Persistence probabilities for a bridge of an integrated simple random walk

Autor

  • Frank Aurzada
  • Mikhail Lifshits
  • Steffen Dereich

Słowa kluczowe:

Integrated random walk, local limit theorem, persistence probability

Abstrakt

We prove that an integrated simple random walk, where random walk and integrated random walk are conditioned to return to zero, has asymptotic probability n−1/2 to stay positive. This question is motivated by random polymer models and proves a conjecture by Caravenna and Deuschel.

Pobrania

Opublikowane

2014-05-05

Numer

Dział

Artykuły [1035]