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Abstract

The paper deals with several problems concerning ontological notions of
existence, possibility, well-foundation and fusion, used in reference to objects,
in relation to contemporary semantic analysis of modal terms. The name
ontologic was suggested by Polish logician Jerzy Perzanowski for theoretical
or formal part of ontology. Term modal ontologic refers to the formal logical
study of ontological concepts within the framework of propositional modal
logic, especially a study of logical interconnections between modal concepts
as applied to propositions or some proposition-like entities, on the one hand,
and ontological concepts of existence, possibility, well-foundation and fusion
used in reference to objects, on the other hand. It is shown, that a slight
modification to contemporary semantic analysis of modal terms can capture
some intuitions of Aristotle and his scholastic followers, especially about
so-called modalities de re.

0. The history of modal logic begins with Aristotle who studied the logical
interconnections between the necessary, the impossible, the possible and the per-
mitted. However, in On Interpretation, he argues, that every single assertion, such
as premise or conclusion in a syllogism, is either the affirmation or the denial of a
single predicate of a single subject. Thus, for Aristotle, modal terms in fact mod-
ify this assertion or denial, therefore modalities are well-rooted in things. Hence,
modal terms are closely related to ontological notions. The Megarians and Stoics
also developed various theories concerning modality but in connection with propo-
sitional logic. So, for them, modal terms modify propositions or some proposition-
like entities, situations or states of affairs. Contemporary attention paid to the
formal properties of modal terms begins with the work of C.I. Lewis Survey of
Symbolic Logic.1 Contemporary semantic analysis of modal terms, known as pos-
sible worlds semantics, initiated by S. Kripke, follows Leibniz suggestion that a
necessary proposition is one which holds not merely in the actual world but in
every other possible worlds as well.2

1 See C.I. Lewis, A Survey of Symbolic Logic, Berkeley 1918.
2 See S.A. Kripke, ‘A Completeness Theorem in Modal Logic’, The Journal of Symbolic Logic

24 (1959), pp. 1–14.
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1. The name ontologic was suggested by Polish logician Jerzy Perzanowski for
theoretical or formal part of ontology. 3 By modal ontologic I understand the
formal logical study of ontological concepts within the framework of propositional
modal logic, especially a study of logical interconnections between modal concepts,
the necessary and the possible, on the one hand, and ontological concepts of ex-
istence, possibility, well-foundation and fusion on the other hand. There is one
key difference in comparison to the standard approach. I assume, the concept of
necessity as applied to propositions or proposition-like entities may be relativized
to the objects in a fixed ontological universe. So, instead of contexts like it is
necessary that A, where A stands for a proposition, I will study contexts like for
b it is necessary that A, where A stands for a proposition and b stands for an
object. Let me adopt an informal notation to express some basic insights. For
object a and proposition B let aB mean that for a it is necessary that B. For
object a let Exa mean that a exists and let Posa mean that a is possible. For
objects a and b let a/b mean that a is well-founded in b and let (a*b) stand for
the fusion of a and b. The signs ∼, &, ∨ and → will then be used respectively
as symbols for negation, conjunction, disjunction and material implication. It is
quite clear that if an object exists, then every state of affair that is necessary for
the object obtains:

(1) Exa → (aB → B).

So, the denial of something that is necessary for object a, implies the denial of
the existence of a:

(2) aB → (∼B →∼Exa).

On the other hand, the existence of object a is something that is necessary for
object a:

(3) a(Exa),

therefore, existence is, in a sense, something necessary. If there is a contradic-
tory pair of situations, such that each of them is necessary for object a, then a is
not a possible object:

(4) (aB & a(∼B)) →∼Posa,

which implies, that

(5) Posa → (aB →∼a(∼B)).

Of course, each object that exists, is a possible object:

(6) Exa → Posa.

If object a is well-founded in object b, then everything that is necessary for b
is also necessary for a:

3 See J. Perzanowski, ‘Ontologies and Ontologics’, [in:] E. Żarnecka-Bia ly (ed.), Logic Counts,
Dordrecht 1990, pp. 23–42.
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(7) a/b → (bC → aC).

On the other hand, if the existence of object b is necessary for object a, then
a is well-founded in b:

(8) a(Exb) → a/b,

and conversely, if object a is well-founded in object b, then the existence of b is
necessary for a:

(9) a/b → a(Exb).

Well-founding is a transitive and reflexive relation, thus:

(10) (a/b & b/c) → a/b

and

(11) (a/a).

By the fusion of objects a and b, I understand a complex object composed of
a and b as its direct parts. Therefore, if a situation C is necessary for object a or
is necessary for object b, then it is necessary for the fusion of these objects:

(12) (aC ∨ bC) → (a*b)C,

but the converse implication is not generally valid. There could be a situation C
that is neither necessary for a nor for b, but is necessary for the fusion of a and
b. If the fusion of a and b exists, then a and b also exists:

(13) Ex(a*b) → (Exa & Exb),

but not conversely. Finally, each complex object is well-founded in its direct parts:

(14) (a*b)/a

and

(15) (a*b)/b.

As was said, Leibniz suggested that necessity was an equivalent to the truth at
all possible worlds, although perhaps he never stated it explicitly. So, a proposi-
tion is necessarily true in this world (or a situation, or a state of affairs necessarily
obtains in this world) if and only if that proposition is true in all worlds alterna-
tive to this world (or that situation, or that state of affairs obtains in all worlds
alternative to this world). Possible worlds are also referred to by the term ‘stand
points’ or ‘possibilities’ or ‘state descriptions’.

Assuming that, the concept of necessity as applied to propositions or proposition-
like entities may be relativized to the objects in a fixed ontological universe, I will
take into account not one, but many different alternativeness-relations, one rela-
tion for one object. So, instead of contexts like v is an alternative to w , where
v and w stand for possible worlds, I will deal with contexts like for a possible
world v is accessible from world w , or shortly, v is a-accessible from w , where
a stands for an object. It could be said, that if v is a-accessible from w , then
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at a possible world w , v is a possible world which is supportive for object a, or
the transition from the possible world w to the possible world v is sustainable
for object a. The idea is roughly as follows. An object can be faced with many
different possibilities. Usually, some of these possibilities are sustainable for the
object and some of them are not. Moreover, the class of possibilities which are
sustainable for an object can vary from different standpoints. Thus, each object
could be determined (as to its existential aspect) by the relation which correlates
each standpoint with the possibilities, which are sustainable for the object in this
standpoint. The possible worlds are simply formal counterparts of possibilities
and standpoints. I assume that, aB is true at a possible world w if and only if B
is true at all possible worlds which are a-accessible from w , that is, a situation is
necessary for an object at a possible world w if and only if it obtains in all possible
worlds which are accessible for this object from world w . I also assume that, Exa
is true at a possible world w if and only if the possible world w is a-accessible
from itself, and that Posa is true at a possible world w if and only if there is a
possible world v which is a-accessible from the possible world w .Furthermore, I
assume, that a/b is true at a possible world w if and only if any possible world
v , which is a-accessible from the possible world w , is also b-accessible from the
possible world w . Finally, I assume that if a possible world v is (a*b)-accessible
from a possible world w , then the possible world v is a-accessible from the pos-
sible world w and b-accessible from the possible world w . I presume that if a
possible world v is a-accessible from a possible world w , then the possible world
v is a-accessible from itself. Thus, if a possibility v is sustainable for object a
in a standpoint w , then the transition from w to v doesn’t change the quality of
possibility v as a possibility sustainable for a. This assumption could be referred
to as the first ontological consistency principle. I also presume that if any possible
world v , which is a-accessible from a possible world w , is a possible world which
is b-accessible from itself, then, any possible world v , which is a-accessible from
the possible world w , is also b-accessible from the possible world w . Thus, due
to a possible world v that is b-accessible from itself is a possible world at which
b exists, if that a possibility v is sustainable for object a in the standpoint w
implies that v is a point at which b exist, then that a possibility v is sustainable
for object a in the standpoint w implies that v is also a possibility sustainable for
object b in the standpoint w . This assumption could be referred to as the second
ontological consistency principle.

2. A language for modal ontologic consists of the following:
The alphabet is given by

(a) a denumerable set P of propositional letters. I refer to these as p1, p2, p3,
. . . etc.,

(b) the symbols of logical connectives ∼ and & for negation and conjunction
respectively,

(c) a denumerable set O of object letters. I refer to these as a1, a2, a3, . . . etc.,
(d) the ontological symbols of fusion *, existence Ex, possibility Poss and well-

founding /,
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(e) the auxiliary symbols ( and ).

The set Ob of one-place object operators is the smallest set X satisfying the
following conditions:

(Ob 1) Each object letter belongs to X.
(Ob 2) If x belongs to X and y belongs to X, then (x*y) belongs to X.

The letters a, b, c. . . are used as metalogical variables, to range over object
operators.

The set For of well-formed sentential formulae is the smallest set X satisfying
the following conditions:

(For 1) Each propositional letter belongs to X.
(For 2) If x belongs to X and y belongs to X, then (x & y), ∼x and ∼y belongs

to X.
(For 3) If a is an object operator, then Exa and Possa belongs to X.
(For 4) If a and b are object operators, then a/b belongs to X.
(For 5) If x belongs to X and a is an object operator, then ax belongs to X.

The letters A, B, C. . . are used as metalogical variables, to range over well-
formed sentential formulae.

Various other symbols are introduced by following definitions:

(D1) (A ∨ B) = ∼(∼A & ∼B)
(D2) (A → B) = ∼(A & ∼B)
(D3) (A ≡ B) = ∼(A & ∼B) & ∼(∼A & B)
(D4) aB = ∼(a∼B).

The phrase aB could be read: B is possible for a.
Within the frame of the formal language a simple modal ontological calculus

can be constructed. A calculus is given by a set of sentential formulae, called
axioms, and a finite set of inference rules. Let me construct the modal ontological
calculus on the following axiomatic basis.

The first group of axioms consists of all tautologies of classical propositional
logic, with well-formed formulae of ontological language substituted for the propo-
sitional letters.

The second group of axioms is determined by the following schemata:

(A1) a(B → C) → (aB → aC),
(A2) Exa → (aB → B),
(A3) aExa,
(A4) Posa → (aB → ∼a∼B),
(A5) ∼aB → Posa,
(A6) a/b → (bC → aC),
(A7) aExb → a/b,
(A8) (aC ∨ bC) → (a*b)C.

The rules of inference of the calculus are:
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(R1) Rule of Detachment (Modus Ponens).
(R2) A Rule of Necessitation to the effect that if B is a provable formula, then

aB is also a provable formula.

The axiom schema (A1) and the rule (R2) are respectively the multimodal
versions of the axiom of regularity and the rule of necessitation applied in standard
logical calculi for normal propositional modal logics. The axiom schemata (A2)–
(A8) capture a proper ontological content discussed in the previous paragraph.

A proof is then defined as a finite sequence of formulas such that each member
either belongs to axioms or is derived from earlier members of the sequence by
Modus Ponens or the Rule of Necessitation. A proof is said to be a proof of the
last member in its sequence, and a thesis is a formula of which there is a proof. I
write ` to mean that the formula A is a thesis. From the axiomatic basis of the
modal ontological calculus we can prove a number of theses. Among them are all
formal counterparts of (1)–(15). In fact, formal counterparts of (1), (3), (5), (7),
(8) and (12) are axioms. As to the remaining of them, and some other theses, let
me state the following theorem.

Theorem 1 . The following expressions are thesis schemata of modal on-
tological calculus (the proofs of theorems are enclosed in the appendix,
where proofs are easy, they are omitted):

(Th1) aB → (∼B → ∼Exa),

(Th2) (aB & a∼B) → ∼Posa,

(Th3) Exa → Posa,

(Th4) a/b → a(Exb),

(Th5) (a/b & b/c) → a/c,

(Th6) (a/a),

(Th7) Ex(a*b) → (Exa & Exb),

(Th8) (a*b)Exa,

(Th9) (a*b)Exb,

(Th10) (a*b)/a,

(Th11) (a*b)/b,

(Th12) Pos(a*b) → (Posa & Posb),

(Th13) (a/b & b/a) → (Exa ≡ Exb),

(Th14) a/b → (a*c)/b,

(Th15) a/(b*c) → (a/b & a/c).

Let me draw your attention to (Th8), (Th9) and to the last four schemata
(Th12)–(Th15) which capture some ontological intuition about objects. Thesis
schemata (Th8) and (Th9) say that existence of a as well as existence of b is
necessary for the fusion of a and b. According to (Th12) if the fusion of a and b
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is possible, then a is possible and b is possible. Due to (Th13), if a is well-founded
in b and b is well-founded in a, then a exist if and only if b exist. Scheme (Th14)
says that if a is well-founded in b, then a fusion of a and c is also well-founded in
b and scheme (Th15) says that if a is well-founded in the fusion of b and c, then
a is well-founded in b and a is well founded in c.

By the modal ontological theory , I mean the class of all theses. Thus, the modal
ontological theory is the smallest set containing all axioms and closed with respect
to Modus Ponens and the Rule of Necessitation.

For any set of formulas X, I shall say that A is deducible from X if and only
if there are formulas B1, B2,. . . .Bn belonging to X such that the formula (B1 &
B2 &. . . .& Bn) → A is a thesis. Note that each formula which is deducible from
the modal ontological theory belongs to it. A set of formulas X is called consistent
if and only if there is no formula A, such that A and ∼A are both deducible from
X. Otherwise X is called inconsistent . The definition implies that if any set of
formulae X is inconsistent, then some finite subset of X is also inconsistent, and
that if any set of formulas X is inconsistent and a formula A is not deducible
form X, then the set X ∪ {∼A}is also inconsistent. Let me assume, that sets of
formulae represent situations and consistent sets of formulae represent consistent,
or ontologically possible situations. Note that if the modal ontological theory is
inconsistent, then all sets of formulae are inconsistent. Fortunately the following
theorem holds.

Theorem 2 . The modal ontological theory is consistent.

A set of formulae is complete if and only if for any formula A either A belongs
to X or ∼A belongs to X. A set of formulae which is both consistent and complete
is called a maximal consistent set of formulae. Note that if X is maximal consistent
set of formulae and A is deducible from X, then A belongs to X. It is easy to show,
that for every maximal consistent set of formulae X and for every formulae A and
B, (i) ∼A belongs to X if and only if A doesn’t belong to X, (ii) (A & B) belongs
to X if and only if A belongs to X and B belongs to X, (iii) (A ∨ B) belongs to
X if and only if A belongs to X or B belongs to X, (iv) (A → B) belongs to X if
and only if if A belongs to X, then B belongs to X, (v) (A ≡ B) belongs to X if
and only if A belongs to X if and only if B belongs to X.

Maximal consistent sets of formulae might be regarded as complete state de-
scriptions expressed in the language of modal ontologic. Thus, they might be
regarded as counterparts of possible worlds. For the modal ontological theory
holds the theorem known as the Lindenbaum’s Lemma to the effect that any con-
sistent set of formulae is a subset of a maximal consistent set of formulae. It
follows that a set of formulas is consistent if and only if it is included in a max-
imal consistent set of formulas. It reflects the conviction that any ontologically
possible situation obtains in some possible world and, in fact, that a situation is
ontologically possible if and only if it obtains in some possible world.

3. The semantics of modal ontologic is a slight modification to the standard
semantics of normal modal logics known as possible worlds semantics. The object
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operators are to be interpreted as binary relations on the set of possible worlds.
The intuition behind this modeling is that each object a is determined by the
binary relation Ra, which correlates a possible world w with possible worlds,
which are supportive for object a at a possible world w . The symbol of fusion is
to be interpreted as a binary operation + defined on the set of binary relations
assigned to modal operators. I assume that for any relations R and S, and for
any possible worlds w and v , if vR+Sw then vRw and vSw . It reflects the
conviction that a possible world which is supportive for a fusion is also supportive
for the direct parts of the fusion.

Formally, I shall introduce the notion of an ontological model. An ontological
model M is to consist of a non-empty set of possible worlds W , an infinite sequence
P1, P2, P3,. . . of subsets of W , let me abbreviate it as Pi, a set of binary relations
on W , let me abbreviate it as R, a binary operation + defined on R, and an infinite
sequence R1, R2, R3, . . . of binary relations from R, let me abbreviate it as Ri.
Thus, I define an ontological model as a structure M = < W , Pi, R, +, Ri >
satisfying the following additional conditions:

(C1) for any relations R and S belonging to R, and for any w and v belonging
to W , if vR+Sw then vRw and vSw ;

(C2) for any relation R belonging to R, and for any w and v belonging to W ,
if vRw then vRv ;

(C3) for any relations R and S belonging to R, and for any w and v belonging
to W , if vRw implies that vSv , then vRw implies that vSw .

Condition (C1) reflects the conviction that a possible world which is supportive
for a fusion is also supportive for the direct parts of the fusion. Conditions (C2)
and (C3) are formal counterparts of the first ontological consistency principle and
the second ontological consistency principle stated at the end of the paragraph 1.

Given the definition of an ontological model, I shall state the following theorem.

Theorem 3 . There are structures which are ontological models.

For any modal operator a there is a unique binary relation Ra, which corre-
spond to a in a model M . For each natural number k, Rk correspond to ak and
Ra+Rb correspond to (a*b). In terms of possible world in a model I state the
truth conditions for formulae according to their forms. I write w |=M A to mean
that A is true at the possible world w in the model M . The truth conditions are
as follows.

1. w |=M pk if and only if w belongs to Pk, for k = 1, 2, 3,. . . .
2. w |=M ∼A if and only if not w |=M A.
3. w |=M (A & B) if and only if both w |=M A and w |=M B.
4. w |=M aB if and only if for any possible world v if vRaw then v |=M B.
5. w |=M Exa if and only if wRaw .
6. w |=M Posa if and only if there is a possible world v such that vRaw .
7. w |=M a/b if and only if for any possible world v if vRaw then vRbw .

Clause (1) reflects the stipulation that in a model M , a propositional letter
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pk is true at a possible world w just in the case w is a member of the set Pk.
Clauses (2) and (3) are simply repeats of the usual propositional truth clauses.
Due to definitions (D1)–(D4) they yield the classical truth tables for standard
propositional connectives. Clause (4) formulates the interpretation of object rel-
ative necessity: aB is true at a possible world w if and only if B is true at all
possible worlds which are a-accessible from w , or a situation is necessary for an
object at a possible world w if and only if it obtains in all possible worlds which
are supportive for this object at the world w . Clauses (5), (6) and (7) reflect the
remarks about ontological concepts of existence, possibility, well-foundation and
fusion contained in the paragraph 1.

A formula true at every possible world in a model M is said to be valid in the
model M , a formula valid in every model is said to be ontologically valid . I write
|=M A to mean that the formula A is valid in the model M , and |= A to mean
that the formula A is ontologically valid.

For any possible world w let [w ]Ra be the set of possible worlds which are
supportive for object a at the possible world w . Thus [w ]Ra = {v : vRaw}. I
shall call it the range of object a at the possible world w . The range of object a at
the possible world w contains the possibilities which are sustainable for object a
according to the standpoint w . Thus each object a can be depicted as a function
which to any possible world assigns the range of object a at the possible world
w . Let me reformulate the clauses (5) – (7) in terms of range of an object. The
clauses are as follows.

(5*) w |=M Exa if and only if w belongs to [w ]Ra.
(6*) w |=M Posa if and only if [w ]Ra 6= ∅.
(7*) w |=M a/b if and only if [w ]Ra ⊆ [w ]Rb.

According to (5*) object a exists at point w if and only if from standpoint w ,
w is itself a sustainable possibility for object a. Clause (6*) states that object a
is possible at point w if and only if the class of possibilities which are sustainable
for object a according to standpoint w is not empty. The content of (7*) is that
object a is well-founded in object b at point w if and only if the class of possibilities
which are sustainable for object a according to standpoint w is included in the
class of possibilities which are sustainable for object b according to standpoint w .

4. In the previous two paragraphs modal ontological formulae were studied
in two quite different ways, a syntactical one in paragraph 2 and a semantic one
in paragraph 3. The syntactical approach is concerned with a modal ontological
calculus and a modal ontological theory as a set of all theses. On the other
hand, the semantic approach is concerned with ontological models and with truth
conditions in a model. By the help of these semantic notions a set of ontologically
valid formulae has been singled out. A fruitful blend of the two approaches results
in the following completeness theorem.

Theorem 4 . A formula is a thesis of modal ontologic if and only if it
is an ontologically valid formula.
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Thus, the syntactical and the semantic approach depict the same class of on-
tologically true formulae.

Appendix

Proof of theorem 1 . To prove the theorem it is sufficient to show that the
schemata (Th1) – (Th15) are thesis schemata.

(Th1) aB → (∼B → ∼Exa): From (A2) by propositional logic.
(Th2) (aB & a∼B) → ∼Posa: From (A4) by propositional logic.
(Th3) Exa → Posa: By (A2), Exa → (aB → B) is a thesis schema. Then, by

propositional logic, Exa → (∼B → ∼aB) is a thesis schema and Exa → (∼0 →
∼a0) is also a thesis schema (0 stands for arbitrary chosen counter-tautology of
propositional logic). Thus, by propositional logic, Exa → ∼a0 is a thesis schema.
But, by (A5), ∼a0 → Posa is a thesis schema and, by propositional logic Exa →
Posa is a thesis schema.

(Th4) a/b → aExb: By (A6), a/b → (bExb → aExb) is a thesis schema.
But, by (A3), bExb is a thesis schema, then, by propositional logic, a/b → aExb
is a thesis schema.

(Th5) (a/b & b/c) → a/c: By (A6) and propositional logic, (a/b & b/c) →
(cD→aD) is a thesis schema and therefore (a/b & b/c) → (cExc→aExc) is a
thesis schema. But, by (A3), cExc is a thesis schema and (a/b & b/c) → aExc
is a thesis schema. Hence, by (A7) and propositional logic, (a/b & b/c) → a/c is
a thesis schema.

(Th6) a/a: From (A3) and (A7) by propositional logic.
(Th7) Ex(a*b) → (Exa & Exb): By(A2), Ex(a*b) → ((a*b)Exa → Exa)

and Ex(a*b) → ((a*b)Exb → Exb) are thesis schemata. But, by (A8), aExa →
(a*b)Exa and bExb → (a*b)Exb are thesis schemata. Hence, by propositional
logic, Ex(a*b) → (aExa → Exa) and Ex(a*b) → (bExb → Exb) are thesis
schemata and, by (A3) and propositional logic, Ex(a*b) → (Exa & Exb) is a
thesis schema.

(Th8) (a*b)Exa: By (Th7), Ex(a*b) → Exa is a thesis schema. Hence, by
(A1) and (R2), (a*b)Ex(a*b) → (a*b)Exa is a thesis schema. But, by (A3),
(a*b)Ex(a*b) is a thesis schema and, by (R1), (a*b)Exa is a thesis schema.

(Th9) (a*b)Exb: In the same way as for (Th8).
(Th10) (a*b)/a: By (Th8), (a*b)Exa is a thesis schema. Hence, by (A7),

(a*b)/a is a thesis schema.
(Th11) (a*b)/b: In the same way as for (Th10).
(Th12) Pos(a*b)→ (Posa & Posb): By (A4) Pos(a*b)→ ((a*b)C→∼(a*b)∼C)

is a thesis schema. But, by (A8), aC → (a*b)C and bC → (a*b)C are the-
sis schemata and, by propositional logic, Pos(a*b) → (aC → ∼(a*b)∼C) and
Pos(a*b) → (bC → ∼(a*b)∼C) are thesis schemata. In particular, Pos(a*b)
→ (a0 → ∼(a*b)∼0) and Pos(a*b) → (b0 → ∼(a*b)∼0) are thesis schemata
and, by propositional logic, Pos(a*b) → ((a*b)∼0 → ∼a0) and Pos(a*b) →
((a*b)∼0 → ∼b0) are thesis schemata. (0 stands for arbitrary chosen counter-
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tautology of propositional logic.) But, by (R2), (a*b)∼0 is a thesis schema and
therefore Pos(a*b) → ∼a0 and Pos(a*b) → ∼b0 are thesis schemata. Hence, by
(A5) and propositional logic, Pos(a*b) → (Posa & Posb) is a thesis schema.

(Th13) (a/b & b/a) → (Exa ≡ Exb): By (A6), a/b → (bExb → aExb) is a
thesis schema and, by (A3) and propositional logic, a/b→ aExb is a thesis schema.
By (A2), Exa→ (aExb → Exb) is a thesis schema. Hence, by propositional logic,
a/b → (Exa → Exb) is a thesis schema. On the other hand, by (A6), b/a →
(aExa → bExa) is a thesis schema and, by (A3) and propositional logic, b/a →
bExa is a thesis schema. By (A2), Exb → (bExa → Exa) is a thesis schema.
Hence, by propositional logic, b/a → (Exb → Exa) is a thesis schema. Thus, by
propositional logic, (a/b & b/a) → (Exa ≡ Exb) is a thesis schema.

(Th14) a/b → (a*c)/b: From (Th10) and (Th5) by propositional logic.
(Th15) a/(b*c) → (a/b & a/c): By (A6), a/(b*c) → ((b*c)C → aC), is a

thesis schema. Hence, a/(b*c)→ ((b*c)Exb→ aExb) and a/(b*c)→ ((b*c)Exc
→ aExc) are thesis schemata. But, by (Th8) and (Th9), (b*c)Exb and (b*c)Exc
are thesis schemata, and therefore a/(b*c) → aExb and a/(b*c) → aExc are
thesis schemata. Thus, by (A7) and propositional logic, a/(b*c) → (a/b & a/c)
is a thesis schema.

Proof of theorem 2 . To prove that the modal ontological theory is consistent
let me take advantage of a standard language of classical propositional logic. The
alphabet is given by a denumerable set Q of propositional letters, I refer to these
as q1, q2, q3, . . . etc., the symbols of logical connectives ∼ and & for negation and
conjunction respectively and parentheses ( and ). The set of well-formed sentential
formulae is defined inductively in the standard way. Thus (i) every propositional
letter is a well-formed sentential formula, (ii) if x and y are well-formed sentential
formulae, then ∼x, ∼y and (x&y) are well-formed sentential formulae, (iii) nothing
else is a well-formed sentential formula. The symbols ∨,→ and≡ are introduced by
definitions in the standard way. Let me define the mapping T, from the language of
the modal ontologic to the language of classical propositional calculus, as follows.

(T1) T(pn) = q2n.
(T2) T(an) = q2n+1.
(T3) T(a*b) = T(a) & T(b).
(T4) T(∼A) = ∼T(A).
(T5) T(A & B) = T(A) & T(B).
(T5) T(Exa) = T(a).
(T6) T(posa) = T(a).
(T7) T(a/b) = T(a) →T(b).
(T8) T(aB) = T(a) → T(B).

Thus, T associates with each well-formed sentential formula A in modal on-
tologic language a unique formula T(A) in the language of classical propositional
logic. Let me call it the PC-transform of A. It is easy to show, that the PC-
transform of every thesis of modal ontological calculus is a tautology of classical
propositional calculus. It follows that for every well-formed sentential formula A,
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A and ∼A are not theses, for if they were, T(A) and ∼T(A) would both be
tautologies of classical propositional calculus, which is impossible.

Proof of theorem 3 . Let W ∗ be the set of maximal consistent sets of formulae.
Due to theorem 2 , W ∗ is a non-empty set. Let P ∗

i be the infinite sequence of
subsets of W ∗, such that for each natural number k, P ∗

k is the set of maximal con-
sistent sets of formulae containing propositional letter pk. For each object operator
a, let Ra be the binary relation onW ∗, such that for any v and w belonging to
W ∗, v Raw if and only if {C : aC ε w}⊆ v . Let R∗ be the set of binary relations
on W ∗ which contains for every object operator a the relation Ra and no other
relations. Let +∗ be the binary operation on R∗ such that for any Ra and Rb

belonging to W ∗, Ra+∗ Rb = R(a∗b). Let R∗
i be the infinite sequence of binary

relations on W ∗, such that for each natural number k, for any v and w belonging
to W ∗, v R∗

kw if and only if {C : akC ε w}⊆ v . In order to show that the
structure M∗ = <W ∗, P ∗

i , R∗, +∗, R∗
i >is an ontological model, it is sufficient to

prove that the structure satisfy the conditions (C1), (C2) and (C3).
To prove (C1) assume that vRa+∗Sbw . Thus vR(a∗b)w and {C : (a*b)C

ε w}⊆ v . Now suppose aC belongs to w . Then, by (A8), (a*b)C also belongs
to w , and by the assumption, C belongs to v . Hence {C : aC ε w}⊆ v . Next,
suppose bC belongs to w . Then, by (A8), (a*b)C also belongs to w , and by the
assumption, C belongs to v . Hence {C : bC ε w}⊆ v . Thus, vRaw and vRbw .

To prove (C2) assume that vRaw . Thus {C : aC ε w}⊆ v and, by (A3), Exa
belongs to v . Hence, by (A2) any formula depicted by schema (aC → C), also
belongs to v . Thus for any formula aC, if aC belongs to v , then C belongs to v .
Hence {C : aC ε v}⊆ v and vRav .

To prove (C3) assume that for any v , vRaw implies that vRbv . Thus for any
v , if {C : aC ε w}⊆ v , then {C : bC ε v}⊆ v . But, due to (A3) for any v , if {C
: bC ε v}⊆ v , then Exb belongs to v . Thus, for any v , if {C : aC ε w}⊆ v , then
Exb belongs to v . Hence, no maximal consistent set of formulae includes the set
{C : aC ε w}∪{∼Exb}and therefore this set is inconsistent. Thus, there is a finite
subset of this set {C1, C2, C3,. . . , Ck, ∼Exb}which is inconsistent and therefore
formula C1 → (C2 → (C3 →. . . (Ck → Exb). . . )) is a thesis. Hence C1 → (C2 →
(C3 →. . . (Ck → Exb). . . )) belongs to w and, by (A1), (R1) and (R2), aC1 →
(aC2 → (aC3 →. . . (aCk → aExb). . . )) also belongs to w . But formulae aC1,
aC2, aC3, . . . , and aCk belong to w , and by (R1), aExb also belongs to w . Thus,
by (A7), a/b belongs to w and, by (A6), any formula depicted by scheme (bC →
aC) also belongs to w . Hence {C : bC ε w}⊆ {C : aC ε w}and therefore for any
v , if {C : aC ε w}⊆ v , then {C : bC ε w}⊆ v . Thus, vRaw implies that vRbw .

It completes the proof that the structure M∗ = < W ∗, P ∗
i , R∗, +∗, R∗

i > is
an ontological model. I shall call it canonical ontological model . For the canonical
ontological model holds the lemma to the effect that for any formula A and any
w εW ∗, w |=M∗ A if and only if A ε w . I shall call it the fundamental lemma.

The proof of the lemma is of course by induction on the construction of for-
mulae. The definition of the canonical ontological model assures that for any
propositional letter pk, and for any w εW ∗, w |=M∗ pk if and only if pkε w . In
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case of propositional connectives ∼ and & you rely on the maximal consistency of
each w , to assure you that A ε w if and only if it is not the case that ∼A ε w
and that A & B ε w if and only if A ε w and B ε w .

The case of one-place object operator a is a standard one. The induction
hypothesis is that for any w ε W ∗, w |=M∗ A if and only if A ε w . Now, suppose
aA belongs to w . Hence if vRaw , then {B : aB ε w}⊆ v and therefore A ε
v . Thus, by the induction hypothesis, if vRaw , then v |=M∗ A, hence w |=M∗

aA. Next, suppose that w |=M∗ aA. Thus, if vRaw , then v |=M∗A and, by the
definition of the canonical ontological model and by the induction hypothesis, if
{C : aC ε w}⊆ v , then A ε v . Hence, no maximal consistent set of formulae
includes the set {C : aC ε w}∪{∼A}and therefore this set is inconsistent. Thus,
there is a finite subset of this set {B1, B2, B3,. . . , Bk, A}which is inconsistent
and therefore formula B1 → (B2 → (B3 →. . . (Bk → A). . . )) is a thesis. Hence
B1 → (B2 → (B3 →. . . (Bk →A). . . )) belongs to w and, by (A1), (R1) and (R2),
aB1 → (aB2 → (aB3 →. . . (aBk → aA). . . )) also belongs to w . But formulae
aB1, aB2, aB3, . . . , and aBk belong to w , and by (R1), aA also belongs to w .

The only essentially new cases are the symbols of existence (Ex), possibility
(Pos) and well-foundation (/).

To prove that w |=M∗ Exa if and only if Exa ε w , at first suppose that w |=M∗

Exa. Hence, w Raw and, by the definition of M∗, {C : aC ε w}⊆ w . Thus, any
formula depicted by scheme aB → B belongs to w . But, by (A3), aExa belongs
to w , and therefore Exa also belongs to w . Next, suppose Exa belongs to w .
Thus, by (A2), any formula depicted by scheme aC→ C belongs to w . Hence {C
: aC ε w}⊆ w and, by the definition of M∗, w Raw . Therefore w |=M∗ Exa.

To prove that w |=M∗ Posa if and only if Posa ε w , at first suppose w |=M∗

Posa. Hence, [w ]Ra 6= ∅ and therefore there is a maximal consistent set of formulae
v , such that {C : aC ε w}⊆ v . Thus, {C : aC ε w}is a consistent set and therefore
any formula depicted by scheme aC → ∼a∼C belongs to w . Let 1 abbreviates
the arbitrary chosen tautology of propositional logic. Of course, by (R2), a1
belongs to w . Hence, ∼a∼1 belongs to w and, by (A5), Posa belongs to w . Next,
suppose Posa belongs to w . Hence, by (A4), any formula depicted by scheme aC
→ ∼a∼C belongs to w and therefore {C : aC ε w}is a consistent set. Thus, there
is a maximal consistent set of formulae v , such that {C : aC ε w}⊆ v and, by
the definition of M∗, [w ]Ra 6= ∅. Therefore w |=M∗ Posa.

To prove that w |=M∗ a/b if and only if a/b ε w , at first suppose w |=M∗ a/b.
Hence, [w ]Ra ⊆ [w ]Rb and, by the definition of M∗, for any v , if {C : aC ε w}⊆
v then {C : bC ε w}⊆ v . But, due to (A3), bExb belongs to w , and therefore for
any v , if {C : aC ε w}⊆ v then Exb belongs to v . Hence, no maximal consistent
set of formulae includes the set {C : aC ε w}∪{∼Exb}and therefore this set
is inconsistent. Thus, there is a finite subset of this set {B1, B2, B3,. . . , Bk,
∼Exb}which is inconsistent and therefore formula B1 → (B2 → (B3 →. . . (Bk →
Exb ). . . )) is a thesis. Hence B1 → (B2 → (B3 →. . . (Bk → Exb). . . )) belongs to
w and, by (A1), (R1) and (R2), aB1 → (aB2 → (aB3 →. . . (aBk → a Exb). . . ))
also belongs to w . But formulae aB1, aB2, aB3, . . . , and aBk belong to w , and
by (R1), aExb also belongs to w . But, by (A7), any formula depicted by schema
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aExb → a/b belongs to w , and therefore a/b also belongs to w .
Next, suppose a/b belongs to w . Hence, by (A6), any formula depicted by

schema bC → aC belongs to w , and therefore {C : bC ε w}⊆ {C : aC ε w}.
Thus, for any v , if {C : aC ε w}⊆ v then {C : bC ε w}⊆ v . Therefore, [w ]Ra

⊆ [w ]Rb and w |=M∗ a/b.

Proof of theorem 4 . In order to show that, a formula is a thesis of modal
ontologic if and only if it is an ontologically valid formula it is sufficient to prove
that any thesis is an ontologically valid formula and that any formula, which is
not a thesis is not ontologically valid. The proof of the first implication requires
the establishment of the ontological validity of all axioms and the demonstration
that the rules of inference (R1) and (R2) preserve ontological validity. It could
be easily done. To prove the converse implication, suppose a formula A is not a
thesis. Then {∼A}is a consistent set. Thus, there is a maximal consistent set of
formulae v , such that {∼A}⊆ v . Hence, by the definition of M∗, for some w εW ∗,
∼A belongs to w , and A doesn’t belong to w . Therefore, by the fundamental
lemma, for some w εW ∗, w 6|=M∗A, and so, A is not ontologically valid.
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