Green function for gradient perturbation of unimodal Lévy processes

Autor

  • Tomasz Grzywny
  • Tomasz Jakubowski
  • Grzegorz Żurek

DOI:

https://doi.org/10.19195/0208-4147.37.1.5

Słowa kluczowe:

Unimodal Lévy process, heat kernel, smooth domain, Green function, gradient perturbation

Abstrakt

GREEN FUNCTION FOR GRADIENT PERTURBATION OF UNIMODAL LÉVY PROCESSES

We prove that the Green function of a generator of isotropic unimodal Lévy processes with the weak lower scaling order greater thanone and the Green function of its gradient perturbations are comparable for bounded smooth open sets if the drift function is from an appropriate Kato class.

Pobrania

Opublikowane

2018-05-16

Numer

Dział

Artykuły [1035]