉X,X∗ .

Moreover, we may assume ‖f0‖X∗ = 1.

P r o o f. Let (fn)n ∈ BX∗ be a maximizing sequence:

〈Rγfn, fn〉X,X∗ → λ0 ∈ [0,+∞].

From the weak-star compactness of BX∗ (see the Banach–Alaoglu theorem), we
can suppose that fn ⇀ f∞ for the σ(X∗, X)-topology, where f∞ ∈ BX∗ . This
implies that

γ̂(fn) =
∫
X

ei〈x,fn〉X,X∗γ(dx)→
∫
X

ei〈x,f∞〉X,X∗γ(dx) = γ̂(f∞),

by Lebesgue’s convergence theorem. From equations (1.1) and (1.2) we conclude
that 〈Rγfn, fn〉X,X∗ → 〈Rγf∞, f∞〉X,X∗ . Hence λ0 = 〈Rγf∞, f∞〉X,X∗ ∈ R+.
If λ0 > 0, then ‖f∞‖X∗ = 1 and we can take f0 = f∞. In the degenerate case
λ0 = 0, we have Rγ = 0 and any f0 of unit norm is appropriate. �

We will now show how to split both X and γ, given any f ∈ X∗ of non-trivial
Rayleigh quotient (in the previous sense).

LEMMA 3.2. Let γ 6= δ0 be a non-trivial Gaussian measure on a separa-
ble Banach space

(
X,B(X)

)
. Pick f0 ∈ X∗ such that ‖f0‖X∗ = 1 and λ0 =

〈Rγf0, f0〉X,X∗ > 0. Set Rγf0 = λ0x0, P0 : x ∈ X → 〈x, f0〉X,X∗x0 and h0 =√
λ0x0. Then we have the following properties:

(1) 〈x0, f0〉X,X∗ = 1 and ‖h0‖γ = 1.

(2) P0 is the projection on X with range Rx0 and with the null space ker(f0)
= {x ∈ X, 〈x, f0〉X,X∗ = 0}. Furthermore, the restriction Q0 of P0 on H(γ) is
the orthogonal projection onto Rh0:

h ∈ H(γ), 〈h, f0〉X,X∗x0 = 〈h, h0〉γh0.
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(3) According to the decomposition x = P0x+ (I −P0)x inX, the Gaussian
measure γ can be decomposed as

γ = γλ0 ∗ γ1,

where γλ0 = γ ◦ P−10 and γ1 = γ0 ◦ (I − P0)
−1 are Gaussian measures with re-

spective covariance operators:

Rλ0 : f ∈ X∗ → λ0〈x0, f〉X,X∗x0,
Rγ1 : f ∈ X∗ → Rγf −Rλ0f.

In particular,
Rγf = λ0〈x0, f〉X,X∗x0 +Rγ1f.

(4) The Cameron–Martin space H(γ) is decomposed as

H(γ) = Rh0 ⊕H(γ1),

where H(γ1) = (I − Q0)
(
H(γ)

)
= (Rh0)⊥ equipped with the inner product of

H(γ) is the Cameron–Martin space of γ1.
(5) For each t ∈ R, denote by tx0 + γ1 the Gaussian measure on X cen-

tered at tx0 with covariance operator Rγ1 . Then, γt is the conditional probability
distribution of x ∈ X given f0(x) = t:

∀B ∈ B(X), γt(B) = γ1(B − tx0) = γ(B|f0 = t).

Moreover, f0 is N (0, λ0) and the deconditioning formula is as follows:

γ(B) =
∫
R
γt(B)

e−t
2/(2λ0)

√
2πλ0

dt.

P r o o f. (1) Since Rγf0 = λ0x0, we have

λ0〈x0, f0〉X,X∗ = 〈Rγf0, f0〉X,X∗ = λ0

and λ0 > 0 implies 〈x0, f0〉X,X∗ = 1. The second equality is obtained from the
definition of h0 and the reproducing property:

‖h0‖2γ = 〈h0, h0〉γ = 〈x0, λ0x0〉γ = 〈x0, Rγf0〉γ = 〈x0, f0〉X,X∗ = 1.

(2) Since P0x0 = 〈x0, f0〉X,X∗x0 = x0, we have P 2
0 = P0 and P0 is clearly

the projection onto Rx0 along the null space of f0 ∈ X∗. Now, if h ∈ H(γ), we
get by the reproducing property:

P0h = 〈h,Rγf0〉γx0 = 〈h, λ0x0〉γx0 = 〈h, h0〉γh0 = Q0h.
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Karhunen–Loève decomposition of Gaussian measures 285

(3) As bounded linear transformations of a (centered) Gaussian measure, both
γλ0 and γ1 are (centered) Gaussian measures. Consider the decomposition in X∗:

f = P ∗0 f + (I − P ∗0 )f.

Now, we see that P ∗0 f = 〈x0, f〉X,X∗f0 is Gaussian with variance λ0〈x0, f〉2X,X∗
and (I − P ∗0 )f = f − 〈x0, f〉X,X∗f0 is Gaussian with variance 〈Rγ1f, f〉X,X∗ . To
show that P ∗0 f and (I − P ∗0 )f are independent, we compute their covariance:∫

X

〈x, P ∗0 f〉X,X∗〈x, (I − P ∗0 )f〉X,X∗γ(dx)

=
∫
X

〈x0, f〉X,X∗〈x, f0〉X,X∗ (〈x, f〉X,X∗ − 〈x0, f〉X,X∗〈x, f〉X,X∗) γ(dx)

= 〈x0, f〉X,X∗〈Rγf0, f〉X,X∗ − λ0〈x0, f〉2X,X∗
= 0.

Using the characteristic function of γ, by independence we get

γ̂(f) =
∫
X

ei〈x,(P
∗
0 f+(I−P ∗0 )f)〉X,X∗γ(dx) = γ̂λ0(f)γ̂1(f).

This proves γ = γλ0 ∗ γ1 and also Rγ = Rλ0 +Rγ1 .
(4) Consider the orthogonal decomposition H(γ) = Rh0 ⊕H1, where H1 =

(Rh0)⊥. Since Rλ0f = λ0〈x0, f〉X,X∗x0 = 〈Rγf, h0〉γh0 is the orthogonal pro-
jection of Rγf onto Rh0, we see that Rγf = Rλ0f + Rγ1f is the corresponding
orthogonal decomposition of Rγf . Therefore, by the Pythagorean theorem,

‖Rγf‖2γ = ‖Rγ0f‖2γ + ‖Rγ1f‖2γ .

Now, using the relation

Rλ0f = λ0〈x0, f〉X,X∗x0,

we get ‖Rλ0f‖2γ = λ0〈x0, f〉2X,X∗ (= ‖Rλ0f‖2γλ0 ), thus

‖Rγ1f‖2γ = 〈Rγf, f〉X,X∗ − 〈Rλ0f, f〉X,X∗ = 〈Rγ1f, f〉X,X∗ .

Using the reproducing property in the Cameron–Martin space H(γ1), we get

‖Rγ1f‖2γ = ‖Rγ1f‖2γ1 .

Since Rγ1(X
∗) is dense in H(γ1), we conclude that H(γ1) is a subspace of H1

and, in particular, 〈·, ·〉γ1 = 〈·, ·〉γ . Finally, H(γ1) = H1 by density of Rγ(X∗) in
H(γ).
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(5) Using γ = γλ0 ∗ γ1, we can write for all B ∈ B(X):

γ(B) =
∫
X

γ1(B − tx0)
e−t

2/λ0
√
2πλ0

dt.

Since f0 ∼ N(0, λ0), we deduce that γ(B|f0 = t) = γ1(B − tx0) (as a regular
conditional probability). �

Concerning the last property on conditioning, it is worth noting that the con-
ditional covariance operator Rγ1 does not depend on the particular value t of the
random variable f0 ∈ X∗. We will now use both of these lemmas to build a com-
plete decomposition of any Gaussian measure γ.

3.2. Iterative decomposition of a Gaussian measure. Consider a (centered)
Gaussian measure γ on a separable Banach space X . The initial step of the de-
composition is to split X and γ according to Lemma 3.2 using f0 ∈ X∗ given
by Lemma 3.1. The same process is applied to the residual Gaussian measure γ1
defined in Lemma 3.2, and so on and so forth. Now, we formalize the resulting
iterative decomposition scheme.

Define γ0 = γ (initialization). By induction on n ∈ N (iteration), we define
the Gaussian measure γn+1 of the covariance operator Rγn+1 such that

∀f ∈ X∗, Rγf =
n∑
k=0

λk〈xk, f〉X,X∗xk +Rγn+1f,

where λn = maxf∈BX∗ 〈Rγnf, f〉X,X∗ and where xn is defined by the relation
Rγnfn = λnxn with fn chosen such that λn = 〈Rγnfn, fn〉X,X∗ . By Lemma 3.2,
we have the orthogonal decomposition for all n,

H(γ) = span(h0, . . . , hn)⊕H(γn+1),

where hn =
√
λnxn. If for some n, λn+1 = 0, then Rγn+1 = 0 and H(γn+1) =

{0}, which means thatRγ is a finite-rank operator andH(γ)=span(h0, . . . , hn) =
span(x0, . . . , xn) a finite-dimensional linear space. This means that γ is a finite-
dimensional Gaussian measure with support equal to its Cameron–Martin space.
Lemma 3.3 gives the properties of this decomposition in the general case where
H(γ) is infinite dimensional.

LEMMA 3.3. Suppose H(γ) is infinite dimensional and keep previous nota-
tion. We have the following properties:

(1) (hn)n is an orthonormal sequence in H(γ).
(2) (xn)n and (fn)n satisfy the following relations:

∀n ∈ N, ‖xn‖X = 〈xn, fn〉X,X∗ = 1, ∀(k, l) ∈ N2, k > l, 〈xk, fl〉X,X∗ = 0.
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(3) Let Qn : h ∈ H(γ) → Qnh =
∑n

k=0〈h, hk〉γhk be the orthogonal pro-
jection onto the linear space span(h0, . . . , hn) = span(x0, . . . , xn) inH(γ). Then,
we haveQnh =

∑n
k=0〈h−Qk−1h, fk〉X,X∗xk with the convention thatQ−1 = 0.

(4) Define Pn on X by Pnx =
∑n

k=0〈x − Pk−1x, fk〉X,X∗xk with the same
convention P−1 = 0. Then, Pn is the projection onto span(x0, . . . , xn) and null
space {x ∈ X : 〈x, fk〉X,X∗ = 0 for k = 0, . . . , n}. Furthermore, the operator
Pn restricted to H(γ) is equal to Qn.

(5) According to the decomposition x = Pnx+(I −Pn)x inX, the Gaussian
measure γ can be decomposed as γ = γλ0,...,λn ∗ γn+1, where γλ0,...,λn = γ ◦ P−1n

is a Gaussian measure with covariance operator

Rλ0,...,λn : f ∈ X∗ →
n∑
k=0

λk〈xk, f〉X,X∗xk.

Furthermore, we have γn+1 = γ ◦ (I − Pn)−1 and the relation

Rγ = Rλ0,...,λn +Rγn+1 .

(6) The Cameron–Martin space H(γ) is decomposed as

H(γ) = span(h0, . . . , hn)⊕H(γn+1),

where H(γn+1) = (I − Qn)
(
H(γ)

)
equipped with the inner product of H(γ) is

the Cameron–Martin space of the Gaussian measure γn+1.
(7) Let x∗n = (I − Pn−1)∗fn for n  0. Then, for all n we have Rγx∗n =

λnxn. The random variables x∗n are independent N (0, λn), and

∀n, Pnx =
n∑
k=0

〈x, x∗k〉X,X∗xk.

For the computation of the dual basis (x∗n)n, we have the recurrence formula

x∗n = fn − P ∗n−1fn with P ∗n−1fn =
n−1∑
k=0

〈xk, fn〉X,X∗x∗k and x∗0 = f0.

Furthermore, γλ0,...,λn = γλ0 ∗ . . . ∗ γλn , where γλn is the distribution of the ran-
dom vector x→ 〈x, x∗n〉X,X∗xn for all n.

(8) Let h∗n = (
√
λn)
−1x∗n for n  0. Then, we have Rγh∗n = hn, and the

random variables h∗n are independent N (0, 1).
(9) For each t=(t0, . . . , tn)∈Rn+1, denote by

∑n
k=0 tkxk + γn+1 the Gaus-

sian measure onX centered at
∑n

k=0 tkxk with covariance operatorRγn+1 . Then,
γt =

∑n
k=0 tkxk + γn+1 is the conditional probability distribution of x ∈ X given

x∗0(x) = t0, . . . , x
∗
n(x) = tn:

∀B ∈ B(X), γt(B) = γn+1

(
B −

n∑
k=0

tkxk
)
= γ(B|x∗0 = t0, . . . , x

∗
n = tn).
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The deconditioning formula is

γ(B) =
∫
Rn

γt(B)
n∏
k=0

e−t
2
k/(2λk)

√
2πλk

dtk.

P r o o f. (1) For n ∈ N, ‖hn‖γ = 1 by construction. If n < m, remark that

hn ∈ span(h0, . . . , hm−1) = H(γm)
⊥

to get 〈hn, hm〉γ = 0.
(2) By the definition of xn, we have 〈xn, fn〉X,X∗ = 1. Now, the reproducing

property gives

∀f ∈ BX∗ , 〈xn, f〉X,X∗ = 〈xn, Rγnf〉γn ¬ ‖xn‖γn
√
〈Rγnf, f〉X,X∗ .

Using the relations 〈Rγnf, f〉X,X∗ ¬ λn and ‖
√
λnxn‖γn = ‖hn‖γ = 1, we get

〈xn, f〉X,X∗ ¬ 1. This proves that ‖xn‖X = 〈xn, fn〉X,X∗ = 1.
For k > l, hk ∈ H(γl) and the reproducing property gives√

λk〈xk, fl〉X,X∗ = 〈hk, Rγlfl〉γl =
√
λl〈hk, hl〉γ = 0.

Hence 〈xk, fl〉X,X∗ = 0 since λk > 0.
(3) For h ∈ H(γ), we have

Qnh =
n∑
k=0

〈h, λkxk〉γxk =
n∑
k=0

〈h,Rγkfk〉γxk.

According to the orthogonal decomposition

H(γ) = span(h0, . . . , hk−1)⊕H(γk),

we get

〈h,Rγkfk〉γ = 〈h−Qk−1h,Rγkfk〉γk = 〈h−Qk−1h, fk〉X,X∗ ,

which proves the result.
(4) Let x ∈ X . Then Pnx ∈ span(x0, . . . , xn) = range(Qn), thus Pnx ∈

H(γ) and Pn(Pnx) = Qn(Pnx) = Pnx. Clearly, we have

n⋂
k=0

ker(fk) ⊂ ker(Pn).

Conversely, ifPnx = 0, thenPkx = 0 for all k ∈ [0, n] and 0 = 〈x−Pk−1x, fk〉 =
〈x, fk〉X,X∗ , hence ker(Pn) ⊂

⋂n
k=0 ker(fk).
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(5) Since Qn = Pn on H(γ), remark first that Rγλ0,...,λn = RγP
∗
n = QnRγ

and also Rγn+1 = Rγ(I − Pn)∗ = (I −Qn)Rγ . In particular,

Rγλ0,...,λnf =
n∑
k=0

〈Rγf, hk〉γhk =
n∑
k=0

λk〈xk, f〉X,X∗xk.

Consider now the decomposition for f ∈ X∗:

f = P ∗nf + (I − Pn)∗f.

The random variable P ∗nf is Gaussian with variance 〈Rγλ0,...,λnf, f〉X,X∗ and
(I − Pn)∗f is Gaussian with variance 〈Rγn+1f, f〉X,X∗ . Since

〈RγP ∗nf, (I − Pn)∗f〉X,X∗ = 〈(I −Qn)QnRγf, f〉X,X∗ = 0,

the random variables P ∗nf and (I − Pn)∗f are independent and we conclude as in
Lemma 3.2.

(6) The proof is similar to the proof of (4) in Lemma 3.2. Introduce the space
Hn+1 = span(h0, . . . , hn)

⊥; then we see that
(
Rγn+1(X

∗), 〈·, ·〉γn+1

)
is a sub-

space of Hn+1, which is sufficient to prove H(γn+1) = Hn+1 as Hilbert spaces.
(7) For n0 and h∈H(γ), we write 〈h,Rγx∗n〉γ=〈h, (I − Pn−1)∗fn〉X,X∗ ,

thus 〈h,Rγx∗n〉γ = 〈(I −Qn−1)h, fn〉X,X∗ = 〈(I −Qn−1)h,Rγnfn〉γ . Using now
the relationRγnfn = λnxn, we finally get 〈h,Rγx∗n〉γ = 〈h, λnxn〉γ , which proves
Rγx

∗
n = λnxn. In particular, 〈Rγx∗n, x∗n〉X,X∗ = λn. In the same way, we get

〈Rγx∗m, x∗n〉X,X∗ = 0 if m 6= n. Hence, the random variables x∗n are independent
with respective variance λn. The computation of this sequence comes from the
identity P ∗nf =

∑n
k=0〈xk, f〉X,X∗x

∗
k.

(8) This is a reformulation of the previous statement about the sequence (x∗n)n.
(9) This last assertion is a direct consequence of (5) and (7). �

Interpretation of the pairs (λn, xn) is the following: for n = 0, x0 is a (unit)
direction vector for a line in X that has the largest variance possible (= λ0) by a
projection of norm one (namely, the projection P0 in Lemma 3.3). Remark that P0

of norm one means P0 orthogonal or self-adjoint in the Hilbert case. By consid-
ering the measure γ1 = γ ◦ (I − P0)

−1, the vector x1 is the direction vector for
a line in the subspace (I − P0)X that has the largest variance possible and so on.
In the Hilbert case, this decomposition process is known as (functional) principal
component analysis.

In this paper, we have supposed the Radon measure γ to be Gaussian. By a
slight modification of the proof of Lemma 3.1, the decomposition is valid if we
assume only

∫
X
‖x‖2 γ(dx) < +∞ and results have to be interpreted in a mean-

square sense (in particular, independence becomes non-correlation and the last
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parts of Lemmas 3.2 and 3.3 on conditioning are valid only in the Gaussian case).
Now, it remains to see that this decomposition is complete, namely that we have

γ = ∗nγλn
according to the decomposition of the covariance operator

Rγ =
∑
n

λn〈xn, ·〉X,X∗xn.

3.3. Asymptotic analysis and the main result. In this section, we suppose that
H(γ) is infinite dimensional and we use the notation of the previous section. The
following two lemmas will be essential for the main result of this paper (Theo-
rem 3.1).

LEMMA 3.4. We haveBH(γn) = BH(γ) ∩ span(h0, . . . , hn−1)⊥ for all n and

(3.1)
√
λn = sup

f∈BX∗
sup

h∈BH(γn)

〈h, f〉X,X∗ .

P r o o f. Since H(γ) = span(h0, . . . , hn−1) ⊕ H(γn) and ‖·‖γn = ‖·‖γ on
H(γn) (see Lemma 3.3, assertion (6)), we get

BH(γ) ∩ span(h0, . . . , hn−1)⊥ = BH(γn).

But, for h ∈ H(γn), 〈h, f〉X,X∗ = 〈h,Rγnf〉γn and suph∈BH(γn)
〈h, f〉X,X∗ is at-

tained for h = Rγnf/‖Rγnf‖γn (if Rγnf 6= 0). Thus,

sup
h∈BH(γn)

〈h, f〉X,X∗ =
√
〈Rγnf, f〉X,X∗ . �

LEMMA 3.5. The sequence (λn)n is non-increasing and λn → 0.

P r o o f. By Lemma 3.4 and (3.1), we see that λn+1 ¬ λn. Moreover, (hn) is
an orthonormal system in H(γ), hence

∀f ∈ X∗, 〈hn, f〉X,X∗ = 〈hn, Rγf〉γ → 0,

as a consequence of Bessel’s inequality. In other words, we have hn ⇀ 0 for the
weak topology of X . Since the unit ball of H(γ) is precompact in X ([2], Corol-
lary 3.2.4, p. 101), we can extract a subsequence (hnk

)k such that hnk
→k h∞

for the strong topology of X . By unicity of limit in the topological vector space
X equipped with the weak topology, we deduce that h∞ = 0 in X . Therefore,
‖hnk
‖X =

√
λnk
→k 0, which completes the proof. �
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The above two lemmas are the final ingredients to prove the main result of the
paper (Theorem 3.1), namely that the orthonormal family (hn)n is a Hilbert basis
of H(γ) in Rγ(X∗) as it is discussed in [17].

THEOREM 3.1. Let γ be a centered Gaussian measure on a separable Banach
space

(
X,B(X)

)
with covariance operatorRγ and Cameron–Martin spaceH(γ).

Consider the sequence (xn)n of unit direction vectors associated with “principal”
functionals (x∗n)n with non-increasing variance (λn)n. Let h∗n =

(√
λn
)−1

x∗n and
hn = Rγh

∗
n. Then, (hn)n is a Hilbert basis of H(γ).

P r o o f. Let h ∈ H(γ) such that for all n ∈ N, 〈h, hn〉γ = 0. Then, using
Lemma 3.4, we have

∀n ∈ N, ∀f ∈ BX∗ , 〈h, f〉X,X∗ ¬
√
λn‖h‖γ ,

which implies 〈h, f〉X,X∗ = 0 for all f ∈ X∗. Thus, h = 0 and span(hn, n  0)
is dense in H(γ). �

We give now the claimed two results of this paper.

COROLLARY 3.1. The covariance operator Rγ can be decomposed as

Rγ =
∑
n

λn〈xn, ·〉X,X∗xn,

where the convergence is in L(X∗, X). More precisely, the nth step truncation
error is ∥∥Rγ − n∑

k=0

λk〈xk, ·〉X,X∗xk
∥∥ = λn+1,

where ‖·‖ stands for the operator norm in L(X∗, X).

P r o o f. From Theorem 3.1 we know that (hn)n is a Hilbert basis of H(γ). It
suffices to write

∀f ∈ X∗, Rγf =
∑
n

〈Rγf, hn〉γhn,

and use the reproducing property. The truncation error norm is∥∥Rγ − n∑
k=0

λk〈xk, .〉X,X∗xk
∥∥ = sup

f∈BX∗
‖Rγn+1f‖X .

However,
‖Rγn+1f‖X = sup

g∈BX∗
〈Rγn+1f, g〉X,X∗ ¬ λn+1

by the Cauchy–Schwarz inequality. Since Rγn+1fn+1=λn+1xn+1, ‖xn+1‖X=1,
we have ‖Rγn+1fn+1‖X = λn+1. Hence∥∥Rγ − n∑

k=0

λk〈xk, ·〉X,X∗xk
∥∥ = λn+1 → 0. �
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For γ a Gaussian measure on a separable Hilbert space X , Corollary 3.1 is
equivalent to the spectral theorem applied to the self-adjoint compact operator Rγ .
In the Banach case, Corollary 3.1 says that

Rγ =
∑
n

λn〈xn, ·〉X,X∗xn,

where (λn)n is a non-increasing sequence that converges to zero and (xn)n is a se-
quence of unit norm vectors in X and orthogonal in H(γ). Furthermore, we have
the same formula for the error. The Gaussian hypothesis is motivated by appli-
cations both in Gaussian process regression (or Kriging, see [14]) and Bayesian
inverse problems (see [16]). As Lemma 3.3 indicates, we are interested in an ef-
ficient algorithm to construct a design of experiments (see [4]) or a training set
(functionals (fn)n or, equivalently, (x∗n)n). The error expression∥∥Rγ − n∑

k=0

λk〈xk, ·〉X,X∗xk
∥∥ = sup

f∈BX∗
‖Rγn+1f‖X = λn+1

in Corollary 3.1 says that we have a precise quantification of uncertainty in terms
of confidence interval in the Gaussian case.

COROLLARY 3.2. Let us remind the definition h∗n =
(√
λn
)−1

x∗n with x∗n =
(I − Pn−1)∗fn for n  1 and x∗0 = f0. Then, we have the decomposition in X:

x =
∑
n

〈x, h∗n〉X,X∗hn, γ a.e.,

where the random variables h∗n are independent N (0, 1). In the equivalent form,
let (ξn)n be a sequence of independent standard normal variables on (Ω,F ,P).
Then the random series ∑

n

√
λnξn(ω)xn

defines an X-valued random Gaussian vector with distribution γ.

The random series representation
∑

n

√
λnξn(ω)xn is a generalization of the

Karhunen–Loève expansion based on the corresponding decomposition of the co-
variance operator Rγ =

∑
n λn〈xn, ·〉X,X∗xn.

4. EXAMPLES

4.1. Decomposition of the classical Wiener measure. Let γ be the standard
Wiener measure on X = C([0, 1],R), the space of all real continuous functions on
the interval [0, 1] which is a Banach space if equipped with the supremum norm.
The Riesz–Markov representation theorem allows us to identify X∗ with the linear
space of all bounded signed measures on [0, 1] equipped with the norm of total
variation. In this context, the dual pairing is

∀x ∈ X, ∀µ ∈ X∗, 〈x, µ〉X,X∗ =
1∫
0

x(t)µ(dt).
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The Cameron–Martin space associated with γ is the Sobolev-type space
H1

0 ([0, 1],R) defined by

H1
0 ([0, 1],R) =

{
f ∈ X, ∀t ∈ [0, 1], f(t) =

t∫
0

f ′(s)ds, f ′ ∈ L2([0, 1],R)
}

and the associated inner product 〈f1, f2〉γ = 〈f ′1, f ′2〉L2 . The covariance operator
Rγ satisfies

〈Rγµ, µ〉X,X∗ = Var
( 1∫

0

Wtµ(dt)
)
,

where (Wt)t∈[0,1] is the standard Wiener process. Using Fubini’s theorem, we eas-
ily get

〈Rγµ, µ〉X,X∗ =
∫∫
[0,1]2

t ∧ sµ(dt)µ(ds) =
1∫
0

µ([u, 1])2du.

Hence, (Rγµ)′(t) = µ([t, 1]) almost everywhere in [0, 1], and Rγµ : t ∈ [0, 1]→∫ t
0
µ([u, 1])du. Consider now the initial step of the decomposition, that is, find

f0 = µ0 ∈ BX∗ such that

〈Rγµ0, µ0〉X,X∗ = sup
µ∈BX∗

〈Rγµ, µ〉X,X∗ .

Since ∀µ ∈ BX∗ ,∀u ∈ [0, 1], |µ([u, 1])| ¬ 1, the unique measure (up to sign) into
BX∗ maximizing 〈Rγµ, µ〉X,X∗ =

∫ 1

0
µ([u, 1])2du is µ0 = δ1. Moreover,

λ0 = 〈Rγµ0, µ0〉X,X∗ = Var(W1) = 1

is the variance of the Wiener process at the point t = 1. Since µ→ 〈Rγµ, µ〉X,X∗
is a non-negative quadratic functional, a usual argument shows directly that µ0
must be an extremal point of BX∗ . Thus µ0 = δt0 for some point t0 ∈ [0, 1]. And
clearly, t0 = 1, corresponding to the maximum of variance of the Wiener process.
So, we have λ0 = 1, f0 = µ0 = δ1. Using the fact that

Rγδt : s ∈ [0, 1]→ 〈Rγδt, δs〉X,X∗ = Cov(Wt,Ws) = t ∧ s,

we get x0 = (t ∈ [0, 1] → t) and h0 = x0 (since λ0 = 1). Now, we have P0x :
t ∈ [0, 1]→ 〈x, f0〉X,X∗x0(t) = x(1)t and (I − P0)x is the function t ∈ [0, 1]→
x(t)− x(1)t. Consequently, we see that γ1 = γ ◦ (I − P0)

−1 is the Gaussian mea-
sure associated with the Brownian bridge (Bt)t∈[0,1] with covariance kernel

K1 : (t, s) ∈ [0, 1]2 → Cov(Bt, Bs) = t ∧ s− ts.

Using now the fact that µ → 〈Rγ1µ, µ〉X,X∗ is a non-negative quadratic func-
tional, we see that f1 = µ1 = δt1 , where t1 = 1

2 is the maximum of variance of
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the Brownian bridge B. Hence, we get λ1 = 1
4 , x1 =

(
t → 4

(
t ∧ 1

2 −
t
2

))
(by

the relation λ1x1 = Rγ1δ1/2) and h1 = 1
2x1. Furthermore, x∗1 = δt1 − 1

2δt0 and
γ2 = γ ◦ (I − P1)

−1 is the Gaussian distribution of the process (I − P1)W : t→
Wt −W1x0(t) −

(
W1/2 − 1

2W1

)
x1(t). By the assertion (9) of Lemma 3.3, γ2 is

the conditional distribution of W given W1 = 0,W1/2 = 0. Using this interpre-
tation, scale-invariance and spatial Markov properties of the Wiener process, we
immediately get

λn =
1

2p+2
for n = 2p + k, k = 0, . . . , 2p − 1 and p  0.

Furthermore, the Hilbert basis (hn)n of H(γ) is given by h0(t) = t and hn(t) =∫ t
0
h′n(s)ds, n  1, where

h′n(s) =


√
2p for 2k/2p+1 ¬ s ¬ (2k + 1)/2p+1,

−
√
2p for (2k + 1)/2p+1 < s ¬ (2k + 2)/2p+1,

0 otherwise

if n = 2p + k, k = 0, . . . , 2p − 1 and p  0. The family (h′n)n∈N is the usual Haar
basis of L2([0, 1],R). The functions (xn)n are Schauder’s functions

xn(t) =
√
2p+2hn(t)

corresponding to hat functions of height one and lying above the intervals
[
k
2p ,

k+1
2p

]
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Figure 1. Decomposition of the standard Wiener measure on the eight first steps.
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(n = 2p+ k). The resulting decomposition
∑

n

√
λnξn(ω)xn is the famous Lévy–

Ciesielski construction of Brownian motion on the interval [0, 1] (see [13]). The
eight first steps (and the associated residual) of this decomposition are illustrated
in Figure 1.

Remark that

∑
n

λn = 1 +
1

4
+ 2 · 1

8
+ 4 · 1

16
+ . . . = +∞

due to the “multiplicity” of the values λn. In the Hilbert case, this sum is always
finite and is the trace of the operator Rγ . Furthermore, this finite-trace property is
characteristic of Gaussian measures on Hilbert spaces. Such a characterization in
the Banach case is still an open problem.

4.2. Expansion of the Ornstein–Uhlenbeck process. Let us consider now the
Ornstein–Uhlenbeck process (Zt) on the time interval [0, 1] defined as the station-
ary solution of the following stochastic differential equation:

(4.1) dZt = −βZtdt+ σdWt, β > 0, σ > 0.

One can show that the solution is a centered, continuous Gaussian process with
covariance kernel

K(t, s) = Cov(Zt, Zs) =
σ2

2β
e−β|t−s|.

This kernel is also known as the exponential covariance kernel or Matérn co-
variance kernel of order ν = 1

2 . To get an expansion of the corresponding pro-
cess, we consider its distribution as a Gaussian measure γ on the Banach space
X = C([0, 1],R) as we did for the Brownian motion. Taking σ2 = 2β (with no
loss of generality), we have 〈Rγδt, δs〉X,X∗ = e−β|t−s|, where Rγ is the covari-
ance operator of γ. In comparison with the previous example, any extremal point
δt (t ∈ [0, 1]) maximizes the function µ ∈ BX∗ → 〈Rγµ, µ〉X,X∗ (since the pro-
cess has constant variance). Here, it is natural to choose f0 = δ0 associated with
an initial condition of equation (4.1). It immediately follows that λ0 = 1 and
x0 : t→ e−βt = K(t, 0). The conditional Gaussian measure γ1 is the distribution
of the centered Gaussian process with covariance kernel

K1 : (t, s) ∈ [0, 1]2 → e−β|t−s| − e−βte−βs.

The maximum of t→ K1(t, t) is obtained with f1 = µ1 = δ1 and we get

λ1 = 1− e−2β,

x1(t) =
1

λ1
(e−β(1−t) − e−βe−βt).
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The next iteration will be the last needed to obtain the full decomposition of the
process. The conditional Gaussian measure γ2 is of covariance kernel

K2(t, s) = K1(t, s)− λ−11 K1(t, 1)K1(s, 1).

A straightforward computation shows that the variance function t → K2(t, t) is
maximum at t = 1

2 that leads to f2 = µ2 = δ1/2 and

λ2 = 1− 2
e−β

1 + e−β
,

x2(t) =
1

λ2

(
e−β(t−1/2) − e−β/2 e

−βt + e−β(1−t)

1 + e−β

)
.

From this and since the Ornstein–Uhlenbeck process is Markovian, we deduce
the shape of all other functions. Indeed, all further steps will be given on dyadic
intervals of the form

[
k−1
2p ,

k
2p

]
with k ∈ [1, . . . , 2p], the process being independent

of these intervals. Here is the general form of the basis for n = 2p + k with p  0
and k ∈ [1, . . . , 2p]:

λn = 1− 2
e−β/2

p

1 + e−β/2p
,

xn(t) =
1

λn

[
e−β(t−(k−1/2)/2

p) − e−β/2p+1 e−β(t−(k−1)/2
p) + e−β(k/2

p−t)

1 + e−β/2p

]
.

This gives an analytical (weak) solution σ√
2β

∑
n

√
λnξnxn of the Langevin sto-

chastic differential equation (equation (4.1)).

5. CONCLUSION

In this paper, we suggest a Karhunen–Loève expansion for a Gaussian measure
on a separable Banach space based on a corresponding decomposition of its co-
variance operator. In some sense, this decomposition generalizes the Hilbert case.
Lévy–Ciesielski’s construction of Brownian motion appears to be a particular case
of such an expansion. Finally, we believe that this result will be useful both in pure
and applied mathematics since it provides a canonical representation of Gaussian
measures on separable Banach spaces.
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