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Abstract. We prove that s, (a,b) = I'(an + b)/T'(b),n =0,1,...,1s
an infinitely divisible Stieltjes moment sequence for arbitrary a,b > 0. Its
powers sp(a,b)®,c > 0, are Stieltjes determinate if and only if ac < 2.
The latter was conjectured in a paper by Lin (2019) in the case b = 1. We
describe a product convolution semigroup 7(a,b), ¢ > 0, of probability
measures on the positive half-line with densities e.(a, b) and having the
moments sy (a,b)’. We determine the asymptotic behavior of ec(a, b)(t)
for t — 0 and for ¢ — oo, and the latter implies the Stieltjes indetermi-
nacy when ac > 2. The results extend the previous work of the author and
Lopez (2015) and lead to a convolution semigroup of probability densities
(9¢(a,)(2)) .- on the real line. The special case (gc(a, 1)(z)),.. , are the
convolution roots of the Gumbel distribution with scale parameter a > 0.
All the densities g.(a, b)(z) lead to determinate Hamburger moment prob-
lems.

2010 AMS Mathematics Subject Classification: Primary: 60E07;
Secondary: 60B15, 44A60.

Key words and phrases: Infinitely divisible Stieltjes moment se-
quence, product convolution semigroup, asymptotic approximation of in-
tegrals, Gumbel distribution.

1. INTRODUCTION

A Stieltjes moment sequence is a sequence of non-negative numbers of the
form

(1.1) sn= [t"du(t), neNg:={0,1,2,...},
0

where y is a positive measure on [0, 00) such that " € L(p) for all n € Np.
The sequence (s,,) is called normalized if so = 1([0,00)) = 1, and it is called S-
determinate (resp. S-indeterminate) if (T) has exactly one solution (resp. several
solutions) p as positive measures on [0, 00). All these concepts go back to the
fundamental memoir of Stieltjes [T9].
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442 C. Berg

A Stieltjes moment sequence (s, ) is called infinitely divisible if (s¢,) is a Stielt-
jes moment sequence for any ¢ > 0. These sequences were characterized in Tyan’s
Ph.D. thesis [T]] and again in [8] without the knowledge of [21]]. An important ex-
ample of an infinitely divisible normalized Stieltjes moment sequence is s, = n!,
first established in Urbanik [22]. He proved that e, in () is a probability density
such that

_ L

(1.2) (n!)czgtnec(t)dt, ee(t) 5

oo .
[ 701 — iz)°dz, ¢t >0,
—00

Here I is Euler’s gamma function. The family (7).~ with d7.(t) = e.(t)dt is a
convolution semigroup in the sense of [A] on the locally compact abelian group
G = (0, c0) under multiplication. It is called the Urbanik semigroup in [[2]. It turns
out that the terminology “Urbanik semigroup” has been used in the literature for
certain semigroups of operators on Banach spaces with the precise name “Urbanik
decomposability semigroup”, see Section 2 in [I]]. We have therefore decided to
use the more precise name “Urbanik’s product convolution semigroup’.

By Carleman’s criterion for S-determinacy it is easy to prove that (n!)¢ is S-
determinate for ¢ < 2. That this estimate is sharp was first proved in [4], where it
was established that (n!)¢ is S-indeterminate for ¢ > 2 based on asymptotic results
of Skorokhod [[[¥] about stable distributions, see [23]. Another proof of the S-
indeterminacy was given in [[Z] based on the asymptotic behavior of e.(t),

(2m)(e=D/2 exp(—ct!/c)
Ve tlc=1)/(2¢)

(1.3) eo(t) = [1+0@t V)], t— .

In the recent paper [[I'T], Lin proposes the following conjecture:

CONJECTURE. Let a > 0 be a real constant and let s,, = I'(na + 1),n € Ny,
Then:

(a) (sp) is an infinitely divisible Stieltjes moment sequence.
(b) For real ¢ > 0 the sequence (sS)) is S-determinate if and only if ac < 2.

(c) For0 < c < 2/a the unique probability measure ji. corresponding to (s¢,)
has the Mellin transform

[ t° duc(t) =T(as +1)%, s> 0.
0

When a = 1, the conjecture is true because of the known results about Ur-
banik’s product convolution semigroup, and for a € N, a > 2, the conjecture is
true because of Theorems 4 and 7 in [[[T].

We shall prove that the conjecture is true, and it is a special case of similar
results for the following more general normalized Stieltjes moment sequence
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Urbanik’s semigroup 443

(1.4)
I'(an + b) 1 % bjae
n(a,b) = = /91 exp(—t1/*) dt =0,1,...
where a, b > 0 are arbitrary.
Defining
L bja—1 1/a
(1.5) e1(a,b)(t) = t exp(—t/?),

~ al'(b)

we get for Re z > —b/a and after a change of variable ¢ = s
(1.6) [ t?er(a,b)(t) dt =T(az + b)/T(b).
0

This leads to our first main result.

THEOREM 1.1. (i) (sn(a,b)) is an infinitely divisible Stieltjes moment se-
quence.

(i1) There exists a uniquely determined convolution semigroup (Tc(a, b))
of probability measures on the multiplicative group (0, 00) such that

c>0

(1.7) Tt dro(a,b)(t) = [[(az + b)/T(B)°, Rez > —b/a,
0

and, in particular, (s, (a,b)¢) is the moment sequence of 7¢(a, b).
(iii) d7e(a, b)(t) = ec(a, b)(t) dt on (0, 00), where

(1.8) ec(a,b)(t) = o Of t 27D (b — daz) /T (b)) dz, t >0,

is a probability density belonging to C*°(0, 00).
@iv) (sn(a7 b)c) is S-determinate if and only if ac < 2, hence independent of
b> 0.

Note that (IC4) is a special case of (ICH).

The measure 71(a,b) was considered in [20], where it was proved that the
measure is S-indeterminate if a > max(2, 2b). This is a consequence of our result.
Note that 71 (a, 1) is called the Weibull distribution with shape parameter 1/a and
scale parameter one.

In (I72) and () we use that I'(2) is a non-vanishing holomorphic function in
the cut plane

(1.9) A=C\ (—00,0],
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so we can define
['(z)° :=exp (clog'(z)), z€ A,

using the holomorphic branch of log I" which is zero for z = 1. This branch is
explicitly given in (BI) below.

Let us recall a few facts about convolution semigroups of probability measures
on LCA groups, see [B] for details.

The continuous characters of the multiplicative group G = (0, 00) can be
given as t — ¢, where x € R is arbitrary, and in this way the dual group G of
G can be identified with the additive group of real numbers. The convolution be-
tween measures . and o on (0, 00), called a product convolution and denoted by
o o, is defined as

F(Oyduoo(t) = [ [ f(ts)du(t)do(s)

o8
o8
o8

for suitable classes of continuous functions f on (0,00), e.g. those of compact
support.

A family (pc)e>o of probability measures on the multiplicative group G =
(0, 00) is called a convolution semigroup if

Lhe © hd = Hhetd, C,d >0, and hH(l) e = €1 vaguely.
c—

Here ¢ is the Dirac measure with total mass one concentrated in the neutral ele-
ment one of the group. Given a convolution semigroup ( (i)~ on (0, 00), it is easy
to see that if ; has moments of order n, then all the measures . have moments
of order n and

CZt” duc(t) = (Z?t" d,ul(t))c, c> 0.

By [B], Theorem 8.3, there is a one-to-one correspondence between convo-
lution semigroups (fic)c>0 of probability measures on G and continuous negative
definite functions p : R — C satisfying p(0) = 0 such that

o0

(1.10) i t7 duc(t) = exp (—cp(z)), c¢>0,2€R.
0

By the inversion theorem of Fourier analysis for LCA groups, if exp(—cp) is
integrable on R, then du.(t) = f.(t) dt for a continuous function f.(t) (¢tf.(t) is
the density of y. with respect to Haar measure (1/t)dt on (0, c0)) given by

1 °¢ .
(1.11) fe(t) = o _foo " Lexp (—cp(x))dz, t>0.

(Note that the dual Haar measure of (1/¢)dt on (0, 00) is 1/(27) dx on R.)

Probability and Mathematical Statistics 39, z. 2, 2019
© for this edition by CNS



Urbanik’s semigroup 445

PROPOSITION 1.1. Fora,b >0
(1.12) p(x) :=log'(b) —log'(b — iax), =z €R,
is a continuous negative definite function on R satisfying p(0) = 0.

Proposition [Tl shows that there exists a uniquely determined product convo-
lution semigroup (7.(a, b)), . , satisfying

(1.13) i t7 dre(a, b)(t) = exp [ —c(logT'(b) —logT'(b — iax))]
0
= [I'(b —iax)/T(b)]°, xR
Putting z = —ix in (ICA), we see by the uniqueness theorem for Fourier trans-

forms that dr (a, b)(t) = e1(a, b)(t) dt, and since e;(a, b)(t) has moments of any
order by (ICH), we infer that all the measures 7.(a, b) have moments of any order.
This implies that the integral

[ t*dre(a,b)(t), Rez >0,
0

defines a continuous function of z in the half-plane Re z > 0 and holomorphic
in the interior Re z > 0. By (ICI3) this function equals [I'(b + az)/I'(b)]° on the
imaginary axis and hence on Re z > 0. As in the proof of [2], Lemma 2.1, it fol-
lows that this equality extends to the half-plane Re z > —b/a, i.e. (I2) holds.

The function (I'(b — iaz)/T'(b)) is a Schwartz function on R and in particular
integrable, so (IR) follows from (I2), and e.(a, b) is C*° on (0, 00).

In this way we have established (i)—(iii) of Theorem Il The proof of the more
difficult part (iv) as well as the proof of Proposition [Tl will be given in Section 3.

By Riemann-Lebesgue’s lemma we also see that te.(a,b)(t) tends to zero
for ¢ tending to zero and to infinity. Much more on the behavior near zero and
infinity will be given in Section 2, where we extend the work of [] leading to
the asymptotic behavior of the densities e.(a, b)(t) for t — 0 and ¢ — oo. The
behavior for ¢ — oo will lead to a proof of the S-indeterminacy for ac > 2 using
the Krein criterion.

The fact that 7.(a, b) © 74(a,b) = Tc+q(a, b) can be written as

o0

(1.14) ectrd(a,b)(t) = {ec(a, b)(t/x)eq(a,b)(x) i—w, ¢, d > 0.

In particular, for ¢ = d = 1 and the explicit formula for e; (a, b) we get

b thlo—t o —1/a41/a 1/a da
(115) 62(@, )(t) = W {exp(—x t — X )?
2tb/a—1
ar(o o)
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because the Macdonald function Ky is given by

ZO p(—(2/2)°/y— y)iy

cf. [8], 8.432(6); [T4], Chapter 10, Section 25.
Except for a scaling this result is the same as Lemma 1 in [T7].

2. MAIN RESULTS

Our additional main results are the following:
THEOREM 2.1. For c > 0 we have

(27-(-)(0_1)/2 exp( ctl/(ac))
a/eD(b)° {1 B-1/271/(2)]/a

(2.1) ec(a,b)(t) = 14+ 0@ YN - .

THEOREM 2.2. The measure 1.(a,b) is S-indeterminate if and only if ac > 2.

THEOREM 2.3. Forc > 0and 0 < t < 1 we have

a1 flog(1/p)]!
@O ()

(2.2) ecla,b)(t) = + Ot log(1/8)]°72), t— 0.

REMARK 2.1. Formula (Z2) shows that e.(a, b)(t) tends to zero for t — 0 if
b/a > 1, and to infinity if b/a < 1, independent of c. If b/a = 1, then e.(a, b)(t)
tends to zero for ¢ < 1 and to infinity as a power of log(1/t) when ¢ > 1.

3. PROOFS

Proof of Proposition I From the Weierstrass product for the en-
tire function 1/I'(z) we get the following holomorphic branch in the cut plane A,
cf. (C9):

(3.1) —logT'(z) =~vz+ Logz+ io: (Log(l+z/k) — z/k), z€ A,
k=1

where Log denotes the principal logarithm, and -y is Euler’s constant.
Forn € Nand z € A define

pn(z) = vz + Logz + i (Log(1 + z/k) — z/k),

k=1
Ra(=)= S (Log(l+2/k) — 2/k),
k=n+1
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s0 limy, o0 pn(2) = —logI'(z), uniformly on compact subsets of .A. Furthermore,
we have
log I'(b) + pn(b) + Rn(b) = 0,

and since log(1 + x) < x for x > 0, we see that R,,(b) < 0 and hence logI'(b) +
pn(b) > 0.

We claim that log I'(b) + p, (b — iaz) is a continuous negative definite func-
tion, and letting n — oo, we get the assertion of Proposition [Tl

To see the claim, we write

log'(b) 4 pn(b — iax) = logI'(b) + (b — iax < kzn: i)

+ Log(b — iaz) + Z Log ( mx)

—1log T(b) + pu(b) — ia:v(*y— 5 ;) + 3 Log (1 —z‘b‘fk)

k=1 k=0

and the assertion follows since a + ¢Sz and Log(1 + iSz) are negative definite
functions when o > 0, 8 € R, see [A], [16]. =

Proof of Theorem . We modify the proof given in [[Z] and start by
applying Cauchy’s integral theorem to move the integration in (I8) to a horizontal
line

(3.2) Hs:={z=2+4+1 : x€R}, 6> -b/a.
LEMMA 3.1. With H; as in (B2) we have

33)  eda b)) = % J #0000

Proof. Fort,c > 0 fixed, f(z) = t*"1[['(b — iaz)/T'(b)] is holomorphic
in the simply connected domain C \ i(—o0, —b/a], so (B3) follows from Cauchy’s
integral theorem provided the integral

1
[ fz+iy)dy
0
tends to zero for x — +o0o0. We have
|f(x+iy)| =tV (b+y — iaz) /T ()|,
and the result follows since
IT(u + iv)| ~ V2re ™V1/2)y|*=1/2 |y| = oo, uniformly for bounded real u,

cf. [[], p. 141, equation 5.11.9; [R], 8.328(1). =
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In the following we will use Lemma BTl with the line of integration H 5, where
§ = (t1/(2©) — b) /a. Therefore,

ac 1 ©9 N
ecla,b)(t) = 17D D) i) [TO)) da,
T — 00

and after the change of variable z = a~1¢'/(*?)y and putting A := (1/c+b—a)/a
we get
3.4)
_ we) 1 % . ac c
ec(a,b)(t) = tA=e T [ e O D 1/ (00 (1 ) /T ()] du,

2ma

Binet’s formula for I' is ([K], 8.341(1))

(3.5) [(z) = V2rz""V2e7#+1(2) Re(2) > 0,
where

/1 1 1 e #
(3.6) M(Z) = { <2 — 2 + €t—1> ; dt, Re (Z) > 0.

Notice that u(z) is the Laplace transform of a positive function, so we have the
estimates for z = r + ¢s,r > 0, that is,

67 1(2)| < () < 157

where the last inequality is a classical version of Stirling’s formula, thus showing
that the estimate is uniform in s € R.
Inserting this in (B4l), we get after some simplification

(3.8)
or)e/2-1 o) —ctl/@e) SF o/ @e) fly
ec(a,b)(t)_(w)(b)ctf‘ 1/@a) et 700 [ et I g (u) M (u, ) du,
where

(39  f(u):=iu+ (1 —iu)Log(l — i), ge(u):= (1 —iu) >
and
(3.10) M (u,t) := exp [ep(t/ (1 — iu))].

From (B2) we get M (u,t) = 1+ O(t~ /(@) for t — oo, uniformly in u. We shall
therefore consider the behavior for large x of the integral

(3.11) f exf(“)gc(u) du, x= ctt/(ac),

—00
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This is the same integral as was treated in [7], equation (28), leading to

f e‘”f(“)gc(u) du = (277/96)1/2[1 + (’)(:x*l)]
by methods from [I3].
For z = ct1/(a¢) we find

Ver

_ —1/(ac
—WUJFO@ /@),

Ofo exp (ctl/(ac)f(u))gc(u)du

—00
hence

(27r)(671)/2 eXp(_Ctl/(ac)) —1/(ac
ec(a,b)(t) = RO To-aryayall T O /@), u

Proof of Theorem 2. We first prove that (s, (a, b)) is S-determinate
for ac < 2 by Carleman’s criterion, cf. [[7], p. 20. In fact, from Stirling’s formula
we have

sn(a, b)) = (D(na + b)/F(b))C/(Zn) ~ (nafe)™?, n — oo,

50 > s, (a,b) 7% = o0 if and only if ac < 2.

Since Carleman’s criterion is only a sufficient condition for S-determinacy,
we need to prove that e.(a,b) is S-indeterminate for ac > 2. We apply the Krein
criterion for S-indeterminacy of probability densities concentrated on the half-line,
using a version due to H. L. Pedersen given in [U], Theorem 4. It states that if
¢ logec(a, b)(t?) dt

(3.12) 4 o

for some K > 0, then e.(a, b) is S-indeterminate. This version of the Krein crite-
rion is a simplification of a stronger version given in [15]. We shall see that (B-T2)
holds for ac > 2.
From Theorem 211 we see that (B12) holds for sufficiently large K > 0 if and
only if
0o _Ct2/(ac)

e

dt > —o0,

and the latter holds precisely for ac > 2. This shows that 7.(a, b) is S-indeterminate
forac > 2. m

Proof of Theorem 3. The proof uses the same ideas as in [[], but
since the proof is quite technical, we give the full proof with the necessary modifi-
cations. Since we are studying the behavior for ¢ — 0, we assume that 0 < ¢ < 1
so that A := log(1/t) > 0.
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We will need integration along vertical lines
(3.13) Vo ={a+iy|y=—oc0...00}, a€eR,
and we can therefore express (I8) as

b/a—1
! - 1l /97 (—2)dz.

(3.14) cela.)(0) = o iar oy

By the functional equation for I" we get
tb/a_ 1
a 2mial’(b)° 7,

(3.15) ec(a,b)(t) 9(2)p(2)dz,

where we have defined

o(z) == t*/"T(1 — 2)°, g(2):=(—2) "¢ =exp (— cLog(—=z)).

Note that ¢ is holomorphic in C \ [1, c0), while g is holomorphic in C \ [0, c0).
For z > 0 we define

g+(z) := lim g(x +ic) = a e
e—04+
Case 1. Assume (0 < ¢ < 1.

We fix 0 < s < 1, choose 0 < £ < min(s,b) and integrate g(z)¢(z) over the
contour

C:={-b+iy|y=00...0}U[=b,—c]U{ece? |6 =m...0}
Ule,s]U{s+iy|y=0...00}

and get zero by the integral theorem of Cauchy. On the interval [e, s] we will use
9= 9+-

Similarly, we get zero by integrating g(z)p(z) over the complex conjugate
contour C, and now we use g = g_ on the interval [, s].

Subtracting the second contour integral from the first leads to

S

J=J = ] 9@ez)dz+ [o(z)(94(2) - g-(2)) dv =0,
Vs V_y |Z‘:6 £

where the integral over the circle is with positive orientation. Note that the two

integrals over [—b, —e] cancel. Since 0 < ¢ < 1, it is easy to see that the just men-

tioned integral converges to zero for ¢ — 0, and we finally get fore — 0

tb/(l—l tb/a—l Sin(ﬂ'C) S e
ec(a,b)(t) = még(z)w(z) dz + T aal(b) {96' p(r) dx
=11 + Is.
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We claim that I; is o(t(5+%)/a=1) for t — 0. To see this, we insert the parametriza-
tion of V5 and get

tb/ail 7 . \—ci(s+iy)/a . \C
= Dral ()¢ [ (=s —iy) "t/ (1 — s — iy)°dy
t(s+b)/a71 00

- —iyNja/ . (1 — 5 — 51/)¢
et )¢ s = i) T s i)y

I
0

[e.e]

and the integral is o(1) for ¢ — 0 by Riemann-Lebesgue’s lemma because A :=
log(1/t) — oc.
The substitution 4 = zA in the integral in the term /5 leads to

B t¥/e=Lsin(mc)

sA
— c—1 —c, —u/a _ c
(3.16) I al (b)° A £1L e T (1 — u/A)° du.

We split the integral in (B-16) as
sA (9] 0

GA7) [ we™/ [D(1 —u/A) — 1] du+ [ we™" du— [ u=e/" du.
0 0 sA

Calling the three terms .J1, Jo, J3, we have Jo = ' ~°T'(1 — ¢) and
Js = —a'"°T'(1 — ¢,sA/a),

where I'(«, ) is the incomplete gamma function with the asymptotics

o
INa,x) = f u e du ~ 2 le T 2 — 0
x

(cf. [R], 8.357), hence
Js = Ot/*A™%), t— 0.

Using the digamma function ¥ = I'"/T", we get by the mean-value theorem
I(1—u/A)—1= —%cf(l — Ou/A)°T(1 — Ou/A)
for some 0 < 6 < 1, but this implies that
cu
(1 —u/A)°—1| < XM(S), 0<u<sA,

where
M(s) := max{I'(z)°|¥(z)| | 1 —s <z < 1},

soJp = O(A™Y) fort — 0.
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This gives
t¥/o=Lsin(re)
I, — Ac1 AL I—ep(q s/aA—c
2 al (b)e (OA™ ) +a (1—¢c)+0(t )
th/a—1pc—1
— - + O(tb/a71A072)’
(al'(b))"T(c)

where we have used Euler’s reflection formula for I'. Since finally
I = o(tetV/a1y = O(/a=1 A2,

we see that (Z2) holds.

Case 2. Assume 1 < ¢ < 2.
The gamma function decays so rapidly on vertical lines z = « + iy, y — F00,
that we can integrate by parts in (B13) to get
7fb/a,—l (_Z)—(c—l) d

— — (##/°T(1 — 2)%)d=.
2mial (b)) c—1 g, (1T = 2))de

(3.18)  ec(a,b)(t) =

Defining

d
1(z) = d—(tz/“F(l —2)°) = 797 (1 — 2)°((1/a)logt — c¥(1 — 2))
z
and using the same contour technique as in Case 1 to the integral in (BIR), where

now 0 < c—1< 1, wegetfor 0 < s <1 fixed the equality

b/a—1 _ B
ec(a,b)(t) = _zr(b)c(h + 1),
where
= 1 (e ~ _sin(w(c—l)) e
e 4 @ e = [ ) de

We have I; = o(t¥/A) for t — 0 by Riemann—Lebesgue’s lemma, and the substi-
tution v = xA in the second integral leads to

2 Vo (z) da

o—n

sA
= A2 fuf(cfl)gol(u/A) du
0

sA sA
= —(1/a)Ac7? ( i u= (Ve gy + 1l u— e emu/a (D(1 —u/A)*—1) du)
0 0
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sA
— A2 [ = De (1 — u/A)°U(1 — u/A) du
0
= —a!°ATIT(2 — ¢) + O(AT2).
Using the equality

sin (7(c — 1))

c—Tn (—alchc*1F(2 —c)) =-a

obtained by Euler’s reflection formula, we see that (Z2) holds.

Case 3. Assume ¢ > 2.
We perform the change of variable w = (1/a)Az in (B313) and assume that
A > a. This gives

B tb/aflAcfl 1

ec(a,b)(t) = T O 2mi V(f (—w) % T (1 — aw/A)° dw.

b/a)A

Using Cauchy’s integral theorem, we can shift the contour V_ /45 to V_; as the
integrand is holomorphic in the vertical strip between both paths and exponentially
small at both extremes of that vertical strip. For the holomorphic function h(z) =
I'(1 — 2)¢in the domain G = C\ [1, 0c0), which is star-shaped with respect to zero,
we have

0
hence
caw 1
(3.19) I'l—aw/A)°=1- X JT(1 = uaw/A) U (1 — uaw/A) du.
0
Defining
1
R(w) = [T(1 — uaw/A) ¥ (1 — uaw/A) du,
0
we get
L [ (—w)~%e "I(1 — aw/A) dw
2mi
_ 1 —c_—w CLC/A l—c _—w
=5 v‘[l( w) ‘e "dw + i V{I( w) ‘e R(w)dw.

For any w € V_1,0 < u < 1 and for A > a it follows that 1 — uaw/A belongs
to the closed vertical strip located between the vertical lines V; and Va. Because
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I'(z)°¥(z) is continuous and bounded in this strip, R(w) is bounded for w € V_;
by a constant independent of A > a. Furthermore, (—w)!~¢e~" is integrable over
V_1 because ¢ > 2.

On the other hand, in the integral

1
— | (—w) ‘e Ydw
27y

the contour V_; may be deformed to a Hankel contour

H:={z—i|lz=00...0}U{e" |0 =—n/2...—3n/2}
U{z+i|z=0...00}

surrounding [0, 00), and the integral over H is Hankel’s integral representation of
the reciprocal gamma function:

1

— f(—w)*ce*wdw = ek

21 M

Therefore, when we join everything, we obtain for ¢ > 2:

b/a—1 o c—1
ec(a,b)(t) = [ZF(b)]C L g(rl(/ct))] + Ot/ log(1/t)]°72), t— 0.

Case 4.c=1,c=2.
These cases are easy since e; (a, b)(t) is explicitly given by (I3) and ez (a, b)(t)
by (I13). The asymptotics of K is known:

Ko(t) =1log(2/t) + O(1), t—0. m

REMARK 3.1. The behavior of e.(a,b)(t) for ¢ — 0 can be obtained from
(B14) by using the residue theorem when c is a natural number. In fact, in this case
I'(—z)¢ has a pole of order c at z = 0, and a shift of the contour V_; to V;, where
0 < s < 1, has to be compensated by a residue, which will give the behavior for
t— 0.

When c is a natural number, one can actually express e.(a,b)(t) in terms of
Meijer’s G-function:

tb/a—l c0 1/a - ... =
ec<aab)(t):ar(b)cG0,c t ‘ o --- 0 )

cf. Section 9.3 in [K].
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4. ONE-PARAMETER EXTENSION OF THE GUMBEL DISTRIBUTIONS

The group isomorphism x = log(1/t) of the multiplicative group (0, co) onto
the additive group R transforms the convolution semigroup (Tc(a, b))c>0 into an

ordinary convolution semigroup (Gc(a, b))c>0 of probability measures on R with
densities given by

4.1) gc(a,b)(z) = e Pec(a,b)(e™™), =z €eR,

and a, b, ¢ > 0 are arbitrary. For ¢ = 1 we have

4.2) g1(a,b)(z) = exp(—bz/a —e %), zeR.

1
al’(b)

This density is infinitely divisible and the uniquely determined convolution roots
are given by ().

The special density g1(a, 1)(z) is the Gumbel density with scale parameter
a > 0, and the basic case a = 1 is discussed in [[]. From the asymptotic behavior
of e.(a,b) in Theorems 7T and we can obtain the asymptotic behavior of the
convolution roots g.(a, b):

(4.3)
(2m)(c—1)/2 exp(—ce~/(a9)

9e(0: D) (@) =" TS0 oxp (2(b — 172+ 1(20)) a) [1+0(exp (#/(a0)) )|

for x — —o0, and

exp(—bx/a)xc!
4.4)  gcla,b)(x) = EF(Z)]éF)(C) +0 (exp(—bm/a)xc_2) , T — 00.

THEOREM 4.1. All densities g.(a,b) belong to determinate Hamburger mo-
ment problems.

Proof. We first prove that g;(a,b) is determinate, and for this it suffices to
verify that the moments

o0

(4.5) sn= [ x"g1(a,b)(z) dx
satisfy Carleman’s condition ZZOZO sgnl /@n) oo (cf. [T7], p. 19). From (E3)
we get
Sop = ! 0f(log t)2neb/aL exp(—tY/9) dt = 1 Ofo(a log 5)?"sb~te=% ds
al'(b) I'(b)
a?n 1 [e%¢)
< ( [(og s)2nsb=tds + Ik gintb—le=s ds).
INCI RS 1
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By changing variables we see that

1
2 b—1 (2n)!
{logs " ds-b2n+1,

and

oo

i §2T=le=5 ds < T'(2n + b),

1
hence

1/(2n)
SL/(2n) a (2n)! 1/(2n)
Sogm < T(b)1/@n) [(an+1 +T'(2n +0) )

and the Carleman condition follows from Stirling’s formula, which shows that the
right-hand side is bounded by Kn for sufficiently large K > 0. We next use Corol-
lary 3.3 in [] to infer that the Carleman condition also holds for all convolution
roots gc(a,b). m

Concerning the moments
(4.6) sp(c) = f x"gc(a,b)(z)dx, mn € Ny,

of the convolution roots we have the following result:

THEOREM 4.2. The moment s, (c) of (B8) is a polynomial
n
4.7) sp(c) = > an,kck7 n>1,

of degree at most n in the variable c. The coefficients a,, ), are given below.

Proof. From (1) we get
f €™ dG(a, b)( f tWe.(a,b)(t) dt = [D(b + iay) /T (b)),

which shows that the negative definite function p corresponding to the convolution
semigroup (Ge(a, b))

c>0 is
p(y) =logT'(b) —logT'(b+ iay), ye€R.

The derivatives of p can be expressed in terms of the digamma function W, namely

P () = —(ia)" '™ (b + day), n e Ny,
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so if for n € Ny we define (cf. [B], equation (2.7))
Op = _in+1p(n+l)(0) = (_a)n+1\11(n) (b)a

we find

oo =ay+ - — abz

b b+k)

o, = a"tn) Z a k: — = a"nl(n+1,b), neN,

where ((z, q) is Hurwitz’ zeta function (cf. [B], 9.521).
According to [B] we have si(c) = ogc, s2(c) = o1¢c + 0(2]02 and in general
sp(c) is given by (B71), where the coefficients a,, ;, are determined by the recursion

" n
Ap41,k+1 = Z ajk <j On—j, n=k=>0.
j=k

It is easy to see that

n
n—2 n
Gp1 = On—1, GAnn—-1 = <2>UQ 01, Qpn =0. N
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