ON THE EXACT DIMENSION OF MANDELBROT MEASURE

BY
NAJMEDDINE ATTIA (TunisiA)

Abstract

We develop, in the context of the boundary of a supercritical Galton-Watson tree, a uniform version of the argument used by Kahane (1987) on homogeneous trees to estimate almost surely and simultaneously the Hausdorff and packing dimensions of the Mandelbrot measure over a suitable set \mathcal{J}. As an application, we compute, almost surely and simultaneously, the Hausdorff and packing dimensions of the level sets $E(\alpha)$ of infinite branches of the boundary of the tree along which the averages of the branching random walk have a given limit point.

2010 AMS Mathematics Subject Classification: Primary: 11K55; Secondary: 60G57.

Key words and phrases: Mandelbrot measure, Hausdorff dimension.

1. INTRODUCTION AND MAINS RESULTS

Let $\left(N, W_{1}, W_{2}, \ldots\right)$ be a random vector taking values in $\mathbb{N}_{+} \times \mathbb{R}_{+}^{* \mathbb{N}_{+}}$. Then consider $\left\{\left(N_{u 0}, W_{u 1}, W_{u 2}, \ldots\right)\right\}_{u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}}$, a family of independent copies of this random vector indexed by the finite sequences $u=u_{1} \ldots u_{n}, n \geqslant 0, u_{i} \in \mathbb{N}^{*}(n=0$ corresponds to the empty sequence denoted by \emptyset). Let T be the Galton-Watson tree with defining element $\left\{N_{u}\right\}$: we have $\emptyset \in \mathrm{T}$, and if $u \in \mathrm{~T}$ and $i \in \mathbb{N}_{+}$, then $u i$, the concatenation of u and i, belongs to T if and only if $1 \leqslant i \leqslant N_{u}$. Similarly, for each $u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}$, denote by $\mathrm{T}(u)$ the Galton-Watson tree rooted at u and defined by $\left\{N_{u v}\right\}, v \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}$.

For each $u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}$ we denote by $|u|$ its length, i.e. the number of letters of u, and by $[u]$ the cylinder $u \cdot \mathbb{N}_{+}^{\mathbb{N}_{+}}$, i.e. the set of $t \in \mathbb{N}_{+}^{\mathbb{N}_{+}}$such that $t_{1} t_{2} \ldots t_{|u|}$ $=u$. If $t \in \mathbb{N}_{+}^{\mathbb{N}_{+}}$, we put $|t|=\infty$, and the set of prefixes of t consists of $\{\emptyset\} \cup$ $\left\{t_{1} t_{2} \ldots t_{n}: n \geqslant 1\right\} \cup\{t\}$. Also we set $t_{\mid n}=t_{1} \ldots t_{n}$ if $n \geqslant 1$ and $t_{\mid 0}=\emptyset$.

The probability space over which the previous random variables are built is denoted by $(\Omega, \mathcal{A}, \mathbb{P})$, and the expectation with respect to \mathbb{P} is denoted by \mathbb{E}.

We assume that $\mathbb{E}(N)>1$ so that the Galton-Watson tree is supercritical. Without loss of generality, we also assume that the probability of extinction equals zero, so that $\mathbb{P}(N \geqslant 1)=1$.

The boundary of T is the subset of $\mathbb{N}_{+}^{\mathbb{N}_{+}}$defined as

$$
\partial \mathbf{T}=\bigcap_{n \geqslant 1} \bigcup_{u \in \mathbf{T}_{n}}[u],
$$

where $\mathrm{T}_{n}=\mathrm{T} \cap \mathbb{N}_{+}^{n}$. The set $\mathbb{N}_{+}^{\mathbb{N}_{+}}$is endowed with the standard ultrametric distance

$$
d_{1}:(s, t) \mapsto \exp (-|s \wedge t|),
$$

where $s \wedge t$ stands for the longest common prefix of s and t, and with the convention that $\exp (-\infty)=0$. The set $\partial \mathrm{T}$ endowed with the induced distance is almost surely (a.s.) compact.

For the sake of simplicity we will assume throughout that the logarithmic moment generating function

$$
\tau(q)=\log \mathbb{E}\left(\sum_{i=1}^{N} W_{i}^{q}\right)
$$

is finite over \mathbb{R}. Then, we define, for $u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}$, the random variable

$$
W_{q, u}=\frac{W_{u}^{q}}{\mathbb{E}\left(\sum_{i=1}^{N} W_{i}^{q}\right)}=W_{u}^{q} e^{-\tau(q)} .
$$

Consider the set

$$
J=\left\{q \in \mathbb{R}: \quad \tau(q)-q \tau^{\prime}(q)>0\right\}=\left\{q \in \mathbb{R}: \quad \tau^{*}\left(\tau^{\prime}(q)\right)>0\right\},
$$

where τ^{*} is the Legendre transform of the function τ defined, for all $\alpha \in \mathbb{R}$, as

$$
\tau^{*}(\alpha)=\inf _{q \in \mathbb{R}}(\tau(q)-q \alpha)
$$

Let

$$
\Omega_{\gamma}^{1}=\operatorname{int}\left\{q: \mathbb{E}\left[\left|\sum_{i=1}^{N} W_{i}^{q}\right|^{\gamma}\right]<\infty\right\}, \quad \Omega^{1}=\bigcup_{\gamma \in(1,2]} \Omega_{\gamma}^{1} \quad \text { and } \quad \mathcal{J}=J \cap \Omega^{1} .
$$

Then, for $n \geqslant 1$ and $u \in \mathbb{N}_{+}^{n}$, we define the sequence $\left(Y_{p}(q, u)\right)_{p \geqslant 1}$ as

$$
Y_{p}(q, u)=\sum_{v \in \mathrm{~T}_{p}(u)} \prod_{k=1}^{n} W_{q, u v_{1} \ldots v_{k}}
$$

when $u=\emptyset$, this quantity will be denoted by $Y_{n}(q)$, and when $n=0$, its value equals one.

Since, for all $q \in \mathcal{J}$, we have

$$
\left\{\begin{array}{l}
\mathbb{E}\left(\sum_{i=1}^{N} W_{q, i}\right)=1 \\
\mathbb{E}\left(\sum_{i=1}^{N} W_{q, i} E \log W_{q, i}\right)=q \tau^{\prime}(q)-\tau(q)<0, \\
\mathbb{E}\left(\left(\sum_{i=1}^{N} W_{q, i}\right) \log ^{+}\left(\sum_{i=1}^{N} W_{q, i}\right)\right)<\infty
\end{array}\right.
$$

it follows that $\left(Y_{p}(q, u)\right)$ converges to a positive limit $Y(q, u)$ with probability one, while the limit exists and vanishes if the condition is violated. This fact was proven by Kahane in [14] when N is constant and by Biggins in [5] in general. Then, we can associate the Mandelbrot measure defined on the σ-field \mathcal{C} generated by the cylinders of $\mathbb{N}_{+}^{\mathbb{N}_{+}}$as

$$
\mu_{q}([u])= \begin{cases}W_{q, u_{1}} W_{q, u_{2}} \ldots W_{q, u_{1} \ldots u_{n}} Y(q, u) & \text { if } u \in \mathrm{~T}_{n}, \tag{1.1}\\ 0 & \text { otherwise }\end{cases}
$$

and supported on $\partial \mathrm{T}$. Moreover, under the property $E\left(Y(q) \log ^{+} Y(q)\right)<\infty$, hence in particular when $E\left(Y(q)^{h}\right)<\infty$ for some $h>1$, where $Y(q)=Y(q, \emptyset)$, we have, following [14], [16], [4], for all $q \in \mathcal{J}$, a.s., for μ_{q}-almost every $t \in \partial \mathrm{~T}$,

$$
\liminf _{n \rightarrow \infty} \frac{\log \mu_{q}\left(\left[t_{n}\right]\right)}{-n} \geqslant \tau(q)-q \tau^{\prime}(q) .
$$

Hence, for all $q \in \mathcal{J}$, a.s., the lower Hausdorff dimension of μ_{q} is

$$
\underline{\operatorname{dim}} \mu_{q} \geqslant \tau(q)-q \tau^{\prime}(q),
$$

see Section for the definition.
The Mandelbrot measure μ_{q} is naturally considered when studying the multifractal analysis of some random sets (see [IT0], [14], [1]-[3], [[]]). By exploiting the simultaneous construction of the Mandelbrot measure $\mu_{q}, q \in \mathcal{J}$, and using a uniform version of the argument applied by Kahane in [13] on homogeneous trees, we get the following result.

THEOREM 1.1. With probability one, for all $q \in \mathcal{J}, \underline{\operatorname{dim}} \mu_{q} \geqslant \tau(q)-q \tau^{\prime}(q)$.
As an application we study, for $q \in \mathcal{J}$, the set $E\left(\tau^{\prime}(q)\right)$ associated with the branching random walk with $\left(X_{i}=\log \left(W_{i}\right)\right)_{1 \leqslant i \leqslant N}$ (see Section TI). Since, with probability one, for all $q \in \mathcal{J}$, the set $E\left(\tau^{\prime}(q)\right)$ is supported by μ_{q} and its packing dimension is smaller than $\tau^{*}\left(\tau^{\prime}(q)\right)$ (see Proposition 2.7 in [2]), we get

$$
\text { a.s., } \forall q \in \mathcal{J}, \overline{\operatorname{Dim}} \mu_{q} \leqslant \tau(q)-q \tau^{\prime}(q),
$$

where $\overline{\operatorname{Dim}} \mu_{q}$ is the upper packing dimension of μ_{q} (see Section 6 for the definition). As a consequence, we infer that the measures are exact dimensional.

Corollary 1.1. With probability one, for all $q \in \mathcal{J}$,

$$
\operatorname{dim} \mu_{q}=\operatorname{Dim} \mu_{q}=\tau(q)-q \tau^{\prime}(q),
$$

where $\operatorname{dim} \mu_{q}$ and $\operatorname{Dim} \mu_{q}$ denote the Hausdorff and packing dimensions of μ_{q}, respectively.

REmark 1.1. These results are known (see [1], [3]). Using a uniform version of a percolation argument, we will give a new proof of the sharp lower bounds for the lower Hausdorff dimension of these measures.

2. PRELIMINARIES

Given an increasing sequence $\left\{\mathcal{A}_{n}\right\}_{n \geqslant 1}$ of sub- σ-fields of \mathcal{A} and a sequence of random functions $\left\{P_{n}(t, \omega)\right\}_{n \geqslant 1}(t \in \partial \mathrm{~T})$ such that

1. $P_{n}(t)=P_{n}(t, \omega)$ are non-negative and independent processes; $P_{n}(\cdot, \omega)$ is Borelian for almost all $\omega ; P_{n}(t, \cdot)$ is \mathcal{A}_{n}-mesurable for each t;
2. $\mathbb{E}\left(P_{n}(t)\right)=1$ for all $t \in \partial \mathrm{~T}$.

Such a sequence $\left\{P_{n}\right\}$ is called a sequence of weights adopted to $\left\{\mathcal{A}_{n}\right\}$. Let

$$
Q_{n}(t)=Q_{n}(t, \omega)=\prod_{k=1}^{n} P_{k}(t, \omega) .
$$

For any $n \geqslant 1$ and any positive Radon measure σ on $\partial \mathrm{T}$ (we write $\sigma \in \mathcal{M}^{+}(\partial \mathrm{T})$), we consider the random measures $Q_{n} \sigma$ defined as

$$
Q_{n} \sigma(A)=\int_{A} Q_{n}(t) d \sigma(t) \quad(A \in \mathcal{B}(\partial \mathbf{T}))
$$

where $\mathcal{B}(\partial \mathrm{T})$ is the Borel field on $\partial \mathrm{T}$. For all $A \in \mathcal{B}(\partial \mathrm{~T}), Q_{n} \sigma(A)$ is a positive martingale so it converges almost surely. Also, for all $\sigma \in \mathcal{M}^{+}(\partial \mathrm{T})$, the random measure $Q_{n} \sigma$ converges weakly, almost surely, to the random measure $Q \sigma$.

There are two possible extreme cases. The first one is that $Q_{n} \sigma(\partial \mathrm{~T})$ converges almost surely to zero, i.e. $Q \sigma=0$ a.s. In this case, we say that Q degenerates on σ or σ is said to be Q-singular. The second one is that $Q_{n} \sigma(\partial \mathrm{~T})$ converges in L^{1} so that $\mathbb{E}\left(Q_{n}(\sigma)(\partial \mathrm{T})\right)=\sigma(\partial \mathrm{T})$. In this case we say that Q fully acts on σ or σ is said to be Q-regular.

Theorem 2.1. Let α be a positive number such that $\mathcal{H}^{\alpha}(\partial \mathrm{T})<\infty$, where \mathcal{H}^{α} denotes the α-dimensional Hausdorff measure. Let $0<h<1$ and $C>0$. Suppose

$$
\begin{equation*}
\sup _{t \in \bar{B}}\left(Q_{n}(t)^{h}\right) \leqslant C|B|^{(1-h) \alpha} \tag{2.1}
\end{equation*}
$$

for all balls B and some $n=n(B)$ depending on B. Then Q is completely degenerate, that is, $Q \sigma=0$ a.s. for all $\sigma \in \mathcal{M}^{+}(\partial \mathrm{T})$.

This provides a good tool to verify the Q-singularity of σ. Indeed, if a measure is not killed, it means that it has a lower Hausdorff dimension at least α.

3. PROOF OF THEOREM 1.1

For each $\beta \in(0,1]$, let W_{β} be a random variable taking the value $1 / \beta$ with probability β and the value 0 with probability $1-\beta$. Then, let $\left\{W_{\beta, u}\right\}_{u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}}$ be a family of independent copies of W_{β}. Denote by $\left(\Omega_{\beta}, \mathcal{A}_{\beta}, \mathbb{P}_{\beta}\right)$ the probability space on which this family is defined.

We naturally extend to $\left(\Omega_{\beta} \times \Omega, \mathcal{A}_{\beta} \otimes \mathcal{A}, \mathbb{P}_{\beta} \otimes \mathbb{P}\right)$ the random variables $W_{\beta, u}$ and the random vectors $\left(N_{u 0}, W_{u 1}, \ldots\right)$ as

$$
W_{\beta, u}\left(\omega_{\beta}, \omega\right)=W_{\beta, u}\left(\omega_{\beta}\right)
$$

and

$$
\left(N_{u 0}\left(\omega_{\beta}, \omega\right), W_{u 1}\left(\omega_{\beta}, \omega\right), \ldots\right)=\left(N_{u 0}(\omega), W_{u 1}(\omega), \ldots\right),
$$

so that the families $\left\{W_{\beta, u}\right\}_{u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}}$ and $\left\{\left(N_{u 0}, W_{u 1}, \ldots\right)\right\}_{u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}}$ are independent.

The expectation with respect to $\mathbb{P}_{\beta} \otimes \mathbb{P}$ will also be denoted by \mathbb{E}. For $n \geqslant 1$ and $\beta \in(0,1]$, we set $\mathcal{F}_{n}=\sigma\left(\left(N_{u}, W_{u 1}, W_{u 2}, \ldots\right): u \in \bigcup_{k=0}^{n} \mathbb{N}_{+}^{k-1}\right)$ and $\mathcal{F}_{\beta, n}$ $=\sigma\left(\left(W_{\beta, u 1}, W_{\beta, u 2}, \ldots\right): u \in \bigcup_{k=0}^{n} \mathbb{N}_{+}^{k-1}\right)$. We denote by \mathcal{F}_{0} and $\mathcal{F}_{\beta, 0}$ the trivial σ-field.

If $\beta \mathbb{E}(N)>1$, the random variables

$$
N_{\beta, u}\left(\omega_{\beta}, \omega\right)=\sum_{i=1}^{N_{u}(\omega)} \mathbf{1}_{\left\{\beta^{-1}\right\}}\left(W_{\beta, u i}\left(\omega_{\beta}\right)\right)
$$

define a new supercritical Galton-Watson process with which the trees $\mathrm{T}_{\beta, n} \subset \mathrm{~T}_{n}$ and $\mathrm{T}_{\beta, n}(u) \subset \mathrm{T}_{n}(u), u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}, n \geqslant 1$, are associated, as well as the infinite tree $\mathrm{T}_{\beta} \subset \mathrm{T}$ and the boundary $\partial \mathrm{T}_{\beta} \subset \partial \mathrm{T}$ conditional on non-extinction.

For $u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}, 1 \leqslant i \leqslant N(u)$, and $q \in \mathcal{J}$ we define

$$
W_{\beta, q, u i}=W_{\beta, u i} W_{q, u i} .
$$

For $q \in \mathcal{J}, \beta \mathbb{E}(N)>1, n \geqslant 0$ and $u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}$, we define

$$
Y_{n}(\beta, q, u)=\sum_{v_{1} \ldots v_{n} \in \mathbf{T}_{n}(u)} \prod_{k=1}^{n} W_{\beta, q, u \cdot v_{1} \ldots v_{k}}
$$

When $u=\emptyset$, this quantity will be denoted by $Y_{n}(\beta, q)$, and when $n=0$, its value equals one.
3.1. A family of measures indexed by \mathcal{J}. For $\beta \in\left(\mathbb{E}(N)^{-1}, 1\right]$ and $\epsilon>0$ we set

$$
\mathcal{J}_{\beta, \epsilon}=\left\{q \in \mathcal{J}: \tau^{*}\left(\tau^{\prime}(q)\right)>-\log \beta+\epsilon\right\} .
$$

Notice that $\tau^{*}\left(\tau^{\prime}(q)\right)$ takes values between zero and $\tau(0)=\log (E(N))$ over \mathcal{J}. Then

$$
\begin{equation*}
\mathcal{J}=\bigcup_{\beta \in\left(\mathbb{E}(N)^{-1}, 1\right], \epsilon>0} \mathcal{J}_{\beta, \epsilon} . \tag{3.1}
\end{equation*}
$$

The following propositions will be established in Section [5.
Proposition 3.1. (1) For all $u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}$, the sequence of continuous functions $Y_{n}(\cdot, u)$ converges uniformly, almost surely and in L^{1} norm, to a positive limit $Y(\cdot, u)$ on \mathcal{J}.
(2) With probability one, for all $q \in \mathcal{J}$, the mapping

$$
\begin{equation*}
\mu_{q}([u])=\left(\prod_{k=1}^{n} W_{q, u_{1} \ldots u_{k}}\right) Y(q, u) \tag{3.2}
\end{equation*}
$$

defines a positive measure on $\partial \mathrm{T}$.
Proposition 3.2. Let $\beta \in(0,1]$ such that $\beta \mathbb{E}(N)>1$. Then, for all $\epsilon \in \mathbb{Q}_{+}^{*}$:
(1) the sequence of continuous functions $Y_{n}(\beta, \cdot)$ converges uniformly, almost surely and in L^{1} norm, to a positive limit $Y(\beta, \cdot)$ on $\mathcal{J}_{\beta, \epsilon}$;
(2) the sequence of continuous functions

$$
q \mapsto \widetilde{Y}_{n}(\beta, q)=\sum_{u \in \mathbf{T}_{n}}\left(\prod_{k=1}^{n} W_{\beta, u_{1} \ldots u_{k}}\right) \mu_{q}([u])
$$

converges uniformly, almost surely and in L^{1} norm, toward $Y(\beta, \cdot)$ on $\mathcal{J}_{\beta, \epsilon}$.
3.2. Proof of Theorem 1.1. Let $\epsilon \in \mathbb{Q}_{+}^{*}$ and $\beta \in(0,1]$ such that $\beta \mathbb{E}(N)>1$. For every $t \in \partial \mathrm{~T}$ and $\omega_{\beta} \in \Omega_{\beta}$ set

$$
Q_{\beta, n}\left(t, \omega_{\beta}\right)=\prod_{k=1}^{n} W_{\beta, t_{\mid k}},
$$

so that for $q \in \mathcal{J}_{\beta, \epsilon}, \widetilde{Y}_{n}(\beta, q)$ is the total mass of the measure $Q_{\beta, n}\left(t, \omega_{\beta}\right) \cdot \mathrm{d} \mu_{q}^{\omega}(t)$.
Now, Proposition [3.2 claims that there exists a measurable subset A of $\Omega \times \Omega_{\beta}$ of full probability in the set of those $\left(\omega, \omega_{\beta}\right)$ such that $\left(\mathrm{T}_{\beta, n}\right)_{n \geqslant 1}$ survives and for all $\left(\omega, \omega_{\beta}\right) \in A$, for all $q \in \mathcal{J}_{\beta, \epsilon}, \widetilde{Y}_{n}(\beta, q)$ does not converge to zero. Moreover, since the branching number of the tree T is \mathbb{P}-almost surely equal to the constant $\mathbb{E}(N)$ and $\beta \mathbb{E}(N)>1$, conditional on T , the \mathbb{P}_{β}-probability of non-extinction of ($\left.\mathrm{T}_{\beta, n}\right)_{n \geqslant 1}$ is positive ([\|7], Theorem 6.2). Thus, the projection of A to Ω has
\mathbb{P}-probability one and there exists a measurable subset $\Omega(\beta, \epsilon)$ of Ω such that $\mathbb{P}(\Omega(\beta, \epsilon))=1$ and for all $\omega \in \Omega(\beta, \epsilon)$, there exists $\Omega_{\beta}^{\omega} \subset \Omega_{\beta}$ of positive probability such that for all $\omega \in \Omega(\beta, \epsilon)$, for all $q \in \mathcal{J}_{\beta, \epsilon}$, for all $\omega_{\beta} \in \Omega_{\beta}^{\omega}, \widetilde{Y}_{n}(\beta, q)$ does not converge to zero. In terms of the multiplicative chaos theory developed in [12], this means that for all $\omega \in \Omega(\beta, \epsilon)$ and $q \in \mathcal{J}_{\beta, \epsilon}$, the set of those ω_{β} such that the multiplicative chaos $\left(Q_{\beta, n}(\cdot, \omega)\right)_{n \geqslant 1}$ has not killed μ_{q} on the compact set $\partial \mathrm{T}$ has a positive \mathbb{P}_{β}-probability. Now, the good property of $\left(Q_{\beta, n}(\cdot, \omega)\right)_{n \geqslant 1}$ is

$$
\mathbb{E}_{\beta}\left(\sup _{t \in B}\left(Q_{\beta, n}(t)\right)^{h}\right)=e^{n(1-h) \log (\beta)}=(|B|)^{-(1-h) \log (\beta)}
$$

for any $h \in(0,1)$ and any ball B of generation n in $\partial \mathrm{T}$, where $|B|$ stands for the diameter of B and \mathbb{E}_{β} stands for the expectation with respect to \mathbb{P}_{β}. Thus, we can apply Theorem 3 of [12] and claim that for all $\omega \in \Omega(\beta, \epsilon)$ and all $q \in \mathcal{J}_{\beta, \epsilon}$, no piece of μ_{q} is carried by a Borel set of Hausdorff dimension less than $-\log (\beta)$.

Let $\Omega^{\prime}=\bigcap_{\beta \in\left(\mathbb{E}(N)^{-1}, 1\right] \cap \mathbb{Q}_{+}^{*}, \epsilon \in \mathbb{Q}_{+}^{*}} \Omega(\beta, \epsilon)$. This set is of \mathbb{P}-probability one. Let $q \in \mathcal{J}$. By (B.I), there exists a sequence of points $\left(\beta_{n}, \epsilon_{n}\right) \in\left(\mathbb{E}(N)^{-1}, 1\right] \times \mathbb{Q}_{+}^{*}$ such that $\tau(q)-q \tau^{\prime}(q)>-\log \left(\beta_{n}\right)+\epsilon_{n} / 2$ for all $n \geqslant 1, \lim _{n \rightarrow \infty}-\log \left(\beta_{n}\right)=$ $\tau(q)-q \tau^{\prime}(q), \lim _{n \rightarrow \infty} \epsilon_{n}=0$ and $q \in \bigcap_{n \geqslant 1} \mathcal{J}_{\beta_{n}, \epsilon_{n}}$. Consequently, the previous paragraph implies that for all $\omega \in \Omega^{\prime}$,

$$
\underline{\operatorname{dim}}\left(\mu_{q}^{\omega}\right) \geqslant \limsup _{n \rightarrow \infty}-\log \left(\beta_{n}\right)=\tau(q)-q \tau^{\prime}(q) .
$$

4. APPLICATION

Let $\left(N, X_{1}, X_{2}, \ldots\right)$ be a random vector taking values in $\mathbb{N}_{+} \times(\mathbb{R})^{\mathbb{N}_{+}}$. Then consider $\left\{\left(N_{u}, X_{u 1}, X_{u 2}, \ldots\right)\right\}_{u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}}$ a family of independent copies of the vector ($\left.N, X_{1}, X_{2}, \ldots\right)$ indexed by the set of finite words over the alphabet \mathbb{N}_{+}. We assume that $\mathbb{E}(N)>1$ and $\mathbb{P}(N \geqslant 1)=1$. Suppose that, for all $u \in \mathrm{~T}, X_{u}$ is integrable and the sequences $\left(X_{u}\right)_{u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}}$ are i.i.d. Given $t \in \partial \mathrm{~T}$, by the strong law of large numbers, we have $\lim _{n \rightarrow \infty} n^{-1} S_{n}(t)=\mathbb{E}\left(X_{1}\right)$ almost surely, where $S_{n}(t)=\sum_{k=1}^{n} X_{t_{1} \ldots t_{k}}$. Since $\partial \mathrm{T}$ is not countable, the following question naturally arises: are there some $t \in \partial \mathrm{~T}$ so that $\lim _{n \rightarrow \infty} n^{-1} S_{n}(t)=\alpha \neq \mathbb{E}\left(X_{1}\right)$? Multifractal analysis is a framework adapted to answer this question. Consider the set \mathcal{I} of those $\alpha \in \mathbb{R}$ such that

$$
E(\alpha)=\left\{t \in \partial \mathrm{~T}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} X_{u_{1} \ldots u_{k}}=\alpha\right\} \neq \emptyset
$$

These level sets can be described geometrically through their Hausdorff dimensions. They have been studied by many authors, see [10], [14], [1]-[3], [7]; all these papers also deal with the multifractal analysis of associated Mandelbrot measure (see also [14], [21], [16] for the study of Mandelbrot measures dimension).

Take，for $u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}$ ，the random variable $W_{u}=e^{X_{u}}$ and set

$$
I=\left\{\tau^{\prime}(q) ; q \in \mathcal{J}\right\} .
$$

THEOREM 4．1．With probability one，for all $\alpha \in I$ ，the multifractal formalism holds at α ，i．e．，

$$
\operatorname{dim} E(\alpha)=\operatorname{Dim} E(\alpha)=\tau^{*}(\alpha) ;
$$

in particular，$E(\alpha) \neq \emptyset$ ．
Proof．A simple covering argument yields，with probability one，for all $\alpha \in I, \operatorname{Dim} E(\alpha) \leqslant \tau^{*}(\alpha)$（see，for example，Proposition 2.7 in［2］）．In addi－ tion，consider the Mandelbrot measure $\mu_{q}, q \in \mathcal{J}$ ，defined by（L．لD）．It is known （see，for example，Corollary 2.5 in［⿴囗］）that with probability one，$\mu_{q}\left(E\left(\tau^{\prime}(q)\right)\right)$ $=1$ ．In addition，according to Theorem［LID，we have，with probability one，for all $q \in \mathcal{J}, \underline{\operatorname{dim}} \mu_{q} \geqslant \tau(q)-q \tau^{\prime}(q)$ ．We deduce the result from the mass distribution principle（Theorem 6．2 below）．

Remark 4．1．This result has been proved in［3］when N is not random，and in the weaker form，for each fixed $\alpha \in I$ ，almost surely $\operatorname{dim} E(\alpha)=\tau^{*}(\alpha)$ in［10］， ［19］，［ $\mathbb{~}]$ ，when N is random．

Remark 4．2．Using the Cauchy formula，we can prove Theorem $\mathbb{I D}$（see ［⿴囗 $]$ ）．Then our result gives a new approach to estimate，almost surely and simultane－ ously，the lower Hausdorff dimension of the Mandelbrot measure over \mathcal{J} ．

5．PROOF OF PROPOSITIONS 3．1 AND 3.2

Define，for $(q, p, \beta) \in \mathcal{J} \times[1, \infty) \times(0,1]$ ，the function

$$
\varphi_{\beta}(p, q)=\exp (\tau(p q)-p \tau(q)+(1-p) \log \beta) .
$$

Lemma 5．1．For all nontrivial compact $K \subset \mathcal{J}_{\beta, \epsilon}$ there exists a real number $1<p_{K}<2$ such that for all $1<p \leqslant p_{K}$ we have

$$
\sup _{q \in K} \varphi_{\beta}\left(p_{K}, q\right)<1
$$

Proof．Let $q \in \mathcal{J}_{\beta, \epsilon}$ ；we have $\frac{\partial \varphi_{\beta}}{\partial p}\left(1^{+}, q\right)<0$ and there exists $p_{q}>1$ such that $\varphi_{\beta}\left(p_{q}, q\right)<1$ ．Therefore，in a neighborhood V_{q} of q ，we have $\varphi_{\beta}\left(p_{q}, q^{\prime}\right)<1$ for all $q^{\prime} \in V_{q}$ ．If K is a nontrivial compact of $\mathcal{J}_{\beta, \epsilon}$ ，it is covered by a finite number of such $V_{q_{i}}$ ．Let $p_{K}=\inf _{i} p_{q_{i}}$ ．If $1<p \leqslant p_{K}$ and $\sup _{q \in K} \varphi_{\beta}(p, q) \geqslant 1$ ，there exists $q \in K$ such that $\varphi_{\beta}(p, q) \geqslant 1$ ，and $q \in V_{q_{i}}$ for some i ．By log－convexity of the mapping $p \mapsto \varphi_{\beta}(p, q)$ and the fact that $\varphi_{\beta}(1, q)=1$ ，since $1<p \leqslant p_{q_{i}}$ ，we have $\varphi_{\beta}(p, q)<1$ ，which is a contradiction．

Lemma 5.2. For all compact $K \subset \mathcal{J}$, there exists $\tilde{p}_{K}>1$ such that

$$
\sup _{q \in K} \mathbb{E}\left(\left(\sum_{i=1}^{N} W_{i}^{q}\right)^{\tilde{p}_{K}}\right)<\infty .
$$

Proof. Since K is compact and the family of open sets $J \cap \Omega_{\gamma}^{1}$ increases to \mathcal{J} as γ decreases to one, there exists $\gamma \in(1,2]$ such that $K \subset \Omega_{\gamma}^{1}$. Take $\tilde{p}_{K}=\gamma$. The conclusion comes from the fact that the function $q \mapsto \mathbb{E}\left(\left(\sum_{i=1}^{N} W_{i}^{q}\right)^{\tilde{p}_{K}}\right)$ is continuous over $\Omega_{\tilde{p}_{K}}^{1}$.

Lemma 5.3 (Biggins [6]). If $\left\{X_{i}\right\}$ is a family of integrable and independent complex random variables with $\mathbb{E}\left(X_{i}\right)=0$, then $\mathbb{E}\left|\sum X_{i}\right|^{p} \leqslant 2^{p} \sum \mathbb{E}\left|X_{i}\right|^{p}$ for $1 \leqslant p \leqslant 2$.

The same lines as in Lemma 2.11 in [四], we get the following lemma.
Lemma 5.4. Let $\left(N, V_{1}, V_{2}, \ldots\right)$ be a random vector taking values in $\mathbb{N}_{+} \times$ $\mathbb{C}^{\mathbb{N}+}$ and such that $\sum_{i=1}^{N} V_{i}$ is integrable and $\mathbb{E}\left(\sum_{i=1}^{N} V_{i}\right)=1$. Consider a sequence $\left\{\left(N_{u}, V_{u 1}, V_{u 2}, \ldots\right)\right\}_{u \in \cup_{n \geqslant 0} \mathbb{N}_{+}^{n}}$ of independent copies of $\left(N, V_{1}, \ldots, V_{N}\right)$. We define the sequence $\left(Z_{n}\right)_{n \geqslant 0}$ by $Z_{0}=1$ and for $n \geqslant 1$

$$
Z_{n}=\sum_{u \in \mathbf{T}_{n}}\left(\prod_{k=1}^{n} V_{u_{\mid k}}\right) .
$$

Let $p \in(1,2]$. There exists a constant C_{p} depending on p only such that for all $n \geqslant 1$,

$$
\mathbb{E}\left(\left|Z_{n}-Z_{n-1}\right|^{p}\right) \leqslant C_{p}\left(\mathbb{E}\left(\sum_{i=1}^{N}\left|V_{i}\right|^{p}\right)\right)^{n-1}\left(\mathbb{E}\left(\left|\sum_{i=1}^{N} V_{i}\right|^{p}\right)+1\right) .
$$

Proof of Proposition B.2. (1) Recall that the uniform convergence result uses an argument developed in [6]. Fix a compact $K \subset \mathcal{J}_{\beta, \epsilon}$. By Lemma 5.2 we can fix a compact neighborhood K^{\prime} of K and $\widetilde{p}_{K^{\prime}}>1$ such that

$$
\sup _{q \in K^{\prime}} \mathbb{E}\left(\left(\sum_{i=1}^{N} W_{i}^{q}\right)^{\tilde{p}_{K^{\prime}}}\right)<\infty .
$$

By Lemma [.]. we can fix $1<p_{K} \leqslant \min \left(2, \tilde{p}_{K^{\prime}}\right)$ such that $\sup _{q \in K} \varphi_{\beta}\left(p_{K}, q\right)<1$. Then for each $q \in K$, there exists a neighborhood $V_{q} \subset \mathbb{C}$ of q whose projection to \mathbb{R} is contained in K^{\prime} and such that for all $u \in \mathrm{~T}$ and $z \in V_{q}$, the random variable

$$
W_{\beta, z, u}=W_{\beta, u} \frac{e^{z \log W_{u}}}{\mathbb{E}\left(\sum_{i=1}^{N} e^{z \log W_{i}}\right)}
$$

is well defined, and we have

$$
\sup _{z \in V_{q}} \varphi_{\beta}\left(p_{K}, z\right)<1,
$$

where for all $z \in \mathbb{C}$

$$
\varphi_{\beta}\left(p_{K}, z\right)=\beta^{1-p_{K}} \mathbb{E}\left(\sum_{i=1}^{N}\left|e^{z \log W_{i}}\right|^{p_{K}}\right)\left|\mathbb{E}\left(\sum_{i=1}^{N} e^{z \log W_{i}}\right)\right|^{-p_{K}} .
$$

By extracting a finite covering of K from $\bigcup_{q \in K} V_{q}$, we find a neighborhood $V \subset$ \mathbb{C} of K such that $\sup _{z \in V} \varphi_{\beta}\left(p_{K}, z\right)<1$. Since the projection of V to \mathbb{R} is included in K^{\prime} and the mapping $z \mapsto \mathbb{E}\left(\sum_{i=1}^{N} e^{z \log W_{i}}\right)$ is continuous and does not vanish on V, by considering a smaller neighborhood of K included in V if necessary, we can assume that

$$
A_{V}=\sup _{z \in V} \mathbb{E}\left(\left|\sum_{i=1}^{N} e^{z \log W_{i}}\right|^{p_{K}}\right)\left|\mathbb{E}\left(\sum_{i=1}^{N} e^{z \log W_{i}}\right)\right|^{-p_{K}}+1<\infty .
$$

Now, for $u \in \mathrm{~T}$, we define the analytic extension of $Y_{n}(\beta, q, u)$ to V given by

$$
Y_{n}(\beta, z, u)=\sum_{v \in \mathbf{T}_{n}(u)} \prod_{k=1}^{n} W_{\beta, z, u v_{1} \ldots v_{k}} .
$$

We denote also $Y_{n}(\beta, z, \emptyset)$ by $Y_{n}(\beta, z)$. Now, applying Lemma 5.4 with $V_{i}=$ $W_{\beta, z, i}$, we obtain
$\mathbb{E}\left(\left|Y_{n}(\beta, z)-Y_{n-1}(\beta, z)\right|^{p_{K}}\right) \leqslant C_{p_{K}}\left(\mathbb{E}\left(\sum_{i=1}^{N}\left|V_{i}\right|^{p_{K}}\right)\right)^{n-1}\left(\mathbb{E}\left(\left|\sum_{i=1}^{N} V_{i}\right|^{p_{K}}\right)+1\right)$.
Notice that $\mathbb{E}\left(\sum_{i=1}^{N}\left|V_{i}\right|^{p_{K}}\right)=\varphi_{\beta}\left(p_{K}, z\right)$. Then,

$$
\mathbb{E}\left(\left|Y_{n}(\beta, z)-Y_{n-1}(\beta, z)\right|^{p_{K}}\right) \leqslant C_{p_{K}} A_{V} \sup _{z \in V} \varphi\left(p_{K}, z\right)^{n-1} .
$$

With probability one, the functions $z \in V \mapsto Y_{n}(\beta, z), n \geqslant 0$, are analytic. Fix a closed disc $D\left(z_{0}, 2 \rho\right) \subset V$. Theorem 6.لl below implies

$$
\sup _{z \in D\left(z_{0}, \rho\right)}\left|Y_{n}(\beta, z)-Y_{n-1}(\beta, z)\right| \leqslant 2 \int_{[0,1]}\left|Y_{n}(\beta, \zeta(\theta))-Y_{n-1}(\beta, \zeta(\theta))\right| d \theta,
$$

where, for $\theta \in[0,1], \zeta(\theta)=z_{0}+2 \rho e^{i 2 \pi \theta}$. Furthermore, Jensen's inequality and

Fubini's theorem give

$$
\begin{aligned}
& \mathbb{E}\left(\sup _{z \in D\left(z_{0}, \rho\right)}\left|Y_{n}(\beta, z)-Y_{\beta, n-1}(z)\right|^{p_{K}}\right) \\
& \leqslant \mathbb{E}\left(\left(2 \int_{[0,1]}\left|Y_{n}(\beta, \zeta(\theta))-Y_{n-1}(\beta, \zeta(\theta))\right| d \theta\right)^{p_{K}}\right) \\
& \leqslant 2^{p_{K}} \mathbb{E}\left(\int_{[0,1]}\left|Y_{n}(\beta, \zeta(\theta))-Y_{n-1}(\beta, \zeta(\theta))\right|^{p_{K}} d \theta\right) \\
& \leqslant 2^{p_{K}} \int_{[0,1]} \mathbb{E}\left|Y_{n}(\beta, \zeta(\theta))-Y_{n-1}(\beta, \zeta(\theta))\right|^{p_{K}} d \theta \\
& \leqslant 2^{p_{K}} C_{p_{K}} A_{V} \sup _{z \in V} \varphi_{\beta}\left(p_{K}, z\right)^{n-1} .
\end{aligned}
$$

Since $\sup _{z \in V} \varphi_{\beta}\left(p_{K}, z\right)<1$, it follows that

$$
\sum_{n \geqslant 1}\left\|\sup _{z \in D\left(z_{0}, \rho\right)}\left|Y_{n}(\beta, z)-Y_{n-1}(\beta, z)\right|\right\|_{p_{K}}<\infty .
$$

This implies that $z \mapsto Y_{n}(\beta, z)$ converge uniformly, almost surely and in $L^{p_{K}}$ norm over the compact $D\left(z_{0}, \rho\right)$, to a limit $z \mapsto Y(\beta, z)$. This also implies that

$$
\left\|\sup _{z \in D\left(z_{0}, \rho\right)} Y(\beta, z)\right\|_{p_{K}}<\infty
$$

Since K can be covered by finitely many such discs $D\left(z_{0}, \rho\right)$, we get the uniform convergence, almost surely and in $L^{p_{K}}$ norm, of the sequence $(q \in K \mapsto$ $\left.Y_{n}(\beta, q)\right)_{n \geqslant 1}$ to $q \in K \mapsto Y(\beta, q)$. Moreover, since $\mathcal{J}_{\beta, \epsilon}$ can be covered by a countable union of such compact K, we get the simultaneous convergence for all $q \in \mathcal{J}_{\beta}$. The same holds simultaneously for all the functions $q \in \mathcal{J}_{\beta} \mapsto Y_{n}(\beta, q, u)$, $u \in \bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}$, because $\bigcup_{n \geqslant 0} \mathbb{N}_{+}^{n}$ is countable.

To complete the proof of (1), we must show that a.s., $q \in K \mapsto Y(\beta, q)$ does not vanish. Without loss of generality we suppose that $K=[0,1]$. If I is a dyadic closed subinterval of $[0,1]$, we denote by E_{I} the event $\{\exists q \in I: Y(\beta, q)=0\}$. Let I_{0}, I_{1} stand for two dyadic subintervals of I in the next generation. The event E_{I} being a tail event of probability zero or one, if we suppose that $P\left(E_{I}\right)=1$, there exists $j \in\{0,1\}$ such that $P\left(E_{I_{j}}\right)=1$. Suppose now that $P\left(E_{K}\right)=1$. The previous remark allows us to construct a decreasing sequence $(I(n))_{n \geqslant 0}$ of dyadic subintervals of K such that $P\left(E_{I(n)}\right)=1$. Let q_{0} be the unique element of $\bigcap_{n \geqslant 0} I(n)$. Since $q \mapsto Y(\beta, q)$ is continuous, we have $P\left(Y\left(\beta, q_{0}\right)=0\right)=1$, which contradicts the fact that $\left(Y_{n}\left(\beta, q_{0}\right)\right)_{n \geqslant 1}$ converges to $Y\left(\beta, q_{0}\right)$ in L^{1}.
(2) Here we develop, in the context of the boundary of a supercritical GaltonWatson tree, a uniform version of the argument used by Kahane in [133] on homogeneous trees, and written in complete rigor in [24]. Fix $\epsilon>0$ and a compact set
K in $\mathcal{J}_{\beta, \epsilon}$. Denote by E the separable Banach space of the real-valued continuous functions over K endowed with the supremum norm.

For $n \geqslant m \geqslant 1$ and $q \in K$ let

$$
Z_{m, n}(\beta, q)=\sum_{u \in \mathbf{T}_{m}} Y_{n-m}(q, u) \prod_{k=1}^{m} W_{\beta, q, u_{1} \ldots u_{k}}
$$

Notice $Z_{n, n}(\beta, q)=Y_{n}(\beta, q)$. Moreover, since $Y_{n}(\beta, \cdot)$ converges almost surely and in L^{1} norm to $Y(\beta, \cdot)$ as $n \rightarrow \infty, Y_{n}(\beta, \cdot)$ belongs to $L_{E}^{1}=L_{E}^{1}\left(\Omega_{\beta} \times \Omega, \mathcal{A}_{\beta} \times\right.$ $\mathcal{A}, \mathbb{P}_{\beta} \times \mathbb{P}$) (where we use the notation of Section V-2 in [20]), so that the continuous random function $\mathbb{E}\left(Z_{n, n}(\beta, q) \mid \mathcal{F}_{\beta, m} \otimes \mathcal{F}_{n}\right)$ is well defined by Proposition V-2-5 in [20]; also, for any fixed $q \in K$, we can deduce from the definitions and the independence assumptions that

$$
Z_{m, n}(\beta, q)=\mathbb{E}\left(Z_{n, n}(\beta, q) \mid \mathcal{F}_{\beta, m} \otimes \mathcal{F}_{n}\right)
$$

almost surely. By Proposition V-2-5 in [20] again, since $g \in E \mapsto g(q)$ is a continuous linear form over E, we thus have

$$
Z_{m, n}(\beta, q)=\mathbb{E}\left(Z_{n, n}(\beta, \cdot) \mid \mathcal{F}_{\beta, m} \otimes \mathcal{F}_{n}\right)(q)
$$

almost surely. By considering a dense countable set of q in K, we can conclude that the random continuous functions $Z_{m, n}(\beta, \cdot)$ and $\mathbb{E}\left(Z_{n, n}(\beta, \cdot) \mid \mathcal{F}_{\beta, m} \otimes \mathcal{F}_{n}\right)$ are equal almost surely.

Similarly, since for each $q \in K$ the martingale $\left(Y_{n}(\beta, q), \mathcal{F}_{\beta, n} \otimes \mathcal{F}_{n}\right)$ converges to $Y(\beta, q)$ almost surely and in L^{1}, and $Y(\beta, \cdot) \in L_{E}^{1}$, by using Proposition $\mathrm{V}-2-5$ in [20] again we can get almost surely
$Z_{n, n}(\beta, \cdot)=\mathbb{E}\left(Y(\beta, \cdot) \mid \mathcal{F}_{\beta, n} \otimes \mathcal{F}_{n}\right)$, hence $Z_{m, n}(\beta, \cdot)=\mathbb{E}\left(Y(\beta, \cdot) \mid \mathcal{F}_{\beta, m} \otimes \mathcal{F}_{n}\right)$.
Moreover, it follows from Proposition [3.2(1) and the definition of $\mu_{q}([u])$ that $Z_{m, n}(\beta, \cdot)$ converges almost surely uniformly and in L^{1} norm, as $n \rightarrow \infty$, to $\widetilde{Y}_{m}(\beta, \cdot)$. This and (5.1]) yield, by Proposition V-2-6 in [20],

$$
\tilde{Y}_{m}(\beta, \cdot)=\lim _{n \rightarrow \infty} Z_{m, n}(\beta, \cdot)=\mathbb{E}\left(Y(\beta, \cdot) \mid \mathcal{F}_{\beta, m} \otimes \sigma\left(\bigcup_{n \geqslant 1} \mathcal{F}_{n}\right)\right)
$$

and finally

$$
\lim _{m \rightarrow \infty} \widetilde{Y}_{m}(\beta, \cdot)=\mathbb{E}\left(Y(\beta, \cdot) \mid \sigma\left(\bigcup_{m \geqslant 1} \mathcal{F}_{\beta, m}\right) \otimes \sigma\left(\bigcup_{n \geqslant 1} \mathcal{F}_{n}\right)\right)=Y(\beta, \cdot)
$$

almost surely (since, by construction, $Y(\beta, \cdot)$ is $\sigma\left(\bigcup_{m \geqslant 1} \mathcal{F}_{\beta, m}\right) \otimes \sigma\left(\bigcup_{n \geqslant 1} \mathcal{F}_{n}\right)$ measurable), where the convergences hold in the uniform norm. Moreover, since $\mathcal{J}_{\beta, \epsilon}$ can be covered by a countable union of such compact K, we get the simultaneous convergence for all $q \in \mathcal{J}_{\beta, \epsilon}$.

Proof of Proposition B.1. The proof of the first point is similar to the proof of Proposition $3.2(1)(\beta=1)$. The second point is a consequence of the branching property:

$$
Y_{n+1}(q, u)=\sum_{i=1}^{N} W_{q, u i} Y_{n}(q, u i) .
$$

6. APPENDICES

APPENDIX 1 - CAUCHY FORMULA

Definition 6.1. Let $D(\zeta, r)$ be a disc in \mathbb{C} with center ζ and radius r. The set ∂D is the boundary of D. Let $g \in \mathcal{C}(\partial D)$ be a continuous function on ∂D. We define the integral of g on ∂D as

$$
\int_{\partial D} g(\zeta) d \zeta=2 i \pi r \int_{[0,1]} g(\zeta(t)) e^{i 2 \pi t} d t,
$$

where $\zeta(t)=\zeta+r e^{i 2 \pi t}$.
Theorem 6.1. Let $D=D(a, r)$ be a disc in \mathbb{C} with radius $r>0$, and f be a holomorphic function in a neighborhood of D. Then, for all $z \in D$

$$
f(z)=\frac{1}{2 i \pi} \int_{\partial D} \frac{f(\zeta) d \zeta}{\zeta-z}
$$

It follows that

$$
\begin{equation*}
\sup _{z \in D(a, r / 2)}|f(z)| \leqslant 2 \int_{[0,1]}|f(\zeta(t))| d t . \tag{6.1}
\end{equation*}
$$

APPENDIX 2 - MASS DISTRIBUTION PRINCIPLE

Theorem 6.2 (Falconer [9]). Let ν be a positive and finite Borel probability measure on a compact metric space (X, d). Assume that $M \subseteq X$ is a Borel set such that $\nu(M)>0$ and

$$
M \subseteq\left\{t \in X, \liminf _{r \rightarrow 0^{+}} \frac{\log \nu(B(t, r))}{\log r} \geqslant \delta\right\} .
$$

Then the Hausdorff dimension of M is bounded from below by δ.

APPENDIX 3 - HAUSDORFF AND PACKING MEASURES AND DIMENSIONS

Given a subset K of $\mathbb{N}_{+}^{\mathbb{N}_{+}}$endowed with a metric d making it σ-compact, g : $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$a continuous non-decreasing function near zero and such that $g(0)=0$,
and E a subset of K, the Hausdorff measure of E with respect to the gauge function g is defined as

$$
\mathcal{H}^{g}(E)=\lim _{\delta \rightarrow 0^{+}} \inf \left\{\sum_{i \in \mathbb{N}} g\left(\operatorname{diam}\left(U_{i}\right)\right)\right\},
$$

the infimum being taken over all the countable coverings $\left(U_{i}\right)_{i \in \mathbb{N}}$ of E by subsets of K of diameters less than or equal to δ.

If $s \in \mathbb{R}_{+}^{*}$ and $g(u)=u^{s}$, then $\mathcal{H}^{g}(E)$ is also denoted by $\mathcal{H}^{s}(E)$ and called the s-dimensional Hausdorff measure of E. Then, the Hausdorff dimension of E is defined as

$$
\operatorname{dim} E=\sup \left\{s>0: \mathcal{H}^{s}(E)=\infty\right\}=\inf \left\{s>0: \mathcal{H}^{s}(E)=0\right\}
$$

with the convention $\sup \emptyset=0$ and $\inf \emptyset=\infty$.
Packing measures and dimensions are defined as follows. Given g and $E \subset K$ as above, one first defines

$$
\overline{\mathcal{P}}^{g}(E)=\lim _{\delta \rightarrow 0^{+}} \sup \left\{\sum_{i \in \mathbb{N}} g\left(\operatorname{diam}\left(B_{i}\right)\right)\right\},
$$

the supremum being taken over all the packings $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ of E by balls centered on E and with diameter smaller than or equal to δ. Then, the packing measure of E with respect to the gauge g is defined as

$$
\mathcal{P}^{g}(E)=\lim _{\delta \rightarrow 0^{+}} \inf \left\{\sum_{i \in \mathbb{N}} \overline{\mathcal{P}}^{g}\left(E_{i}\right)\right\},
$$

the infimum being taken over all the countable coverings $\left(E_{i}\right)_{i \in \mathbb{N}}$ of E by subsets of K of diameters less than or equal to δ. If $s \in \mathbb{R}_{+}^{*}$ and $g(u)=u^{s}$, then $\mathcal{P}^{g}(E)$ is also denoted by $\mathcal{P}^{s}(E)$ and called the s-dimensional measure of E. Then, the packing dimension of E is defined as

$$
\operatorname{Dim} E=\sup \left\{s>0: \mathcal{P}^{s}(E)=\infty\right\}=\inf \left\{s>0: \mathcal{P}^{s}(E)=0\right\},
$$

with the convention $\sup \emptyset=0$ and $\inf \emptyset=\infty$. For more details the reader is referred to [9].

If μ is a positive and finite Borel measure supported on K, then its lower Hausdorff and packing dimensions are defined as

$$
\begin{aligned}
& \underline{\operatorname{dim}}(\mu)=\inf \{\operatorname{dim} F: F \text { Borel, } \mu(F)>0\}, \\
& \underline{\operatorname{Dim}}(\mu)=\inf \{\operatorname{Dim} F: F \text { Borel, } \mu(F)>0\},
\end{aligned}
$$

and its upper Hausdorff and packing dimensions are defined as

$$
\begin{aligned}
\overline{\operatorname{dim}}(\mu) & =\inf \{\operatorname{dim} F: F \text { Borel, } \mu(F)=\|\mu\|\}, \\
\overline{\operatorname{Dim}}(\mu) & =\inf \{\operatorname{Dim} F: F \text { Borel, } \mu(F)=\|\mu\|\} .
\end{aligned}
$$

We have (see [8], [1I])

$$
\begin{aligned}
& \underline{\operatorname{dim}}(\mu)=\operatorname{ess}_{\inf }^{\mu} \liminf _{r \rightarrow 0^{+}} \frac{\log \mu(B(t, r))}{\log (r)}, \\
& \underline{\operatorname{Dim}}(\mu)=\operatorname{ess}_{\inf }^{\mu} \limsup _{r \rightarrow 0^{+}}^{\log \mu(B(t, r))} \\
& \log (r)
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{\operatorname{dim}}(\mu)=\operatorname{ess}_{\sup }^{\mu}
\end{aligned} \liminf _{r \rightarrow 0^{+}} \frac{\log \mu(B(t, r))}{\log (r)}, ~=\operatorname{ess} \sup _{\mu} \limsup _{r \rightarrow 0^{+}} \frac{\log \mu(B(t, r))}{\log (r)},
$$

where $B(t, r)$ stands for the closed ball of radius r centered at t. If $\underline{\operatorname{dim}}(\mu)=$ $\overline{\operatorname{dim}}(\mu)($ resp. $\underline{\operatorname{Dim}}(\mu)=\overline{\operatorname{Dim}}(\mu)$), this common value is denoted by $\operatorname{dim} \mu$ (resp. $\operatorname{Dim}(\mu))$, and if $\operatorname{dim} \mu=\operatorname{Dim} \mu$, one says that μ is exact dimensional.

REFERENCES

[1] N. Attia, On the multifractal analysis of the branching random walk in \mathbb{R}^{d}, J. Theoret. Probab. 27 (4) (2014), pp. 1329-1349.
[2] N. Attia and J. Barral, Hausdorff and packing spectra, large deviations, and free energy for branching random walks in \mathbb{R}^{d}, Comm. Math. Phys. 331 (1) (2014), pp. 139-187.
[3] J. Barral, Continuity of the multifractal spectrum of a random statistically self-similar measure, J. Theoret. Probab. 13 (4) (2000), pp. 1027-1060.
[4] J. Barral, Generalized vector multiplicative cascades, Adv. in Appl. Probab. 33 (4) (2001), pp. 874-895.
[5] J. D. Biggins, Martingale convergence in the branching random walk, J. Appl. Probab. 14 (1) (1977), pp. 25-37.
[6] J. D. Biggins, Uniform convergence of martingales in the branching random walk, Ann. Probab. 20 (1) (1992), pp. 137-151.
[7] J. D. Biggins, B. M. Hambly, and O. D. Jones, Multifractal spectra for random selfsimilar measures via branching processes, Adv. in Appl. Probab. 43 (1) (2011), pp. 1-39.
[8] C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic Theory Dynam. Systems 10 (3) (1990), pp. 451-462.
[9] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, second edition, Wiley, Hoboken, NJ, 2003.
[10] K. J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab. 7 (3) (1994), pp. 681-702.
[11] A. H. Fan, Sur les dimensions de mesures, Studia Math. 111 (1) (1994), pp. 1-17.
[12] J.-P. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec 9 (2) (1985), pp. 105-150.
[13] J.-P. Kahane, Positive martingales and random measures, Chin. Ann. Math. Ser. B 8 (1) (1987), pp. 1-12.
[14] J.-P. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot, Adv. Math. 22 (2) (1976), pp. 131-145.
[15] Q. Liu, Sur une équation fonctionnelle et ses applications: Une extension du théorème de Kesten-Stigum concernant des processus de branchement, Adv. in Appl. Probab. 29 (2) (1997), pp. 353-373.
[16] Q. Liu and A. Rouault, On two measures defined on the boundary of a branching tree, in: Classical and Modern Branching Processes (Minneapolis, MN, 1994), K. B. Athreya and P. Jagers (Eds.), Springer, New York 1997, pp. 187-201.
[17] R. Lyons, Random walks and percolation on trees, Ann. Probab. 18 (3) (1990), pp. 931-958.
[18] R. Lyons, A simple path to Biggins' martingale convergence for branching random walk, in: Classical and Modern Branching Processes (Minneapolis, MN, 1994), K. B. Athreya and P. Jagers (Eds.), Springer, New York 1997, pp. 217-221.
[19] G. M. Molchan, Scaling exponents and multifractal dimensions for independent random cascades, Comm. Math. Phys. 179 (3) (1996), pp. 681-702.
[20] J. Neveu, Martingales à temps discret, Masson et Cie, éditeurs, Paris 1972.
[21] J. Peyrière, Calculs de dimensions de Hausdorff, Duke Math. J. 44 (3) (1977), pp. 591-601.
[22] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[23] B. von Bahr and C.-G. Esseen, Inequalities for the rth absolute moment of a sum of random variables, $1 \leqslant r \leqslant 2$, Ann. Math. Statist. 36 (1965), pp. 299-303.
[24] E. C. Waymire and S. C. Williams, Multiplicative cascades: Dimension spectra and dependence, in: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), J. Fourier Anal. Appl. (1995), Special Issue, pp. 589-609.

Najmeddine Attia
Faculté des Sciences de Monastir
Avenue de l'environnement 5000 Monastir, Tunisia
E-mail: najmeddine.attia@gmail.com
Received on 12.7.2017;
revised version on 22.2.2018

