A maximal inequality for stochastic integrals

Autor

  • Mateusz Rapicki

Słowa kluczowe:

Martingale, sharp inequality

Abstrakt

Assume that X is a càdlàg, real-valued martingale starting from zero, H is a predictable process with values in [−1; 1] and Y =∫HdX. This article contains the proofs of the following inequalities:
i If X has continuous paths, then
Psupt≥0 Yt≥ 1≤ 2Esupt≥0Xt, where the constant 2 is the best possible.
ii If X is arbitrary, then
Psupt≥0 Yt≥ 1≤ cEsupt≥0Xt, where c = 3.0446... is the unique positive number satisfying the equation 3c4 − 8c3 − 32 = 0. This constant is the best possible.

Pobrania

Opublikowane

2016-09-02

Numer

Dział

Artykuły [1035]