Supermodular ordering of Poisson and binomial random vectors by tree-based correlations

Autor

  • Nicolas Privault
  • Bünyamin Kizildemir

DOI:

https://doi.org/10.19195/0208-4147.38.2.7

Słowa kluczowe:

Stochastic ordering, supermodular functions, Möbius transform, Möbius inversion, binary trees, Poisson random vectors, binomial random vectors

Abstrakt

We construct a dependence structure for binomial, Poisson and Gaussian random vectors, based on partially ordered binary trees and sums of independent random variables. Using this construction, we characterize the supermodular ordering of such random vectors via the componentwise ordering of their covariance matrices. For this, we apply Möbius inversion techniques on partially ordered trees, which allow us to connect the Lévy measures of Poisson random vectors on the discrete d-dimensional hypercube to their covariance matrices.

Pobrania

Opublikowane

2018-12-28

Numer

Dział

Artykuły [1035]